1
|
Ghosh A, Bera AK, Singh V, Basu S, Pati F. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. BIOMATERIALS ADVANCES 2024; 165:214007. [PMID: 39216318 DOI: 10.1016/j.bioadv.2024.214007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corneal scarring is a common cause of blindness, affecting millions globally each year. A huge gap between the demand and supply of donor tissue currently limits corneal transplantation, the only definitive therapy for patients with corneal scarring. To overcome this challenge, researchers have harnessed the efficacy of 3D bioprinting to fabricate artificial corneal stromal constructs. With all the different bioinks available, the decellularized corneal matrix-based bioprinted construct can fulfill the required biological functionality but is limited by the lack of mechanical stiffness. Additionally, from a biophysical standpoint, it is necessary for an ideal corneal substitute to mimic the anisotropy of the cornea from the central optic zone to the surrounding periphery. In this study, we enhanced the mechanical robustness of decellularized cornea matrix (DCM) hydrogel by blending it with another natural polymer, sonicated silk fibroin solution in a defined ratio. Although hybrid hydrogel has an increased complex modulus than DCM hydrogel, it has a lower in vitro degradation rate and increased opaqueness due to the presence of crystalline beta-sheet conformation within the hydrogel. Therefore, we used this multi-material bioink-based approach to fabricate a corneal stromal equivalent where the outer peripheral corneal rim was printed with a mechanically robust polymeric blend of DCM and sonicated silk fibroin and the central optic zone was printed with only DCM. The bioprinted corneal stroma thus maintained its structural integrity and did not break when lifted with forceps. The two different bioinks were encapsulated with human limbus-derived mesenchymal stem cells (hLMSC) individually and 3D bioprinted in different patterns (concentric and parallel) to attain a native-like structure in terms of architecture and transparency. Thus, the bilayer cornea constructs maintained high cell viability and expressed keratocyte core proteins indicating optimal functionality. This approach helped to gain insight into bioprinting corneas with heterogeneous mechanical property without disturbing the structural clarity of the central optic zone.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Vivek Singh
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Sayan Basu
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
3
|
von Konow I, Eliasson A, Nilsson J, Malm T. Impact of prolonged storage time on homograft ultrastructures: an attempt to find optimal guidelines for homograft processing. Cell Tissue Bank 2024; 25:649-662. [PMID: 38386211 PMCID: PMC11142956 DOI: 10.1007/s10561-024-10127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
According to guidelines, total ischemic time for homografts at processing must be kept short to avoid degeneration. Many homografts are discarded due to practical inability to finish all steps from procurement to cryopreservation within the time limit. Although, several studies have shown that homografts with prolonged ischemic time show adequate quality and performance. Twenty aortic and 12 pulmonary homografts were collected and biopsies were retrieved at preparation (day 0) and after 1, 2, 3, 4, 7, 14, 21, 28, and 60 days in antibiotic decontamination at 4 °C. Biopsies were prepared for light microscopy (LM) and transmission electron microscopy (TEM). Assessment generated scores for cells, elastin, and collagen. Relative differences between times were compared with Wilcoxon signed rank test. Bonferroni corrected p value of 0.0056 was considered significant. LM could only reveal decrease in cell count at 60 days in aortic homografts, no other differences was detected. TEM showed affected cell appearance in day 3 and day 4 and beyond for aortic and pulmonary homografts respectively. Elastin appearance was affected at day 60 for aortic and day 21 for pulmonary homografts. Collagen appearance was affected at day 28 for aortic homografts, with no significant differences in pulmonary homografts. Cell degeneration starts early after homograft procurement, but elastic and collagen fibers are more resistant to degeneration. Overall structure integrity as seen in LM was not affected at all, while TEM could reveal small degeneration signs in individual elastic fibers and collagen bundles at 21 and 28 days respectively.
Collapse
Affiliation(s)
- Ida von Konow
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden.
- Department of Clinical Sciences, Thoracic Surgery, Lund University, Lund, Sweden.
