1
|
Zhu CP, Liu SQ, Wang KQ, Xiong HL, Aristu-Zabalza P, Boyer-Díaz Z, Feng JF, Song SH, Luo C, Chen WS, Zhang X, Dong WH, Gracia-Sancho J, Xie WF. Targeting 5-Hydroxytryptamine Receptor 1A in the Portal Vein to Decrease Portal Hypertension. Gastroenterology 2024; 167:993-1007. [PMID: 38906512 DOI: 10.1053/j.gastro.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND & AIMS Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Rats
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Cyclic AMP/metabolism
- Disease Models, Animal
- Hypertension, Portal/metabolism
- Hypertension, Portal/genetics
- Hypertension, Portal/physiopathology
- Hypertension, Portal/etiology
- Ligation
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Piperazines/pharmacology
- Portal Pressure/drug effects
- Portal Vein/metabolism
- Pyridines/pharmacology
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Serotonin/metabolism
- Serotonin/pharmacology
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Serotonin 5-HT1 Receptor Antagonists/pharmacology
- Signal Transduction
- Thioacetamide/toxicity
Collapse
Affiliation(s)
- Chang-Peng Zhu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hai-Lin Xiong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peio Aristu-Zabalza
- Liver Vascular Biology Research Group, IDIBAPS-Hospital Clínic de Barcelona, CIBEREHD, Barcelona, Spain
| | - Zoe Boyer-Díaz
- Liver Vascular Biology Research Group, IDIBAPS-Hospital Clínic de Barcelona, CIBEREHD, Barcelona, Spain
| | - Ji-Feng Feng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shao-Hua Song
- Organ Transplantation Center, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, Chinese Academy of Sciences Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei-Hua Dong
- Department of Interventional Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS-Hospital Clínic de Barcelona, CIBEREHD, Barcelona, Spain; Department for Biomedical Research, Hepatology, University of Berne, Berne, Switzerland.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Mohole M, Naglekar A, Sengupta D, Chattopadhyay A. Probing the energy landscape of the lipid interactions of the serotonin 1A receptor. Biophys Chem 2024; 313:107289. [PMID: 39002247 DOI: 10.1016/j.bpc.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1-4 kT, and timescales of 1-10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Shubhrasmita Sahu S, Sarkar P, Chattopadhyay A. Quantitation of F-actin in cytoskeletal reorganization: Context, methodology and implications. Methods 2024; 230:44-58. [PMID: 39074540 DOI: 10.1016/j.ymeth.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.
Collapse
Affiliation(s)
- Subhashree Shubhrasmita Sahu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
4
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
5
|
Guan L, Tan J, Qi B, Chen Y, Cao M, Zhang Q, Zou Y. Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study. Biophys Chem 2024; 312:107283. [PMID: 38941873 DOI: 10.1016/j.bpc.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yukang Chen
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Meng Cao
- Department of Physical Education, College of Sport, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518061, PR China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, PR China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
6
|
Sarkar P, Chattopadhyay A. Interplay of Cholesterol and Actin in Neurotransmitter GPCR Signaling: Insights from Chronic Cholesterol Depletion Using Statin. ACS Chem Neurosci 2023; 14:3855-3868. [PMID: 37804226 DOI: 10.1021/acschemneuro.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
Abstract
Serotonin1A receptors are important neurotransmitter receptors in the G protein-coupled receptor (GPCR) family and modulate a variety of neurological, behavioral, and cognitive functions. We recently showed that chronic cholesterol depletion by statins, potent inhibitors of HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis), leads to polymerization of the actin cytoskeleton that alters lateral diffusion of serotonin1A receptors. However, cellular signaling by the serotonin1A receptor under chronic cholesterol depletion remains unexplored. In this work, we explored signaling by the serotonin1A receptor under statin-treated condition. We show that cAMP signaling by the receptor is reduced upon lovastatin treatment due to reduction in cholesterol as well as polymerization of the actin cytoskeleton. To the best of our knowledge, these results constitute the first report describing the effect of chronic cholesterol depletion on the signaling of a G protein-coupled neuronal receptor. An important message arising from these results is that it is prudent to include the contribution of actin polymerization while analyzing changes in membrane protein function due to chronic cholesterol depletion by statins. Notably, our results show that whereas actin polymerization acts as a negative regulator of cAMP signaling, cholesterol could act as a positive modulator. These results assume significance in view of reports highlighting symptoms of anxiety and depression in humans upon statin administration and the role of serotonin1A receptors in anxiety and depression. Overall, these results reveal a novel role of actin polymerization induced by chronic cholesterol depletion in modulating GPCR signaling, which could act as a potential therapeutic target.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
