1
|
Shang B, Dong Y, Feng B, Zhao J, Wang Z, Crans DC, Yang X. Combination therapy enhances efficacy and overcomes toxicity of metal-based anti-diabetic agent. Br J Pharmacol 2024; 181:4214-4228. [PMID: 38965763 DOI: 10.1111/bph.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Metal-based therapeutic agents are limited by the required concentration of metal-based agents. Hereby, we determined if combination with 17β-oestradiol (E2) could reduce such levels and the therapy still be effective in type 2 diabetes mellitus (T2DM). EXPERIMENTAL APPROACH The metal-based agent (vanadyl acetylacetonate [VAC])- 17β-oestradiol (E2) combination is administered using the membrane-permeable graphene quantum dots (GQD), the vehicle, to form the active GQD-E2-VAC complexes, which was characterized by fluorescence spectra, infrared spectra and X-ray photoelectron spectroscopy. In db/db type 2 diabetic mice, the anti-diabetic effects of GQD-E2-VAC complexes were evaluated using blood glucose levels, oral glucose tolerance test (OGTT), serum insulin levels, homeostasis model assessment (homeostasis model assessment of insulin resistance [HOMA-IR] and homeostasis model assessment of β-cell function [HOMA-β]), histochemical assays and western blot. KEY RESULTS In diabetic mice, GQD-E2-VAC complex had comprehensive anti-diabetic effects, including control of hyperglycaemia, improved insulin sensitivity, correction of hyperinsulinaemia and prevention of β-cell loss. Co-regulation of thioredoxin interacting protein (TXNIP) activation by the combination of metal complex and 17β-oestradiol contributed to the enhanced anti-diabetic effects. Furthermore, a potent mitochondrial protective antioxidant, coniferaldehyde, significantly potentiates the protective effects of GQD-E2-VAC complexes. CONCLUSION AND IMPLICATIONS A metal complex-E2 combinatorial approach achieved simultaneously the protection of β cells and insulin enhancement at an unprecedented low dose, similar to the daily intake of dietary metals in vitamin supplements. This study demonstrates the positive effects of combination and multi-modal therapies towards type 2 diabetes treatment.
Collapse
Affiliation(s)
- Bing Shang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yaqiong Dong
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Bo Feng
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Debbie C Crans
- Department of Chemistry and Cell and Molecular Biology Program, College of Natural Science, Colorado State University, Fort Collins, Colorado, USA
| | - Xiaoda Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- SATCM Key Laboratory of Compound Drug Detoxification, Peking University Health Science Center, Beijing, China
| |
Collapse
|
2
|
Wang FH, Qaed E, Aldahmash W, Mahyoub MA, Tang Z, Chu P, Tang ZY. Phosphocreatine ameliorates hepatocellular apoptosis mediated by protecting mitochondrial damage in liver ischemia/reperfusion injury through inhibiting TLR4 and Agonizing Akt Pathway. Tissue Cell 2024; 91:102599. [PMID: 39486133 DOI: 10.1016/j.tice.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Hepatic ischemia/reperfusion (HI/R) presents significant challenges in surgical liver transplantation and hepatic ischemic shock, with few effective clinical preventive measures available. This study explores the potential protective effects and underlying mechanisms of phosphocreatine (PCr) in the context of HI/R. We established an in vitro ischemia/reperfusion model using hepatocellular carcinoma HepG2 cells and normal liver L02 cells. For in vivo assessments, C57BL/6 mice were subjected to the HI/R model to evaluate the impact of PCr on liver protection. PCr pretreatment significantly improved liver cell survival rates, maintained mitochondrial membrane potential (MMP), reduced apoptosis, and alleviated oxidative damage and inflammatory responses. Importantly, PCr exerted its protective effects by downregulating TLR4 and activating the Akt signaling pathway, which suppressed inflammation, mitigated oxidative stress, inhibited apoptosis, and modulated key biomarkers, including ALT, AST, IL-6, IL-1β, TNF-α, SOD, MDA, and reactive oxygen species (ROS). Western blot analyses demonstrated PCr's anti-inflammatory effects through the regulation of UCP2, Cyp-D, Cyt-C, and PGC-1α, thereby preserving mitochondrial structure and function, maintaining MMP, and regulating membrane pores. Transmission electron microscopy further highlighted PCr's role in sustaining mitochondrial integrity. In conclusion, our findings suggest that PCr helps maintain mitochondrial homeostasis by intervening in the TLR4 inflammatory pathway and activating the Akt signaling pathway, ultimately reducing liver injury. This study offers new insights and potential treatment strategies for HI/R, providing valuable guidance for future clinical applications.