- Tissue Bank Lund, Skane University Hospital, Lund, Sweden.
| | | | - Johan Nilsson
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden
- Department of Translational Medicine, Thoracic Surgery and Bioinformatics, Lund University, Lund, Sweden
| | - Torsten Malm
- Department of Clinical Sciences, Thoracic Surgery, Lund University, Lund, Sweden
- Tissue Bank Lund, Skane University Hospital, Lund, Sweden
- Department of Pediatric Cardiac Surgery Unit, Skane University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Peters MC, Kruithof BPT, Bouten CVC, Voets IK, van den Bogaerdt A, Goumans MJ, van Wijk A. Preservation of human heart valves for replacement in children with heart valve disease: past, present and future. Cell Tissue Bank 2024; 25:67-85. [PMID: 36725733 PMCID: PMC10902036 DOI: 10.1007/s10561-023-10076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Valvular heart disease affects 30% of the new-borns with congenital heart disease. Valve replacement of semilunar valves by mechanical, bioprosthetic or donor allograft valves is the main treatment approach. However, none of the replacements provides a viable valve that can grow and/or adapt with the growth of the child leading to re-operation throughout life. In this study, we review the impact of donor valve preservation on moving towards a more viable valve alternative for valve replacements in children or young adults.
Collapse
Affiliation(s)
- M C Peters
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - B P T Kruithof
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - A van den Bogaerdt
- Heart Valve Department, ETB-BISLIFE Multi Tissue Center, 2333 BD, Beverwijk, The Netherlands
| | - M J Goumans
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - A van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
5
|
Axelsson I, Gustafsson A, Isaksson H, Nilsson J, Malm T. Impact of storage time prior to cryopreservation on mechanical properties of aortic homografts. Cell Tissue Bank 2024; 25:27-37. [PMID: 36843158 PMCID: PMC10902001 DOI: 10.1007/s10561-023-10079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/04/2023] [Indexed: 02/28/2023]
Abstract
Optimal time spans in homograft procurement are still debatable among tissue banks and needs to be further investigated. Cell viability decreases at longer preparation intervals, but the effect on collagen and elastic fibers has not been investigated to the same extent. These fibers are of importance to the homograft elasticity and strength. The objective of this study was to analyze the mechanical properties of homograft tissue at different time spans in the procurement process. Ten aortic homografts were collected at the Tissue Bank in Lund. Twelve samples were obtained from each homograft, cryopreserved in groups of three after 2-4 days, 7-9 days, 28-30 days, and 60-62 days in antibiotic decontamination. Mechanical testing was performed with uniaxial tensile tests, calculating elastic modulus, yield stress and energy at yield stress. Two randomly selected samples were assessed with light microscopy. Procurement generated a total of 120 samples, with 30 samples in each time group. Elastic modulus and yield stress was significantly higher in samples cryopreserved after 2-4 days (2.7 MPa (2.5-5.0) and 0.78 MPa (0.68-1.0)) compared to 7-9 days (2.2 MPa (2.0-2.6) and 0.53 MPa (0.46-0.69)), p = 0.008 and 0.011 respectively. Light microscopy did not show any difference in collagen and elastin at different time spans. There was a significant decrease in elastic modulus and yield stress after 7 days of decontamination at 4 °C compared to 2-4 days. This could indicate some deterioration of elastin and collagen at longer decontamination intervals. Clinical significance of these findings remains to be clarified.
Collapse
Affiliation(s)
- Ida Axelsson
- Tissue Bank Lund, Baravägen 37, 22242, Lund, Sweden.
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden.
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden.