7
|
Bruzzone SEP, Nasser A, Aripaka SS, Spies M, Ozenne B, Jensen PS, Knudsen GM, Frokjaer VG, Fisher PM. Genetic contributions to brain serotonin transporter levels in healthy adults. Sci Rep 2023; 13:16426. [PMID: 37777558 PMCID: PMC10542378 DOI: 10.1038/s41598-023-43690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
The serotonin transporter (5-HTT) critically shapes serotonin neurotransmission by regulating extracellular brain serotonin levels; it remains unclear to what extent 5-HTT levels in the human brain are genetically determined. Here we applied [11C]DASB positron emission tomography to image brain 5-HTT levels and evaluated associations with five common serotonin-related genetic variants that might indirectly regulate 5-HTT levels (BDNF rs6265, SLC6A4 5-HTTLPR, HTR1A rs6295, HTR2A rs7333412, and MAOA rs1137070) in 140 healthy volunteers. In addition, we explored whether these variants could predict in vivo 5-HTT levels using a five-fold cross-validation random forest framework. MAOA rs1137070 T-carriers showed significantly higher brain 5-HTT levels compared to C-homozygotes (2-11% across caudate, putamen, midbrain, thalamus, hippocampus, amygdala and neocortex). We did not observe significant associations for the HTR1A rs6295 and HTR2A rs7333412 genotypes. Our previously observed lower subcortical 5-HTT availability for rs6265 met-carriers remained in the presence of these additional variants. Despite this significant association, our prediction models showed that genotype moderately improved prediction of 5-HTT in caudate, but effects were not statistically significant after adjustment for multiple comparisons. Our observations provide additional evidence that serotonin-related genetic variants modulate adult human brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Silvia Elisabetta Portis Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sagar Sanjay Aripaka
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Goulty M, Botton-Amiot G, Rosato E, Sprecher SG, Feuda R. The monoaminergic system is a bilaterian innovation. Nat Commun 2023; 14:3284. [PMID: 37280201 DOI: 10.1038/s41467-023-39030-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Monoamines like serotonin, dopamine, and adrenaline/noradrenaline (epinephrine/norepinephrine) act as neuromodulators in the nervous system. They play a role in complex behaviours, cognitive functions such as learning and memory formation, as well as fundamental homeostatic processes such as sleep and feeding. However, the evolutionary origin of the genes required for monoaminergic modulation is uncertain. Using a phylogenomic approach, in this study, we show that most of the genes involved in monoamine production, modulation, and reception originated in the bilaterian stem group. This suggests that the monoaminergic system is a bilaterian novelty and that its evolution may have contributed to the Cambrian diversification.
Collapse
Affiliation(s)
- Matthew Goulty
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, UK
| | - Gaelle Botton-Amiot
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, UK
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, UK.
| |
Collapse
|
9
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
10
|
Kumar A, Sarkar P, Chattopadhyay A. Metabolic depletion of sphingolipids inhibits agonist-induced endocytosis of the serotonin 1A receptor. Traffic 2023; 24:95-107. [PMID: 36533718 DOI: 10.1111/tra.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) are vital cellular signaling machinery and currently represent ~40% drug targets. Endocytosis of GPCRs is an important process that allows stringent spatiotemporal control over receptor population on the cell surface. Although the role of proteins in GPCR endocytosis is well addressed, the contribution of membrane lipids in this process is rather unexplored. Sphingolipids are essential functional lipids in higher eukaryotes and are implicated in several neurological functions. To understand the role of sphingolipids in GPCR endocytosis, we subjected cells expressing human serotonin1A receptors (an important neurotransmitter GPCR involved in cognitive and behavioral functions) to metabolic sphingolipid depletion using fumonisin B1 , an inhibitor of sphingolipid biosynthetic pathway. Our results, using flow cytometric analysis and confocal microscopic imaging, show that sphingolipid depletion inhibits agonist-induced endocytosis of the serotonin1A receptor in a concentration-dependent manner, which was restored when sphingolipid levels were replenished. We further show that there was no change in the internalization of transferrin, a marker for clathrin-mediated endocytosis, under sphingolipid-depleted condition, highlighting the specific requirement of sphingolipids for endocytosis of serotonin1A receptors. Our results reveal the regulatory role of sphingolipids in GPCR endocytosis and highlight the importance of neurotransmitter receptor trafficking in health and disease.
