1
|
Mizutani R, Saiga R, Yamamoto Y, Uesugi M, Takeuchi A, Uesugi K, Terada Y, Suzuki Y, De Andrade V, De Carlo F, Takekoshi S, Inomoto C, Nakamura N, Torii Y, Kushima I, Iritani S, Ozaki N, Oshima K, Itokawa M, Arai M. Structural aging of human neurons is opposite of the changes in schizophrenia. PLoS One 2023; 18:e0287646. [PMID: 37352288 PMCID: PMC10289376 DOI: 10.1371/journal.pone.0287646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
Human mentality develops with age and is altered in psychiatric disorders, though their underlying mechanism is unknown. In this study, we analyzed nanometer-scale three-dimensional structures of brain tissues of the anterior cingulate cortex from eight schizophrenia and eight control cases. The distribution profiles of neurite curvature of the control cases showed a trend depending on their age, resulting in an age-correlated decrease in the standard deviation of neurite curvature (Pearson's r = -0.80, p = 0.018). In contrast to the control cases, the schizophrenia cases deviate upward from this correlation, exhibiting a 60% higher neurite curvature compared with the controls (p = 7.8 × 10-4). The neurite curvature also showed a correlation with a hallucination score (Pearson's r = 0.80, p = 1.8 × 10-4), indicating that neurite structure is relevant to brain function. This report is based on our 3D analysis of human brain tissues over a decade and is unprecedented in terms of the number of cases. We suggest that neurite curvature plays a pivotal role in brain aging and can be used as a hallmark to exploit a novel treatment of schizophrenia.
Collapse
Affiliation(s)
- Ryuta Mizutani
- Department of Bioengineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Rino Saiga
- Department of Bioengineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Yoshiro Yamamoto
- Department of Mathematics, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Masayuki Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Yoshio Suzuki
- Photon Factory, High Energy Accelerator Research Organization KEK, Tsukuba, Ibaraki, Japan
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States of America
| | - Francesco De Carlo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States of America
| | - Susumu Takekoshi
- Department of Cell Biology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chie Inomoto
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenichi Oshima
- Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Masanari Itokawa
- Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Makoto Arai
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| |
Collapse
|
2
|
Topcu A, Saral S, Ozturk A, Saral O, Kaya AK. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment. Neurol Res 2023; 45:544-553. [PMID: 36598971 DOI: 10.1080/01616412.2022.2164452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) occurs in approximately 10% to 30% of individuals aged 65 or older worldwide. Novel therapeutic agents therefore need to be discovered in addition to traditional medications. Nimodipine appears to possess the potential to reverse cognitive impairment-induced dysfunction in learning and memory through its regulatory effect on the brain-derived neurotrophic factor (BDNF), acetylcholine (Ach), and acetylcholinesterase (AChE) pathway in the hippocampus and prefrontal cortex. METHODS Twenty-four male Sprague Dawley rats weighing 380 ± 10 g were used for behavioral and biochemical analyses. These were randomly and equally assigned into one of three groups. Group 1 received saline solution alone via the intraperitoneal (i.p) route, and Group 2 received 1 mg/kg/day i.p. scopolamine once a day for three weeks for induction of learning and memory impairments. In Group 3, 10 mg/kg/day nimodipine was prepared in tap water and administered orally every day for three weeks, followed after 30 min by 1 mg/kg/day scopolamine i.p. Behavior was evaluated using the Morris Water Maze test. BDNF, ACh, and AChE levels were determined using the ELISA test in line with the manufacturer's instructions. RESULTS Nimodipine treatment significantly increased the time spent in the target quadrant and the number of entries into the target quadrant compared to the scopolamine group alone. Additionally, BDNF and ACh levels in the hippocampus and prefrontal cortex decreased following 20-day scopolamine administration, while AChE activation increased. CONCLUSION Nimodipine exhibited potentially beneficial effects by ameliorating cognitive decline following scopolamine administration in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Aykut Ozturk
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ozlem Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| |
Collapse
|
3
|
Matinfar P, Peeri M, Azarbayjani MA. Swimming exercise attenuates anxiety-like behavior by reducing brain oxidative stress in type 2 diabetic mice. Physiol Behav 2021; 237:113449. [PMID: 33945802 DOI: 10.1016/j.physbeh.2021.113449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
Anxiety-related behaviors are among the most prevalent psychiatric disorders in patients with type 2 diabetes (T2D). The protective effect of exercise on neuropsychiatric disorders has been documented. However, there are no studies that examined whether swimming exercise can decrease anxiety-like symptoms in type 2 diabetes. We investigated the effects of swimming exercise on body weight, anxiety-like behavior, glucose and insulin levels, and brain oxidative stress in male C57BL/6 mice. T2D-induced mice were subjected to swimming exercise, then anxiety-like behaviors were measured by the open field, light-dark box, and elevated plus-maze tests. Glucose and insulin levels were measure in serum, and antioxidant/oxidative markers including glutathione (GSH), malondialdehyde (MDA), and glutathione disulfide (GSSG) were measured in the brain. Our findings showed that T2D increased body weight, anxiety-like symptoms, glucose and insulin resistance, and oxidative stress by increasing MDA and GSSG levels in the brain of mice. Interestingly, swimming exercise reversed these parameters in diabetic mice. Our findings clearly indicate that there is a protective impact of swimming exercise on anxiety-like behavior by reducing insulin resistance and brain oxidative stress in mice with type 2 diabetes. Further studies are needed to validate these findings in humans.