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Nilsson
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden
- Department of Translational Medicine, Artificial Intelligence and Bioinformatics in Cardiothoracic Sciences, Lund University, Lund, Sweden
| | - Torsten Malm
- Tissue Bank Lund, Baravägen 37, 22242, Lund, Sweden
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden
- Pediatric Cardiac Surgery Unit, Children's Hospital, Skane University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Havova M, Gebauer R, Antonova P, Spatenka J, Burkert J, Fabian O, Modrak M, Rohn V. Clinical experience of reoperative right ventricular outflow tract reconstruction with valved conduits: risk factors for conduit failure in long-term follow-up. Cell Tissue Bank 2024; 25:87-98. [PMID: 37085639 PMCID: PMC10902091 DOI: 10.1007/s10561-023-10088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Reconstruction of right ventricular outflow tract in patients with congenital heart disease in various age groups remains a controversial issue. Currently, a little is known about the fate of secondary and subsequent conduit. The aim of the study was to determine risk factors of conduit failure, evaluate long-term conduit survival, find out which type of conduit should be preferred in case of reoperations. We performed a retrospective analysis of a total of 249 records of valved conduit secondary and subsequent replacement in right ventricular outflow tract in 197 patients. Median follow-up was 5.7 years. The study endpoints were defined as conduit explants; balloon dilatation of the graft (excluding balloon dilatation of left/right pulmonary artery), transcatheter pulmonary valve implantation; heart transplantation or death of the patient. There were total of 21 deaths (11% mortality) among 197 patients during the follow-up, 2 patients underwent heart transplant, in 23 implanted conduits pulmonary angioplasty or/including transcatheter pulmonary valve implantation was afterwards performed due to graft failure, conduit had to be explanted in 46 cases. After 28 years follow-up, freedom from graft failure after 5 years was 77%, 48% after 10 years and 21% after 15 years. Reoperative right ventricular outflow tract reconstruction demonstrates good mid-term and acceptable long-term outcomes regardless of the type of conduit implanted. Worse long-term graft survival of secondary and further conduits is associated with younger age of the recipient at implantation, small size of the conduit, younger age of donor and male donor in case of allograft implantation.
Collapse
Affiliation(s)
- Mariia Havova
- Department of Cardiovascular Surgery, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic.
| | - Roman Gebauer
- Children's Heart Centre, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Petra Antonova
- Department of Cardiovascular Surgery, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Jaroslav Spatenka
- Department of Cardiovascular Surgery, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Transplantation and Tissue Bank, National Allograft Heart Valve Bank, Motol University Hospital, Prague, Czech Republic
| | - Jan Burkert
- Department of Cardiovascular Surgery, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Transplantation and Tissue Bank, National Allograft Heart Valve Bank, Motol University Hospital, Prague, Czech Republic
| | - Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague 4, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59, Prague 4, Czech Republic
| | - Martin Modrak
- Department of Bioinformatics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vilem Rohn
- Department of Cardiovascular Surgery, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| |
Collapse
|
7
|
Tergitol Based Decellularization Protocol Improves the Prerequisites for Pulmonary Xenografts: Characterization and Biocompatibility Assessment. Polymers (Basel) 2023; 15:polym15040819. [PMID: 36850103 PMCID: PMC9967102 DOI: 10.3390/polym15040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Right ventricle outflow tract obstruction (RVOTO) is a congenital pathological condition that contributes to about 15% of congenital heart diseases. In most cases, the replacement of the right ventricle outflow in pediatric age requires subsequent pulmonary valve replacement in adulthood. The aim of this study was to investigate the extracellular matrix scaffold obtained by decellularization of the porcine pulmonary valve using a new detergent (Tergitol) instead of Triton X-100. The decellularized scaffold was evaluated for the integrity of its extracellular matrix (ECM) structure by testing for its biochemical and mechanical properties, and the cytotoxicity/cytocompatibility of decellularized tissue was assessed using bone marrow-derived mesenchymal stem cells. We concluded that Tergitol could remove the nuclear material efficiently while preserving the structural proteins of the matrix, but without an efficient removal of the alpha-gal antigenic epitope. Therefore, Tergitol can be used as an alternative detergent to replace the Triton X-100.