Collapse
Affiliation(s)
- Abhishek Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
11
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
12
|
Mohole M, Sengupta D, Chattopadhyay A. Synergistic and Competitive Lipid Interactions in the Serotonin 1A Receptor Microenvironment. ACS Chem Neurosci 2022; 13:3403-3415. [PMID: 36351047 DOI: 10.1021/acschemneuro.2c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad201 002, India.,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad500 007, India
| |
Collapse
|
13
|
Sarkar P, Bhat A, Chattopadhyay A. Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin 1A Receptor. J Membr Biol 2022; 255:739-746. [PMID: 35986776 DOI: 10.1007/s00232-022-00262-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Akrati Bhat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
14
|
Jastrzębski MK, Kaczor AA, Wróbel TM. Methods of Lysergic Acid Synthesis-The Key Ergot Alkaloid. Molecules 2022; 27:7322. [PMID: 36364148 PMCID: PMC9654825 DOI: 10.3390/molecules27217322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ergot is the spore form of the fungus Claviceps purpurea. Ergot alkaloids are indole compounds that are biosynthetically derived from L-tryptophan and represent the largest group of fungal nitrogen metabolites found in nature. The common part of ergot alkaloids is lysergic acid. This review shows the importance of lysergic acid as a representative of ergot alkaloids. The subject of ergot and its alkaloids is presented, with a particular focus on lysergic acid. All methods of total lysergic acid synthesis-through Woodward, Hendrickson, and Szantay intermediates and Heck coupling methods-are presented. The topic of biosynthesis is also discussed.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Zaręba P, Partyka A, Latacz G, Satała G, Zajdel P, Jaśkowska J. New, Eco-Friendly Method for Synthesis of 3-Chlorophenyl and 1,1'-Biphenyl Piperazinylhexyl Trazodone Analogues with Dual 5-HT 1A/5-HT 7 Affinity and Its Antidepressant-like Activity. Molecules 2022; 27:7270. [PMID: 36364104 PMCID: PMC9658223 DOI: 10.3390/molecules27217270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Serotonin 5-HT1A and 5-HT7 receptors play an important role in the pathogenesis and pharmacotherapy of depression. Previously identified N-hexyl trazodone derivatives, 2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride (7a·HCl), with high affinity for 5-HT1AR and 2-(6-(4-([1,1'-biphenyl]-2-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one hydrochloride (7b·HCl), a dual-acting 5-HT1A/5-HT7 receptor ligand, were prepared with a new microwave-assisted method. The protocol for the synthesis of 7a and 7b involved reductive alkylation under a mild reducing agent. We produced the final compounds with yield of 56-63% using ethanol or 51-56% in solvent-free conditions in 4 min. We then determined the 5-HT7R binding mode for compounds 7a and 7b using in silico methods and assessed the preliminary ADME and safety properties (hepatotoxicity and CYP3A4 inhibition) using in vitro methods for 7a·HCl and 7b·HCl. Furthermore, we evaluated antidepressant-like activity of the dual antagonist of 5-HT1A/5-HT7 receptors (7b·HCl) in the forced swim test (FST) in mice. The 5-HT1AR ligand (7a·HCl) with a much lower affinity for 5-HT7R compared to that of 7b·HCl was tested comparatively. Both compounds showed antidepressant activity, while 5-HT1A/5-HT7 double antagonist 7b·HCl showed a stronger and more specific response.
Collapse
Affiliation(s)
- Przemysław Zaręba
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| |
Collapse
|
16
|
Pathophysiological Mechanisms of Antipsychotic-Induced Parkinsonism. Biomedicines 2022; 10:biomedicines10082010. [PMID: 36009557 PMCID: PMC9405702 DOI: 10.3390/biomedicines10082010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 01/02/2023] Open
Abstract
Among neurological adverse reactions in patients with schizophrenia treated with antipsychotics (APs), drug-induced parkinsonism (DIP) is the most common motility disorder caused by drugs affecting dopamine receptors. One of the causes of DIP is the disruption of neurotransmitter interactions that regulate the signaling pathways of the dopaminergic, cholinergic, GABAergic, adenosinergic, endocannabinoid, and other neurotransmitter systems. Presently, the development mechanisms remain poorly understood despite the presence of the considered theories of DIP pathogenesis.
