1
|
Kershaw S, Morgan DJ, Boyd J, Spiller DG, Kitchen G, Zindy E, Iqbal M, Rattray M, Sanderson CM, Brass A, Jorgensen C, Hussell T, Matthews LC, Ray DW. Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway. J Cell Sci 2020; 133:jcs242842. [PMID: 32381682 PMCID: PMC7295589 DOI: 10.1242/jcs.242842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) act through the glucocorticoid receptor (GR, also known as NR3C1) to regulate immunity, energy metabolism and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. Here, we show that GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following GC treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function, and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stephen Kershaw
- Systems Oncology, Cancer Research UK Manchester Institute, Manchester, SK10 4TG, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation University of Manchester, Manchester, M13 9PT, UK
| | - James Boyd
- Division of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - David G Spiller
- Platform Sciences, Enabling Technologies, and Infrastructure, University of Manchester, Manchester, M13 9PT, UK
| | - Gareth Kitchen
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK
| | - Egor Zindy
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Mudassar Iqbal
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Magnus Rattray
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Christopher M Sanderson
- Division of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Andrew Brass
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Claus Jorgensen
- Systems Oncology, Cancer Research UK Manchester Institute, Manchester, SK10 4TG, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation University of Manchester, Manchester, M13 9PT, UK
| | - Laura C Matthews
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - David W Ray
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, OX3 7LE, and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
Vafopoulou X, Steel CGH. Cytoplasmic travels of the ecdysteroid receptor in target cells: pathways for both genomic and non-genomic actions. Front Endocrinol (Lausanne) 2012; 3:43. [PMID: 22654867 PMCID: PMC3356023 DOI: 10.3389/fendo.2012.00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/06/2012] [Indexed: 12/20/2022] Open
Abstract
Signal transduction of the insect steroid hormones, ecdysteroids, is mediated by the ecdysteroid receptor, EcR. In various cells of the insect Rhodnius prolixus, EcR is present in both the nucleus and the cytoplasm, where it undergoes daily cycling in abundance and cellular location at particular developmental times of the last larval instar that are specific to different cell types. EcR favors a cytoplasmic location in the day and a nuclear location in the night. This study is the first to examine the potential mechanisms of intracellular transport of EcR and reveals close similarities with some of its mammalian counterparts. In double and triple labels using several antibodies, immunohistochemistry, and confocal laser scanning microscopy, we observed co-localization of EcR with the microtubules (MTs). Treatments with either the MT-stabilizing agent taxol or with colchicine, which depolymerizes MTs, resulted in considerable reduction in nuclear EcR with a concomitant increase in cytoplasmic EcR suggesting that MT disruption inhibits receptor accumulation in the nucleus. EcR also co-localizes with the chaperone Hsp90, the immunophilin FKBP52, and the light chain 1 of the motor protein dynein. All these factors also co-localize with MTs. We propose that in Rhodnius, EcR exerts its genomic effects by forming a complex with Hsp90 and FKBP52, which uses dynein on MTs as a mechanism for daily nucleocytoplasmic shuttling. The complex is transported intact to the nucleus and dissociates within it. We propose that EcR utilizes the cytoskeletal tracks for movement in a manner closely similar to that used by the glucocorticoid receptor. We also observed co-localization of EcR with mitochondria which suggests that EcR, like its mammalian counterparts, may be involved in the coordination of non-genomic responses of ecdysteroids in mitochondria.
