1
|
Schwarte JV, Crochet A, Fromm KM. 4-[(E)-2-(1-Pyrenyl)Vinyl]Pyridine Complexes: How to Modulate the Toxicity of Heavy Metal Ions to Target Microbial Infections. Molecules 2024; 29:1565. [PMID: 38611844 PMCID: PMC11013842 DOI: 10.3390/molecules29071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.
Collapse
Affiliation(s)
- Justine V. Schwarte
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Fribourg Center for Nanomaterials, 1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Fribourg Center for Nanomaterials, 1700 Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Ferreira EGC, Gomes DF, Delai CV, Barreiros MAB, Grange L, Rodrigues EP, Henning LMM, Barcellos FG, Hungria M. Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15). BMC Microbiol 2022; 22:122. [PMID: 35513812 PMCID: PMC9069715 DOI: 10.1186/s12866-022-02527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.
Collapse
Affiliation(s)
- Everton Geraldo Capote Ferreira
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| | | | - Caroline Vanzzo Delai
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | | | - Luciana Grange
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | - Elisete Pains Rodrigues
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | | | - Fernando Gomes Barcellos
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | - Mariangela Hungria
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| |
Collapse
|
3
|
Lei L, Chen J, Liao W, Liu P. Determining the Different Mechanisms Used by Pseudomonas Species to Cope With Minimal Inhibitory Concentrations of Zinc via Comparative Transcriptomic Analyses. Front Microbiol 2020; 11:573857. [PMID: 33343517 PMCID: PMC7744410 DOI: 10.3389/fmicb.2020.573857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas is one of the most diverse bacterial genera identified in the environment. Genome sequence analysis has indicated that this genus can be clustered into three lineages and ten groups. Each group can adopt different mechanisms to thrive under zinc-depleted or high-zinc conditions, two environments that are frequently encountered during their environmental propagation. The response of three prominent Pseudomonas strains (Pseudomonas aeruginosa PAO1, Pseudomonas putida KT2440, and Pseudomonas fluorescens ATCC 13525T) to minimal inhibitory concentrations of zinc were compared using RNA-seq and ultra-performance liquid chromatography-tandem mass spectrometry analysis. Results demonstrated that the three strains shared only minimal similarity at the transcriptional level. Only four genes responsible for zinc efflux were commonly upregulated. P. aeruginosa PAO1 specifically downregulated the operons involved in siderophore synthesis and the genes that encode ribosomal protein, while upregulated the genes associated with antibiotic efflux and cell envelope biosynthesis. The membrane transporters in P. putida KT2440 were globally downregulated, indicating changes in cell permeability. Compared with P. aeruginosa PAO1 and P. putida KT2440, the most remarkable transcriptional variation in P. fluorescens ATCC 13525T is the significant downregulation of the type VI secretion system. Metabolite quantitative analysis showed that low concentrations of the metabolites involved in central carbon metabolism and amino acid synthesis were detected in the three strains. In summary, the cellular responses of the three strains under high-zinc condition is quite divergent. Although similar metal efflux systems were upregulated, the three strains employed different pathways to reduce zinc intrusion. In addition, zinc treatment can increase the difficulties of scavenging P. aeruginosa from its colonization area, and reduce the competitiveness of P. fluorescens in microbiota.