Collapse
Affiliation(s)
- Fu Han Wang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China; Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Peng Chu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| | - Ze Yao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
3
|
Anaga N, Lekshmy K, Purushothaman J. (+)-Catechin mitigates impairment in insulin secretion and beta cell damage in methylglyoxal-induced pancreatic beta cells. Mol Biol Rep 2024; 51:434. [PMID: 38520585 DOI: 10.1007/s11033-024-09338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.
Collapse
Affiliation(s)
- Nair Anaga
- Department of Biochemistry, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishnan Lekshmy
- Department of Biochemistry, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Jayamurthy Purushothaman
- Department of Biochemistry, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Zeng T, Tang X, Bai X, Xiong H. FGF19 Promotes the Proliferation and Insulin Secretion from Human Pancreatic β Cells Via the IRS1/GLUT4 Pathway. Exp Clin Endocrinol Diabetes 2024; 132:152-161. [PMID: 38513652 DOI: 10.1055/a-2250-7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic β cells in obesity-associated T2DM remains poorly understood. METHODS Human pancreatic β cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic β cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS HG+PA treatment reduced the human pancreatic β cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic β cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic β cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xi Tang
- Department of Cardiology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xiaosu Bai
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Haiyan Xiong
- Department of Nursing, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
5
|
Qaed E, Alyafeai E, Al-Maamari A, Zaky MY, Almoiliqy M, Al-Hamyari B, Qaid A, Yafei S, Aldahmash W, Mahyoub MA, Wang F, Kang L, Tang Z, Zhang J. Uncovering the Therapeutic Potential of Phosphocreatine in Diabetic Retinopathy: Mitigating Mitochondrial Dysfunction and Apoptosis via JAK2/STAT3 Signaling Pathway. J Mol Neurosci 2024; 74:11. [PMID: 38231435 DOI: 10.1007/s12031-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication of diabetes mellitus, causing damage to the delicate retinal capillaries and potentially leading to visual impairment. While the exact underlying cause of DR remains elusive, compelling research suggests that mitochondrial energy deficiency and the excessive generation of reactive oxygen species (ROS) play pivotal roles in its pathogenesis. Recognizing that controlling hyperglycemia alone fails to reverse the defects in retinal mitochondria induced by diabetes, current strategies seek to restore mitochondrial function as a means of safeguarding against DR. To address this pressing issue, a comprehensive study was undertaken to explore the potential of phosphocreatine (PCr) in bolstering mitochondrial bioenergetics and providing protection against DR via modulation of the JAK2/STAT3 signaling pathway. Employing rat mitochondria and RGC-5 cells, the investigation meticulously assessed the impact of PCr on ROS production, mitochondrial membrane potential, as well as the expression of crucial apoptotic and JAK2/STAT3 signaling pathway proteins, utilizing cutting-edge techniques such as high-resolution respirometry and western blotting. The remarkable outcomes revealed that PCr exerts a profound protective influence against DR by enhancing mitochondrial function and alleviating diabetes-associated symptoms and biochemical markers. Notably, PCr administration resulted in an upregulation of antiapoptotic proteins, concomitant with a downregulation of proapoptotic proteins and the JAK2/STAT3 signaling pathway. These significant findings firmly establish PCr as a potential therapeutic avenue for combating diabetic retinopathy. By augmenting mitochondrial function and exerting antiapoptotic effects via the JAK2/STAT3 signaling pathway, PCr demonstrates promising efficacy both in vivo and in vitro, particularly in counteracting the oxidative stress engendered by hyperglycemia. In summary, our study sheds light on the potential of PCr as an innovative therapeutic strategy for diabetic retinopathy. By bolstering mitochondrial function and exerting protective effects via the modulation of the JAK2/STAT3 signaling pathway, PCr holds immense promise in ameliorating the impact of DR in the face of oxidative stress induced by hyperglycemia.