Collapse
|
3
|
Vrzal R, Gerbal-Chaloin S, Maurel P, Dvorák Z. Comparative effects of microtubules disruption on glucocorticoid receptor functions in proliferating and quiescent cells. Int J Toxicol 2010; 29:326-35. [PMID: 20448266 DOI: 10.1177/1091581810366486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have recently demonstrated that the alkaloid colchicine (COL) inhibits glucocorticoid receptor (GR) transcriptional activity. In addition, we described proteasome-mediated degradation of GR in COL-treated HeLa cells. While these effects were previously attributed to cell cycle arrest in G2/M phase, this explanation is not applicable for nonproliferating cells such as human hepatocytes (HH). In the current study, we compared COL-mediated microtubule disruption and cell cycle arrest with selected GR functions in HeLa cells and HH as models of proliferating and quiescent cells, respectively. Microtubule disruption led to irreversible decrease in GR binding capacity and protein level in HeLa cells. None of the parameters was restored 24 hours after COL withdrawal. In contrast, dexamethasone (DEX) binding was increased in HH at the beginning of the treatment, with following transient activation of extracellular signal-regulated kinase (ERK). The findings of these investigations emphasize the GR-signaling differences between primary and transformed cells.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Slechtitelů 11, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
4
|
Vafopoulou X. Ecdysteroid receptor (EcR) is associated with microtubules and with mitochondria in the cytoplasm of prothoracic gland cells of Rhodnius prolixus (Hemiptera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:249-262. [PMID: 19847923 DOI: 10.1002/arch.20336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have shown previously that EcR in larval Rhodnius is present in the cytoplasm of various cell types and undergoes daily cycling in abundance in the cytoplasm (Vafopoulou and Steel, 2006. Cell Tissue Res 323:443-455). It is unknown which organelles are associated with EcR. Here, we report that cytoplasmic EcR in prothoracic gland cells is associated with both microtubules and mitochondria, and discuss the implications for both nuclear and non-genomic actions of EcR. EcR was localized immunohistochemically using several antibodies to EcR of Manduca and Drosophila and a confocal laser scanning microscope. Double labels were made to visualize EcR and (1) microtubules (using an antibody to tyrosylated alpha-tubulin) and (2) mitochondria (using a fluorescent MitoTracker probe), both after stabilization of microtubules with taxol. EcR co-localized with both tubulin and mitochondria. All the different EcR antibodies produced similar co-localization patterns. EcR was seen in the perinuclear aggregation of mitochondria, indicating that mitochondria are targets of ecdysone, which could influence mitochondrial gene transcription. EcR was also distributed throughout the microtubule network. Co-localization of EcR with tubulin or mitochondria was maintained after depolymerization of microtubules with colchicine. Treatment with taxol resulted in accumulation of EcR in the cytoplasm and simultaneous depletion of EcR from the nucleus, suggesting that microtubules may be involved in targeted intracellular transport of EcR to the nucleus (genomic action) or may play a role in rapid ecdysone signal transduction in the extranuclear compartment, i.e., in non-genomic actions of ecdysone. These findings align EcR more closely with steroid hormone receptors in vertebrates.
Collapse
Affiliation(s)
- Xanthe Vafopoulou
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res 2009; 1293:129-41. [PMID: 19332027 DOI: 10.1016/j.brainres.2009.03.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/16/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND Stress is essential for health, but if coping with stress fails, the action of the stress hormones cortisol and corticosterone (CORT) becomes dysregulated, precipitating a condition favorable for increased susceptibility to psychopathology. We focus on the question how the action of CORT can change from protective to harmful. APPROACH CORT targets the limbic brain, where it affects cognitive processes and emotional arousal. The magnitude and duration of the CORT feedback signal depends on bio-availability of the hormone, the activity of the CORT receptor machinery and the stress-induced drive. If CORT action becomes dysregulated, we postulate that this is linked to compromised receptor regulation in the limbic brain's susceptibility pathway. RESULTS CORT action on gene transcription is mediated by high affinity mineralocorticoid (MR) and 10 fold lower affinity glucocorticoid (GR) receptors that also can mediate fast non-genomic actions. MR and GR operate a feedback loop that involves access and binding to the receptors, activation and shuttling of the CORT receptor complexes, which require interaction with coregulators and transcription factors for transcriptional outcome. CORT modulates the expression of gene transcripts encoding specific chaperones, motor proteins and transcription factors as well as its own receptors. The emerging evidence of microRNAs operating translational control points to further fine-tuning in receptor signaling. CONCLUSION Imbalance in MR:GR-mediated actions caused by receptor variants and epigenetic modulations have been proposed as risk factor in stress-related disease. We here provide key regulatory steps in the activation, transport and regulation of CORT receptors that may sensitize susceptibility pathways underlying psychopathology.