Collapse
Affiliation(s)
| | | | | | - Pulin Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
4
|
Peng J, Miao L, Chen X, Liu P. Comparative Transcriptome Analysis of Pseudomonas putida KT2440 Revealed Its Response Mechanisms to Elevated Levels of Zinc Stress. Front Microbiol 2018; 9:1669. [PMID: 30087671 PMCID: PMC6066579 DOI: 10.3389/fmicb.2018.01669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/04/2018] [Indexed: 01/03/2023] Open
Abstract
The whole-genome transcriptional response of Pseudomonas putida KT2440 to stress-inducing concentrations of zinc was analyzed in this study by RNA sequencing to thoroughly investigate the bacterial cell response to zinc toxicity. The data revealed that different levels of zinc stress strongly affected the transcription of genes from the following categories: metal transport genes, genes involved in membrane homeostasis, oxidative-stress-responding genes, and genes associated with basic cellular metabolism. At the lowest zinc dose, only several genes associated with metal transport and membrane homeostasis were strongly influenced. At the intermediate zinc dose, transcriptional changes of genes belonging to these two categories were highly pronounced. In addition, the intermediate zinc stress produced high levels of oxidative stress, and influenced amino acid metabolism and respiratory chains of P. putida. At the highest zinc dose, the induction of genes responsible for Fe–S cluster biogenesis was the most remarkable feature. Moreover, upregulation of glyoxylate cycle was observed. In summary, the adaptation of the cell envelope, the maintenance of metal homeostasis and intracellular redox status, and the transcriptional control of metabolism are the main elements of stress response, which facilitates the survival of P. putida KT2440 in zinc-polluted environments.
Collapse
Affiliation(s)
- Jun Peng
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lihong Miao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xi Chen
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Pulin Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Ilyechova EY, Puchkova LV, Shavlovskii MM, Korzhevskii DE, Petrova ES, Tsymbalenko NV. Effect of Silver Ions on Copper Metabolism during Mammalian Ontogenesis. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhang L, Wang W, Zhu B, Wang X. Regulatory Roles of Mitochondrial Ribosome in Lung Diseases and Single Cell Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:183-200. [PMID: 29178077 DOI: 10.1007/978-981-10-6674-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitochondria have the most vital processes in eukaryotic cells to produce ATP composed of polypeptides that are produced via ribosomes, as oxidative phosphorylation. Initially, studies regarding human mitochondrial ribosomes were performed in the model system, bovine mitochondrial ribosome, to investigate how ribosomes are biosynthesized and evolved as well as what their structure and function are. Advances in X-ray crystallography have led to dramatic progresses in structural studies of the ribosome. In recent years, there has been a growing interest in the properties of the mitochondrial ribosome. Although one of its main functions is the production of ATP, it was also linked to multiple diseases. A key area that remains unexplored and requires investigation and exploration is how mitochondrial ribosomal RNA (mt-rRNA) variations can affect the mitochondrial ribosomes in developing disease. This review summarizes the structure, elements, functions, and regulatory roles in associated diseases. With the continuous development of technology, studies on the mechanism of mitochondrial ribosome related diseases are crucial, in order to identify methods of prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
7
|
Mitochondrial DNA Methylation and Related Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:117-132. [DOI: 10.1007/978-981-10-6674-0_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Lu J, Wang W, Xu M, Li Y, Chen C, Wang X. A global view of regulatory networks in lung cancer: An approach to understand homogeneity and heterogeneity. Semin Cancer Biol 2016; 42:31-38. [PMID: 27894849 DOI: 10.1016/j.semcancer.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
A number of new biotechnologies are used to identify potential biomarkers for the early detection of lung cancer, enabling a personalized therapy to be developed in response. The combinatorial cross-regulation of hundreds of biological function-specific transcription factors (TFs) is defined as the understanding of regulatory networks of molecules within the cell. Here we integrated global databases with 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without cancer with the understanding of TF functions. The present review aims at the homogeneity or heterogeneity of gene expression profiles among subtypes of lung cancer. About 5, 136, 52, or 16 up-regulated or 19, 24, 122, or 97down-regulated type-special TF genes were identified in ADC, SCC, LCC or SCLC, respectively. DNA-binding and transcription regulator activity associated genes play a dominant role in the differentiation of subtypes in lung cancer. Subtype-specific TF gene regulatory networks with elements should be an alternative for diagnostic and therapeutic targets for early identification of lung cancer and can provide insightful clues to etiology and pathogenesis.
Collapse
Affiliation(s)
- Jiapei Lu
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - William Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Menglin Xu
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuping Li
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangdong Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|