Collapse
Affiliation(s)
- Parinaz Matinfar
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Cai JG, Luo LM, Tang H, Zhou L. Cytotoxicity of Malondialdehyde and Cytoprotective Effects of Taurine via Oxidative Stress and PGC-1α Signal Pathway in C2C12 Cells. Mol Biol 2018. [DOI: 10.1134/s0026893318040040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Therapeutic Potential of Pretreatment with Allograft Sertoli Cells Transplantation in Brain Ischemia by Improving Oxidative Defenses. J Mol Neurosci 2018; 64:533-542. [DOI: 10.1007/s12031-018-1054-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
|
6
|
Kim B, Jung W, Kho Y. Quantification of Malondialdehyde in Human Urine by HPLC-DAD and Derivatization with 2,4-Dinitrophenylhydrazine. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Boyoung Kim
- Department of Health Environmental and Safety; Eulji University; Seongnam 13135 Republic of Korea
| | - Woong Jung
- Department of Emergency Medicine, School of Medicine; KyungHee University; Seoul 05278 Republic of Korea
| | - Younglim Kho
- Department of Health Environmental and Safety; Eulji University; Seongnam 13135 Republic of Korea
| |
Collapse
|
7
|
Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress. Redox Biol 2016; 11:438-455. [PMID: 28086193 PMCID: PMC5226815 DOI: 10.1016/j.redox.2016.12.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lipid and protein modifications has not been simultaneously studied in detail so far. Biomolecule carbonylation is one of the most common biomarkers of oxidative stress. Using a dynamic model of nitroxidative stress we demonstrated rapid changes in biomolecule carbonylation in rat cardiomyocytes. Levels of carbonylated species increased as early as 15min upon treatment with the peroxynitrite donor, 3-morpholinosydnonimine (SIN-1), and decreased to values close to control after 16h. Total (lipids+proteins) vs. protein-specific carbonylation showed different dynamics, with a significant increase in protein-bound carbonyls at later time points. Treatment with SIN-1 in combination with inhibitors of proteasomal and autophagy/lysosomal degradation pathways allowed confirmation of a significant role of the proteasome in the degradation of carbonylated proteins, whereas lipid carbonylation increased in the presence of autophagy/lysosomal inhibitors. Electrophilic aldehydes and ketones formed by lipid peroxidation were identified and relatively quantified using LC-MS/MS. Molecular identity of reactive species was used for data-driven analysis of their protein targets. Combination of different enrichment strategies with LC-MS/MS analysis allowed identification of more than 167 unique proteins with 332 sites modified by electrophilic lipid peroxidation products. Gene ontology analysis of modified proteins demonstrated enrichment of several functional categories including proteins involved in cytoskeleton, extracellular matrix, ion channels and their regulation. Using calcium mobilization assays, the effect of nitroxidative stress on the activity of several ion channels was further confirmed.
