1
|
Zhu Z, Ding J, Qin M, Wang L, Jiang D, Zhao J, Wang D, Jia W. Enhanced ·OH-Scavenging Activity of Cu-CeO x Nanozyme via Resurrecting Macrophage Nrf2 Transcriptional Activity Facilitates Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303229. [PMID: 38298062 DOI: 10.1002/adhm.202303229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Diabetic wounds are a prevalent and devastating complication of diabetes, which may impede their healing and regeneration. In diabetic wounds, excess reactive oxygen species (ROS) activate the nuclear factor kappa-B pathway, leading to transcriptional silencing of nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in a vicious cycle of oxidative stress and inflammation. Conventional nanozymes have limitations in preventing the continuous production of ROS, including the most oxidizing reactive hydroxyl radical (·OH), although they can remove pre-existing ROS. Herein, a novel antioxidant nanoplatform addresses this challenge by incorporating JSH-23 into the mesoporous of cupric-doped cerium oxide nanozymes. Additionally, for rapid wound adaptability and durable tissue adhesion, a nanozyme hydrogel spray consisting of oxidized sodium alginate and methacrylate gelatin is constructed, named OG@CCJs. This platform resurrects Nrf2 transcriptional activity of macrophages in vitro, curbing the production of ROS at its source, particularly ·OH, while enabling the nanozymes to scavenge previously generated ROS. OG@CCJs significantly alleviate oxidative stress in diabetic wounds in vivo, promoting wound healing. Overall, the proposed nanozyme-hydrogel spray with enhanced ·OH-scavenging activity uses a "two-track" antioxidant strategy to rebuild the antioxidant defense barrier of macrophages. This pioneering approach highlights the tremendous potential of OG@CCJs for facilitating diabetic wound healing.
Collapse
Affiliation(s)
- Ziyang Zhu
- Postgraduate Training Base of Jinzhou Medical University in Shanghai Sixth People's Hospital, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jingxin Ding
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Muyan Qin
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Lingtian Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Dajun Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Weitao Jia
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
2
|
Duan C, Zhou Y, Meng M, Huang H, Ding H, Zhang Q, Huang R, Yan M. Research on the elimination of low-concentration formaldehyde by Ag loaded onto Mn/CeO 2 catalyst at room temperature. Phys Chem Chem Phys 2023; 25:24495-24507. [PMID: 37655797 DOI: 10.1039/d3cp01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Formaldehyde (HCHO) is one of the major air pollutants, and its effective removal at room temperature has proven to be a great challenge. In this study, an Ag/Mn/CeO2 catalyst for the catalytic oxidation of low-concentration HCHO at room temperature was prepared by a hydrothermal-calcination method. The removal performance of the Ag/Mn/CeO2 catalyst for HCHO was systematically studied, and its surface chemical properties and microstructure were analyzed. The incorporation of Ag did not change the mesoporous structure of the Mn/CeO2 catalyst but reduced the pore size and specific surface area. The Ag species included metallic Ag as the main component and part of Ag+. The well-dispersed Ag species on the catalyst provided sufficient active sites for the catalytic oxidation of HCHO. The more the Ag active sites, the more the lattice defects and oxygen vacancies generated from the interaction of Ag with Mn/CeO2. Precisely because of this, the Ag/Mn/CeO2 catalyst exhibited high catalytic activity for HCHO at room temperature with a removal efficiency of 96.76% within 22 h, which is 22.91% higher than that of the Mn/CeO2 catalyst. Moreover, the Ag/Mn/CeO2 catalyst showed good cycling stability and the removal efficiency reached 85.77% after five cycles. Therefore, the as-prepared catalyst is an effective and sustainable material that can be used to remove HCHO from actual indoor polluted air. This paper provides ideas for the research and development of efficient catalysts.
Collapse
Affiliation(s)
- Chaomin Duan
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yanlin Zhou
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Mianwu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, Guangxi 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Huang Huang
- Guilin Huayue Entech Limited Company, Guilin, Guangxi 541805, China.
| | - Hua Ding
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Qi Zhang
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Renyuan Huang
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Mengjuan Yan
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
3
|
Keller S, Bentrup U, Rabeah J, Brückner A. Impact of dopants on catalysts containing Ce1-xMxO2-δ (M = Fe, Sb or Bi) in NH3-SCR of NOx – A multiple spectroscopic approach. J Catal 2022. [DOI: 10.1016/j.jcat.2021.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Liu L, Lu Y, Pu Y, Li N, Hu Z, Chen S. Highly sulfonated carbon nano-onions as an excellent nanofiller for the fabrication of composite proton exchange membranes with enhanced water retention and durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Pitman CL, Pennington AM, Brintlinger TH, Barlow DE, Esparraguera LF, Stroud RM, Pietron JJ, DeSario PA, Rolison DR. Stabilization of reduced copper on ceria aerogels for CO oxidation. NANOSCALE ADVANCES 2020; 2:4547-4556. [PMID: 36132898 PMCID: PMC9419587 DOI: 10.1039/d0na00594k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 05/06/2023]
Abstract
Photodeposition of Cu nanoparticles on ceria (CeO2) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical factor in retaining stable Cu0. At higher Cu weight loadings or with a lower support surface area, Cu aggregation is observed by scanning and transmission electron microscopy. Analysis of Cu/CeO2 using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy finds a mixture of Cu2+, Cu+, and Cu0, with Cu+ at the surface. At 5 wt% Cu, Cu/CeO2 aerogels exhibit high activity for heterogeneous CO oxidation catalysis at low temperatures (94% conversion of CO at 150 °C), substantially out-performing Cu/TiO2 aerogel catalysts featuring the same weight loading of Cu on TiO2 (20% conversion of CO at 150 °C). The present study demonstrates an extension of our previous concept of stabilizing catalytic Cu nanoparticles in low oxidation states on reducing, high surface area aerogel supports. Changing the reducing power of the support modulates the catalytic activity of mixed-valent Cu nanoparticles and metal oxide support.