Collapse
Affiliation(s)
- E R de Kloet
- Department of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden University, PO Box 9502, 2300 RA Leiden, the Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Dvorák Z, Vrzal R, Ulrichová J, Macejová D, Ondková S, Brtko J. Expression, protein stability and transcriptional activity of retinoic acid receptors are affected by microtubules interfering agents and all-trans-retinoic acid in primary rat hepatocytes. Mol Cell Endocrinol 2007; 267:89-96. [PMID: 17291686 DOI: 10.1016/j.mce.2007.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
Cellular signaling by glucocorticoid receptor and aryl hydrocarbon receptor is restricted by microtubules interfering agents (MIAs). This leads to down-regulation of drug metabolizing enzymes and drug interactions. Here we investigated the effects of all-trans-retinoic acid (ATRA) and MIAs, i.e. colchicine, nocodazole and taxol on the regulation of retinoic acid receptor (RAR) genes in primary cultures of rat hepatocytes. ATRA (1microM) down-regulated RARalpha and RARgamma mRNAs (decrease 23% and 41%, respectively) whereas it up-regulated RARbeta mRNA (4.3-fold induction). All MIAs diminished the expression of RARs in dose-dependent manner; the potency of MIAs increased in order NOC
Collapse
Affiliation(s)
- Zdenek Dvorák
- Institute of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacký University Olomouc, Hnevotínská 3, 77515 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Dvorák Z, Maurel P, Vilarem MJ, Ulrichová J, Modrianský M. Expression and transcriptional activities of nuclear receptors involved in regulation of drug-metabolizing enzymes are not altered by colchicine: focus on PXR, CAR, and GR in primary human hepatocytes. Cell Biol Toxicol 2006; 23:63-73. [PMID: 16964586 DOI: 10.1007/s10565-006-0127-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Recent findings show that colchicine (COL) in submicromolar concentrations downregulates the expression of major drug-metabolizing P450 enzymes in human hepatocytes. Concomitantly, the expression of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) was diminished by COL, whereas expression of glucocorticoid receptor (GR) remained unaltered. A tentative mechanism is perturbation of the GR-PXR/CAR-CYP2/3 signaling cascade, resulting in restricted transcriptional activity of GR receptor by colchicine. In this work we focused on 10-demethylcolchicine (colchiceine; EIN), a structural analogue and a putative metabolite of COL that lacks tubulin-binding activity. We investigated the effects of EIN on the expression of PXR, CAR, and GR receptors in primary cultures of human hepatocytes. In contrast with the effects of COL, EIN does not alter the expression of PXR, CAR, and/or GR receptors mRNAs. In addition, EIN had no effects on transcriptional activities of PXR, CAR, and GR receptors in reporter gene assays using transfected cell lines. Considering that COL and EIN are structurally very close and differ only in their tubulin-binding activity, the data presented imply that the deleterious effects of COL on the GR-PXR/CAR-CYP2/3 cascade are primarily due to perturbation of the microtubule network. Our data support the idea of replacing COL by EIN, which is less toxic and does not interact with xenoreceptors.
Collapse
MESH Headings
- Cells, Cultured
- Colchicine/analogs & derivatives
- Colchicine/toxicity
- Constitutive Androstane Receptor
- Gene Expression/drug effects
- Genes, Reporter
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Pharmaceutical Preparations/metabolism
- Pregnane X Receptor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Steroid/genetics
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- Z Dvorák
- Institute of Medical Chemistry and Biochemistry, Medical Faculty, Palacký University Olomouc, Hnevotínská 3, 77515 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Dvorák Z, Vrzal R, Maurel P, Ulrichová J. Differential effects of selected natural compounds with anti-inflammatory activity on the glucocorticoid receptor and NF-κB in HeLa cells. Chem Biol Interact 2006; 159:117-28. [PMID: 16289013 DOI: 10.1016/j.cbi.2005.10.105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/27/2005] [Accepted: 10/05/2005] [Indexed: 01/29/2023]
Abstract
Natural compounds have been used in the treatment of various diseases for centuries. Herein, we investigated the effects of structurally diverse alkaloids with anti-inflammatory activity (berberine, sanguinarine, chelerythrine, and colchicine) on two important anti-inflammatory and pro-inflammatory players, i.e. glucocorticoid receptor (GR) and nuclear factor kappa B (NF-kappaB), respectively. Sanguinarine and chelerythrine elicited nuclear translocation of the p65 subunit of NF-kappaB. The nuclear import of p65 was strongly augmented by these akaloids in non-stimulated cells as well as in cells challenged with tumor necrosis factor alpha (TNFalpha). Colchicine and berberine had no effect on p65 nuclear translocation regardless of the presence or absence of TNFalpha. Colchicine caused rapid degradation of the GR protein, whereas berberine had no effect on GR content or cellular localization. Sanguinarine and chelerythrine induced accumulation of GR in the nucleus with concomitant diminution of cytosolic GR. Analyses on the transcriptional activity of GR and NF-kappaB monitored by reporter assays using HeLa cells transiently transfected with glucocorticoid response element (pGRE-LUC) and/or NF-kappaB elements fused to luciferase gene (pNF-kappaB-luc) showed that none of the compounds tested had the capability to trigger GR and/or NF-kappaB transcriptional activities, respectively. The ligand binding assay showed that colchicine and berberine are not GR ligands whereas sanguinarine and chelerythrine significantly decreased binding of (3)H-labelled dexamethasone to GR. In conclusion, structurally diverse natural antiflogistics displayed differential effects on GR and NF-kappaB in HeLa cells.
Collapse
Affiliation(s)
- Zdenek Dvorák
- Institute of Medical Chemistry and Biochemistry, Medical Faculty, Palacký University Olomouc, Hnevotínská 3, 77515 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|