Collapse
|
8
|
Busch CJ, Binder CJ. Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:398-406. [PMID: 27355566 DOI: 10.1016/j.bbalip.2016.06.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022]
Abstract
Enhanced lipid peroxidation occurs during oxidative stress and results in the generation of lipid peroxidation end products such as malondialdehyde (MDA), which can attach to autologous biomolecules, thereby generating neo-self epitopes capable of inducing potentially undesired biological responses. Therefore, the immune system has developed mechanisms to protect from MDA epitopes by binding and neutralizing them through both cellular and soluble effectors. Here, we briefly discuss innate immune responses targeting MDA epitopes and their pro-inflammatory properties, followed by a review of physiological carriers of MDA epitopes that are relevant in homeostasis and disease. Then we discuss in detail the evidence for cellular responses towards MDA epitopes mainly in lung, liver and the circulation as well as signal transduction mechanisms and receptors implicated in the response to MDA epitopes. Last, we hypothesize on the role of MDA epitopes as mediators of inflammation in diseases and speculate on their contribution to disease pathogenesis. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Clara J Busch
- Department of Laboratory Medicine, Medical University of Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
9
|
Papac-Milicevic N, Busch CJL, Binder CJ. Malondialdehyde Epitopes as Targets of Immunity and the Implications for Atherosclerosis. Adv Immunol 2016; 131:1-59. [PMID: 27235680 DOI: 10.1016/bs.ai.2016.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence suggests that oxidation-specific epitopes (OSEs) constitute a novel class of damage-associated molecular patterns (DAMPs) generated during high oxidative stress but also in the physiological process of apoptosis. To deal with the potentially harmful consequences of such epitopes, the immune system has developed several mechanisms to protect from OSEs and to orchestrate their clearance, including IgM natural antibodies and both cellular- and membrane-bound receptors. Here, we focus on malondialdehyde (MDA) epitopes as prominent examples of OSEs that trigger both innate and adaptive immune responses. First, we review the mechanisms of MDA generation, the different types of adducts on various biomolecules and provide relevant examples for physiological carriers of MDA such as apoptotic cells, microvesicles, or oxidized low-density lipoproteins. Based on recent insights, we argue that MDA epitopes contribute to the maintenance of homeostatic functions by acting as markers of elevated oxidative stress and tissue damage. We discuss multiple lines of evidence that MDA epitopes are proinflammatory and thus important targets of innate and adaptive immune responses. Finally, we illustrate the relevance of MDA epitopes in human pathologies by describing their capacity to drive inflammatory processes in atherosclerosis and highlighting protective mechanisms of immunity that could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- N Papac-Milicevic
- Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - C J-L Busch
- Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - C J Binder
- Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
10
|
Pardillo-Díaz R, Carrascal L, Muñoz MF, Ayala A, Nunez-Abades P. Time and dose dependent effects of oxidative stress induced by cumene hydroperoxide in neuronal excitability of rat motor cortex neurons. Neurotoxicology 2016; 53:201-214. [PMID: 26877221 DOI: 10.1016/j.neuro.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
It has been claimed that oxidative stress and the production of reactive oxygen radicals can contribute to neuron degeneration and might be one factor in the development of different neurological diseases. In our study, we have attempted to clarify how oxidative damage induces dose dependent changes in functional membrane properties of neurons by means of whole cell patch clamp techniques in brain slices from young adult rats. Our research demonstrates physiological changes in membrane properties of pyramidal motor cortex neurons exposed to 3 concentrations of cumene hydroperoxide (CH; 1, 10 and 100μM) during 30min. Results show that oxidative stress induced by CH evokes important changes, in a concentration and time dependent manner, in the neuronal excitability of motor cortex neurons of the rat: (i) Low concentration of the drug (1μM) already blocks inward rectifications (sag) and decreases action potential amplitude and gain, a drug concentration which has no effects on other neuronal populations, (ii) 10μM of CH depresses the excitability of pyramidal motor cortex neurons by decreasing input resistance, amplitude of the action potential, and gain and maximum frequency of the repetitive firing discharge, and (iii) 100μM completely blocks the capability to produce repetitive discharge of action potentials in all cells. Both larger drug concentrations and/or longer times of exposure to CH narrow the current working range. This happens because of the increase in the rheobase, and the reduction of the cancelation current. The effects caused by oxidative stress, including those produced by the level of lipid peroxidation, are practically irreversible and, this, therefore, indicates that neuroprotective agents should be administered at the first symptoms of alterations to membrane properties. In fact, the pre-treatment with melatonin, acting as an antioxidant, prevented the lipid peroxidation and the physiological changes induced by CH. Larger cells (as estimated by their cell capacitance) were also more susceptible to oxidative stress. Our results provide previously unavailable observations that large size and high sensitivity to oxidative stress (even at low concentrations) make pyramidal neurons of the motor cortex, in particular corticofugal neurons, more susceptible to cell death when compared with other neuronal populations. These results could also shed some light on explaining the causes behind diseases such as Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- R Pardillo-Díaz
- Department of Physiology, School of Pharmacy, University of Seville, Spain
| | - L Carrascal
- Department of Physiology, School of Pharmacy, University of Seville, Spain
| | - M F Muñoz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Spain
| | - A Ayala
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Spain
| | - P Nunez-Abades
- Department of Physiology, School of Pharmacy, University of Seville, Spain.