Collapse
Affiliation(s)
- Catherine L Pitman
- NRL/NRC Postdoctoral Associate, U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Ashley M Pennington
- NRL/NRC Postdoctoral Associate, U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Todd H Brintlinger
- Materials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Daniel E Barlow
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Liam F Esparraguera
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Rhonda M Stroud
- Materials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Jeremy J Pietron
- Former Employee, Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Paul A DeSario
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Debra R Rolison
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| |
Collapse
|
6
|
Huang H, Ren W, Shu J. Influence of the Plasma of Pd–Ce/Porous Biomass Carbons Catalysts on the Surface Texture with Enhance Catalytic Activity Toward CO Oxidation. CATALYSIS SURVEYS FROM ASIA 2020. [DOI: 10.1007/s10563-020-09297-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Preparation and Application of Ordered Mesoporous Metal Oxide Catalytic Materials. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Li X, Wang Y, Lv T, Xu Y, Zhao Y. Preparation and Characterization of Carbon Modified Pd-Cu/Palygorskite for Room-Temperature CO Oxidation Under Moisture-Rich Conditions. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09269-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Research Progresses in the Preparation of Co-based Catalyst Derived from Co-MOFs and Application in the Catalytic Oxidation Reaction. CATALYSIS SURVEYS FROM ASIA 2018. [DOI: 10.1007/s10563-018-9258-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
The Template‐Free Synthesis of CuO@CeO
2
Nanospheres: Facile Strategy, Structure Optimization, and Enhanced Catalytic Activity toward CO Oxidation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Song H, Zhang L, Xu G, Zhang C, Ma X, Zhang L, Jia D. Co/Cu-MFF derived mesoporous ternary metal oxide microcubes for enhancing the catalytic activity of the CO oxidation reaction. RSC Adv 2018; 8:24805-24811. [PMID: 35542153 PMCID: PMC9082367 DOI: 10.1039/c8ra04081h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/30/2018] [Indexed: 01/27/2023] Open
Abstract
Metal–organic framework (MOF)-based derivatives with uniform micro/mesoporous structures have attracted a great deal of interest in various research fields. Herein, we report a simple strategy to design functional mesoporous ternary metal oxides with controlled composition through direct pyrolysis of Co/Cu bimetal-formate frameworks (Co/Cu-MFFs), which were prepared by a facile one-step liquid-phase precipitation method, exhibiting uniform distribution of two different metal species and good structural integrity. The obtained mesoporous ternary metal oxide CuxCo3−xO4 (x = 0.5, 1) microcubes exhibit much better performance for CO oxidation than pure Co3O4, which can be mainly attributed to their larger specific surface areas, stronger reducibility, and the synergistic effect of two active metal oxide components. The fabricated CuxCo3−xO4 microcubes with structure and component merits exhibit good performance for CO oxidation.![]()
Collapse
Affiliation(s)
- Huijun Song
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| | - Li Zhang
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| | - Guancheng Xu
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| | - Chi Zhang
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| | - Xin Ma
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| | - Lu Zhang
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Urumqi
- P. R. China
- Key Laboratory of Advanced Functional Materials
| |
Collapse
|
12
|
Yang H, Yan C, Luo W, Liu C, Zhou Q. Surface modification of peanut shell by UV-induced graft polymerization for enriching and recycling rare earth metals (Ce(Ⅲ)) from aqueous solution. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wang X, Du LY, Du M, Ma C, Zeng J, Jia CJ, Si R. Catalytically active ceria-supported cobalt–manganese oxide nanocatalysts for oxidation of carbon monoxide. Phys Chem Chem Phys 2017; 19:14533-14542. [DOI: 10.1039/c7cp02004j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The crystallinity of the surface of the two-dimensional Co3O4 phase governs the catalytic performance of ceria-supported cobalt–manganese oxide nanostructures.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Lin-Ying Du
- Key Laboratory for Colloid and Interface Chemistry
- Key Laboratory of Special Aggregated Materials
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Meng Du
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Chao Ma
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
- China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
- China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry
- Key Laboratory of Special Aggregated Materials
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Rui Si
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201204
- China
| |
Collapse
|
14
|
Su Y, Dai L, Zhang Q, Li Y, Peng J, Wu R, Han W, Tang Z, Wang Y. Fabrication of Cu-Doped CeO2 Catalysts with Different Dimension Pore Structures for CO Catalytic Oxidation. CATALYSIS SURVEYS FROM ASIA 2016. [DOI: 10.1007/s10563-016-9220-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Li L, Han W, Tang Z, Zhang J, Lu G. Hard-template synthesis of three-dimensional mesoporous Cu–Ce based catalysts with tunable architectures and their application in the CO catalytic oxidation. RSC Adv 2016. [DOI: 10.1039/c6ra12384h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, 3D Cu–Ce-Ox catalysts with different pores were synthesized by controlling the calcination temperaturre. The CeCu20-600 showed the highest catalytic activity, where CO can be fully oxidized at 55 °C and expressed good stability.
Collapse
Affiliation(s)
- Liyan Li
- School of Petroleum and Chemical
- Lanzhou University of Technology
- Lanzhou 730050
- China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Weiliang Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Jiyi Zhang
- School of Petroleum and Chemical
- Lanzhou University of Technology
- Lanzhou 730050
- China
| | - Gongxuan Lu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|