1
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123490. [PMID: 32712365 DOI: 10.1016/j.jhazmat.2020.123490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Catalytic hydrogenolysis of lignin to obtain value-added phenolic chemicals is a sustainable and cost-effective strategy for the efficient valorization of biomass derived wastes. Herein, an innovative approach by using a single-step microwave assisted depolymerization of lignin from birch sawdust without external hydrogen in the mixture of water-alcohol (methanol, ethanol, isopropanol) co-solvents over commercial catalysts (Pd/C, Pt/C, Ru/C) was investigated. A 65 wt% yield of phenolic monomers was obtained based on 43.8 wt% of delignification (190 °C, 3 h). The solid residues retained 92.0 wt% of cellulose and 57.3 wt% of hemicellulose, which could be further used for fermentation or in the pulp industry. Analysis of the lignin oil revealed that in-situ hydrogen generated from methanol decomposition promoted the hydrogenolysis of βO4 ether linkage and selective hydrogenation of unsaturated side-chains of phenolic monomers. This work introduces new perspectives for the efficient and cost-effective production of value-added phenolic compounds from lignin in agro-industrial wastes without external hydrogen assisted by microwave heating.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Florent P Bouxin
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Vitaliy L Budarin
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - James H Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
2
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. CHEMSUSCHEM 2020; 13:4296-4317. [PMID: 32662564 PMCID: PMC7540457 DOI: 10.1002/cssc.202001213] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Indexed: 05/05/2023]
Abstract
The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Florent P. Bouxin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jiajun Fan
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Vitaliy L. Budarin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
| | - James H. Clark
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
3
|
Mansikkala T, Patanen M, Kärkönen A, Korpinen R, Pranovich A, Ohigashi T, Swaraj S, Seitsonen J, Ruokolainen J, Huttula M, Saranpää P, Piispanen R. Lignans in Knotwood of Norway Spruce: Localisation with Soft X-ray Microscopy and Scanning Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy. Molecules 2020; 25:molecules25132997. [PMID: 32630014 PMCID: PMC7411943 DOI: 10.3390/molecules25132997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022] Open
Abstract
Lignans are bioactive compounds that are especially abundant in the Norway spruce (Picea abies L. Karst.) knotwood. By combining a variety of chromatographic, spectroscopic and imaging techniques, we were able to quantify, qualify and localise the easily extractable lignans in the xylem tissue. The knotwood samples contained 15 different lignans according to the gas chromatography-mass spectrometry analysis. They comprised 16% of the knotwood dry weight and 82% of the acetone extract. The main lignans were found to be hydroxymatairesinols HMR1 and HMR2. Cryosectioned and resin-embedded ultrathin sections of the knotwood were analysed with scanning transmission X-ray microscopy (STXM). Cryosectioning was found to retain only lignan residues inside the cell lumina. In the resin-embedded samples, lignan was interpreted to be unevenly distributed inside the cell lumina, and partially confined in deposits which were either readily present in the lumina or formed when OsO4 used in staining reacted with the lignans. Furthermore, the multi-technique characterisation enabled us to obtain information on the chemical composition of the structural components of knotwood. A simple spectral analysis of the STXM data gave consistent results with the gas chromatographic methods about the relative amounts of cell wall components (lignin and polysaccharides). The STXM analysis also indicated that a torus of a bordered pit contained aromatic compounds, possibly lignin.
Collapse
Affiliation(s)
- Tuomas Mansikkala
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (T.M.); (M.H.)
- Biocenter Oulu, P.O. Box 5000, University of Oulu, FI-90014 Oulu, Finland
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (T.M.); (M.H.)
- Biocenter Oulu, P.O. Box 5000, University of Oulu, FI-90014 Oulu, Finland
- Correspondence: (M.P.); (R.P.); Tel.: +358-29-448-1326 (M.P.); +358-29-532-5473 (R.P.)
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland; (A.K.); (R.K.); (P.S.)
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Risto Korpinen
- Production Systems, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland; (A.K.); (R.K.); (P.S.)
| | - Andrey Pranovich
- Wood and Paper Chemistry Research Group, Laboratory of Natural Materials Technology, Åbo Akademi University, Porthansgatan 3, FI-20500 Turku, Finland;
| | - Takuji Ohigashi
- UVSOR Facility, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan;
| | - Sufal Swaraj
- SOLEIL Synchrotron, L’Orme des Merisiers, Saint-Aubin, P.O. Box 48, CEDEX, FR-91192 Gif-Sur-Yvette, France;
| | - Jani Seitsonen
- Nanomicroscopy Center, Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland; (J.S.); (J.R.)
| | - Janne Ruokolainen
- Nanomicroscopy Center, Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland; (J.S.); (J.R.)
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (T.M.); (M.H.)
| | - Pekka Saranpää
- Production Systems, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland; (A.K.); (R.K.); (P.S.)
| | - Riikka Piispanen
- Production Systems, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland; (A.K.); (R.K.); (P.S.)
- Correspondence: (M.P.); (R.P.); Tel.: +358-29-448-1326 (M.P.); +358-29-532-5473 (R.P.)
| |
Collapse
|
4
|
Wen S, Liang M, Zou R, Wang Z, Yue D, Liu L. Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv 2015. [DOI: 10.1039/c5ra02660a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new inorganic supported catalyst of silica (SiO2)-supported palladium (Pd) nanofibers was successfully fabricated by the electrospinning followed by the calcination at high temperature and the reduction in H2 atmosphere.
Collapse
Affiliation(s)
- Shipeng Wen
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Engineering Research Center of Advanced Elastomers
| | - Meili Liang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Engineering Research Center of Advanced Elastomers
| | - Rui Zou
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhoujun Wang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dongmei Yue
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Li Liu
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
- State Key Laboratory of Chemical Resource Engineering
| |
Collapse
|