| |
Collapse
|
11
|
A chemiluminescence method to detect malondialdehyde in plasma and urine. Anal Biochem 2013; 443:16-21. [DOI: 10.1016/j.ab.2013.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
|
12
|
Deng Y, Wang W, Yu P, Xi Z, Xu L, Li X, He N. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. NANOSCALE RESEARCH LETTERS 2013; 8:190. [PMID: 23618076 PMCID: PMC3637245 DOI: 10.1186/1556-276x-8-190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/05/2013] [Indexed: 05/30/2023]
Abstract
The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Deng
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| | - Wei Wang
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
| | - Pingfeng Yu
- Guangzhou The Bond Chemicals Co. Ltd., Guangzhou, 510530, People’s Republic of China
| | - Zhijiang Xi
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| | - Lijian Xu
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
| | - Xiaolong Li
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| | - Nongyue He
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, People’s Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People’s Republic of China
| |
Collapse
|
13
|
Siddiqui MA, Kumar V, Kashyap MP, Agarwal M, Singh AK, Jahan S, Khanna VK, Al-Khedhairy AA, Musarrat J, Pant AB. Short-term exposure of 4-hydroxynonenal induces mitochondria-mediated apoptosis in PC12 cells. Hum Exp Toxicol 2012; 31:336-45. [DOI: 10.1177/0960327111432500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
4-Hydroxynonenal (4-HNE) is one of the most reactive aldehydic by-products of lipid peroxidation. The role of 4-HNE in the etiology of various neurodegenerative disorders including cerebral ischemia/reperfusion, Alzheimer’s disease, Parkinson’s disease, etc. has been documented. We and others have reported that long-term toxic insults of 4-HNE triggers apoptotic signals and oxidative stress in various cells. However, the status of apoptosis following short-term exposure and underlying mechanisms has not been explored so far. We studied the apoptotic changes in PC12 cells receiving short-term exposure of 4-HNE. A significant dose-dependent induction in reactive oxygen species (ROS) and early response markers (c-Fos, c-Jun, and GAP-43) were observed in cells exposed to 4-HNE (10, 25, and 50 µM) for 1h. Following the exposure of PC12 cells to 4-HNE, the levels of protein and messenger RNA expressions of P53, Bax, and caspase 3 were significantly upregulated, whereas the levels of Bcl2 was downregulated. We could record the apoptotic signals and ROS generation in PC12 cells receiving 4-HNE exposure for such a short period of time. Induction in the expression and activity of caspase 3 has also indicated the mitochondrial mediation in the apoptosis induction.
Collapse
Affiliation(s)
- MA Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - V Kumar
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - MP Kashyap
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - M Agarwal
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AK Singh
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - S Jahan
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - VK Khanna
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AA Al-Khedhairy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - AB Pant
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
14
|
Cheng J, Wang F, Yu DF, Wu PF, Chen JG. The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. Eur J Pharmacol 2010; 650:184-94. [PMID: 20868662 DOI: 10.1016/j.ejphar.2010.09.033] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/25/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
The accumulation of malondialdehyde (MDA), a lipid peroxidation by-product that has been used as an indicator of cellular oxidation status, is significantly increased in many neurological diseases such as brain ischemia/reperfusion, Alzheimer's disease and Parkinson's disease in vivo. In the present study, we found that MDA treatment in vitro reduced cortical neuronal viability in a time- and dose-dependent manner and induced cellular apoptosis as well as necrosis simultaneously. Furthermore, exposure to MDA led to accumulation of intracellular reactive oxygen species, dysfunction of mitochondria (denoted by the loss of mitochondrial transmembrane potential (Δψm)) and activation of JNK and ERK. Carnosine exhibited better protection against MDA-induced cell injury than antioxidant N-acetyl-cysteine (NAC) with its multi-potency, which alleviated MDA-induced protein cross-linking, Δψm decrease, reactive oxygen species burst, JNK and ERK activation. In conclusion, our results suggest that MDA induced cell injury in vitro via protein cross-linking and successive mitochondrial dysfunction, and the activation of reactive oxygen species-dependent MAPK signaling pathway. Carnosine alleviated all these alterations induced by MDA, but NAC merely inhibited Bcl-2 family-related activation of JNK and ERK. These results prompt the possibility that carnosine, but not other conventional antioxidants, can protect neurons against MDA-induced injury through decomposition of protein cross-linking toxicity and may serve as a novel agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | |
Collapse
|
15
|
Siddiqui M, Kashyap M, Kumar V, Al-Khedhairy A, Musarrat J, Pant A. Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol In Vitro 2010; 24:1592-8. [DOI: 10.1016/j.tiv.2010.06.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/21/2010] [Accepted: 06/17/2010] [Indexed: 11/27/2022]
|