Collapse
Grants
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
- LT2013019 The study was supported by the Natural Science Foundation of China (no.30772601) and the University Innovation Team Project Foundation of the Education Department of Liaoning (no. LT2013019).Also,The authors extend their appreciation to the Researchers Supporting Program number (RSPD2023R1080), in King Saud University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Marwan Almoiliqy
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Saeed Yafei
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuhan Wang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Le Kang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| | - Jianbin Zhang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
6
|
Tang Z, Zhang Z, Wang J, Sun Z, Qaed E, Chi X, Wang J, Jamalat Y, Geng Z, Tang Z, Yao Q. Protective effects of phosphocreatine on human vascular endothelial cells against hydrogen peroxide-induced apoptosis and in the hyperlipidemic rat model. Chem Biol Interact 2023; 383:110683. [PMID: 37648050 DOI: 10.1016/j.cbi.2023.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Phosphocreatine (PCr) has been shown to have a cardio-protective effect during cardiopulmonary resuscitation (CPR). However, little is known about its impact on atherosclerosis. In this study, we first evaluated the pharmacological effects of PCr on antioxidative defenses and mitochondrial protection against hydrogen peroxide (H2O2) induced human umbilical vascular endothelial cells (HUVECs) damage. Then we investigated the hypolipidemic and antioxidative effects of PCr on hyperlipidemic rat model. Via in vitro studies, H2O2 significantly reduced cell viability and increased apoptosis rate of HUVECs, while pretreatment with PCr abolished its apoptotic effect. PCr could reduce the generation of ROS induced by H2O2. Moreover, PCr could increase the activity of SOD and the content of NO, as well as decrease the activity of LDH and the content of MDA. PCr could also antagonize H2O2-induced up-regulation of Bax, cleaved-caspase3, cleaved-caspase9, and H2O2-induced down-regulation of Bcl-2 and p-Akt/Akt ratio. In addition, PCr reduced U937 cells' adhesion to H2O2-stimulated HUVECs. Via in vivo study, PCr could decrease MDA, TC, TG and LDL-C levels in hyperlipidemic rats. Finally, different-concentration PCr could increase the leaching of TC, HDL, and TG from fresh human atherosclerotic plaques. In conclusion, PCr could suppress H2O2-induced apoptosis in HUVECs and reduce hyperlipidemia through inhibiting ROS generation and modulating dysfunctional mitochondrial system, which might be an effective new therapeutic strategy to further prevent atherosclerosis.
Collapse
Affiliation(s)
- Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zonghui Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jiaqi Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinming Chi
- Department of Histology and Embryology, Dalian Medical University, Dalian, 116044, China
| | - Jun Wang
- Department of Pathophysiology, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 467, Dalian, China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Zhang W, Sun X, Qi X, Liu X, Zhang Y, Qiao S, Lin H. Di-(2-Ethylhexyl) Phthalate and Microplastics Induced Neuronal Apoptosis through the PI3K/AKT Pathway and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10771-10781. [PMID: 36006862 DOI: 10.1021/acs.jafc.2c05474] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Di-(2-Ethylhexyl) phthalate (DEHP) and microplastics (MPs) have released widespread residues to the environment and possess the ability to cause damage to humans and animals. However, there are still gaps in the study of damage to neurons caused by DEHP and MPs in mice cerebra and whether they have combined toxic effects. To investigate the underlying mechanism of action, mice were fed 200 mg/kg DEHP and 10 mg/L MPs in vivo. In vitro, NS20Y (CBNumber: CB15474825) cells were treated with 25 μM DEHP and 775 mg/L MPs. Next, qRT-PCR and western blot analysis were performed to evaluate PI3K/AKT pathway genes, mitochondrial dynamics-related genes, apoptosis-related genes, and GSK-3β and its associated genes, mRNA, and protein expression. To determine pathological changes in the mice cerebra, hematoxylin and eosin (H&E) staining, transmission electron microscopy, and TUNEL staining were employed. To determine the levels of reactive oxygen species (ROS) and apoptosis cells in vitro, ROS staining, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry were performed. Our results demonstrated that DEHP and MPs caused changes in mitochondrial function, and GSK-3β and its associated gene expression in mice through the PI3K/AKT pathway, which eventually led to apoptosis of neurons. Moreover, our findings showed that DEHP and MPs have a combined toxic effect on mice cerebra. Our findings facilitate the understanding of the neurotoxic effects of DEHP and MPs on neurons in the cerebra of mice and help identify the important role of maintaining normal mitochondrial function in protecting cerebrum health.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
8
|
Li L, Goel A, Wang X. Novel paradigms of mitochondrial biology and function: potential clinical significance in the era of precision medicine. Cell Biol Toxicol 2022; 38:371-375. [PMID: 35618927 DOI: 10.1007/s10565-022-09721-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA. .,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|