Collapse
|
8
|
Skific M, Golemovic M, Safradin I, Duric Z, Biocina B, Golubic Cepulic B. Cryopreserved human heart valve allografts: a ten-year single centre experience. Cell Tissue Bank 2022; 24:401-416. [PMID: 36222968 PMCID: PMC9555264 DOI: 10.1007/s10561-022-10043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
This study provides an overview of tissue banking activities at the Croatian Cardiovascular Tissue Bank (CTB) during past ten years and presents the outcomes of cryopreserved heart valve allografts (CHAs) use in different patient groups. From June 2011 until December 2021, 75 heart donations were referred to CTB: 41 recipient of heart transplant (RHT), 32 donors after brain death (DBD) and 2 donors after circulatory death (DCD) donations. Processing resulted in 103 valves of which 65 met quality requirements for clinical use. Overall tissue discard rate was 37%. The most frequent reasons for discard were inadequate morphology (12%) in RHT donations and microbiological contamination (19%) in DBD donations. Altogether, 38 CHAs were transplanted to 36 patients. Recipients were divided in three groups; infective endocarditis (IE), non-infectious heart disease and congenital heart disease group. In the IE group, the 30-day, 1-year and 3-year survival was 71%, 53% and 47%, respectively. Freedom from re-operation due to all graft-related causes was 76% and due to structural valve deterioration 88%. There were no cases of graft reinfection. In the congenital heart disease group CHAs were predominantly (94%) used for right ventricular outflow tract reconstruction and 88% of patients recovered without graft-related complications. At present, the number of demands for CHAs at CTB considerably outweighs their availability.
Collapse
Affiliation(s)
- Marijana Skific
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.
| | - Mirna Golemovic
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Ivica Safradin
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Zeljko Duric
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Bojan Biocina
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.,University of Zagreb School of Medicine, Salata 3, 10000, Zagreb, Croatia
| | - Branka Golubic Cepulic
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.,University of Zagreb School of Medicine, Salata 3, 10000, Zagreb, Croatia.,University of Applied Health Sciences, Mlinarska 38, 10000, Zagreb, Croatia.,University of Split, University Department of Health Studies, Rudera Boskovica 35, 21000, Split, Croatia
| |
Collapse
|
9
|
Transplantation of cryopreserved human heart valves in Europe: 30 years of banking in Brussels and future perspectives. Cell Tissue Bank 2021; 22:519-537. [PMID: 33532987 PMCID: PMC7853167 DOI: 10.1007/s10561-021-09902-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/27/2022]
Abstract
For over 30 years, our TE has processed, controlled for quality and distributed cryopreserved allograft valves for human application. We present a review of this activity and future perspectives of cardiovascular tissue banking. The donor age and medical/behavioral history are in compliance with the regulations of the EUMS. Allograft morphology and function are evaluated in a class A cleanroom. Tests for viral/bacterial infection, histological control of structure/infection/malignancy and control-rate cryopreservation are performed. A total of 7562 hearts were sent to our TE, whereas 7290 valves (pulmonary, aortic and mitral) were transplanted. The donations increased over time: 1934, 2566 and 3062 hearts were donated during the first, second and third decades (increases of 32.7 and 19.3% during the second and third decades). Likewise, there was a significant increase in transplantations with 2050, 2550 and 2690 valves implanted during the first, second and third decades (24.4 and 5.5% increase during the second and third decades). A total of 4475 pulmonary (61.4%), 2760 aortic (37.9%) and 55 mitral valves (0.7%) were transplanted. Outstanding long-term results in adults and evidence of immune-related deterioration of allografts in neonates and infants were demonstrated. Decellularization was suggested as a solution. One hundred pulmonary and 180 aortic valves were sent for transplantation after decellularization for the ESPOIR and ARISE clinical trials and beyond. The donation and transplantation activity increased progressively. Although cryopreserved valves represent the best substitute for diseased valves, accelerated failure appears after implantation in neonates and infants. The implementation of new technologies, such as decellularization, as a standard procedure for treatment of allograft valves will offer further improvements in allograft quality and increase of durability.
Collapse
|