Collapse
|
17
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Cholesterol-Dependent Dynamics of the Serotonin 1A Receptor Utilizing Single Particle Tracking: Analysis of Diffusion Modes. J Phys Chem B 2022; 126:6682-6690. [PMID: 35973070 DOI: 10.1021/acs.jpcb.2c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are signaling hubs in cell membranes that regulate a wide range of physiological processes and are popular drug targets. Serotonin1A receptors are important members of the GPCR family and are implicated in neuropsychiatric disorders. Cholesterol is a key constituent of higher eukaryotic membranes and is believed to contribute to the segregated distribution of membrane constituents into domains. To explore the role of cholesterol in lateral dynamics of GPCRs, we utilized single particle tracking (SPT) to monitor diffusion of serotonin1A receptors under acute and chronic cholesterol-depleted conditions. Our results show that the short-term diffusion coefficient of the receptor decreases upon cholesterol depletion, irrespective of the method of cholesterol depletion. Analysis of SPT trajectories revealed that relative populations of receptors undergoing various modes of diffusion change upon cholesterol depletion. Notably, in cholesterol-depleted cells, we observed an increase in the confined population of the receptor accompanied by a reduction in diffusion coefficient for chronic cholesterol depletion. These results are supported by our recent work and present observations that show polymerization of G-actin in response to chronic cholesterol depletion. Taken together, our results bring out the interdependence of cholesterol and actin cytoskeleton in regulating diffusion of GPCRs in membranes.
Collapse
Affiliation(s)
- Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | | |
Collapse
|
18
|
Sarkar P, Chattopadhyay A. Statin-induced Increase in Actin Polymerization Modulates GPCR Dynamics and Compartmentalization. Biophys J 2022:S0006-3495(22)00708-1. [DOI: 10.1016/j.bpj.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
|
19
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
20
|
Santos JL, Janegitz BC, de Oliveira MR, de Souza GL. Exploring the water hydrogen-bonding effects on the ground and low-lying excited states of serotonin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
22
|
Dutta A, Sarkar P, Shrivastava S, Chattopadhyay A. Effect of Hypoxia on the Function of the Human Serotonin 1A Receptor. ACS Chem Neurosci 2022; 13:1456-1466. [PMID: 35467841 DOI: 10.1021/acschemneuro.2c00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellular hypoxia causes numerous pathophysiological conditions associated with the disruption of oxygen homeostasis. Under oxygen-deficient conditions, cells adapt by controlling the cellular functions to facilitate the judicious use of available oxygen, such as cessation of cell growth and proliferation. In higher eukaryotes, the process of cholesterol biosynthesis is intimately coupled to the availability of oxygen, where the synthesis of one molecule of cholesterol requires 11 molecules of O2. Cholesterol is an essential component of higher eukaryotic membranes and is crucial for the physiological functions of several membrane proteins and receptors. The serotonin1A receptor, an important neurotransmitter G protein-coupled receptor associated with cognition and memory, has previously been shown to depend on cholesterol for its signaling and function. In this work, in order to explore the interdependence of oxygen levels, cholesterol biosynthesis, and the function of the serotonin1A receptor, we developed a cellular hypoxia model to explore the function of the human serotonin1A receptor heterologously expressed in Chinese hamster ovary cells. We observed cell cycle arrest at G1/S phase and the accumulation of lanosterol in cell membranes under hypoxic conditions, thereby validating our cellular model. Interestingly, we observed a significant reduction in ligand binding and disruption of downstream cAMP signaling of the serotonin1A receptor under hypoxic conditions. To the best of our knowledge, our results represent the first report linking the function of the serotonin1A receptor with hypoxia. From a broader perspective, these results contribute to our overall understanding of the molecular basis underlying neurological conditions often associated with hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Aritri Dutta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
23
|
Garvey RW, Lacivita E, Niso M, Duszyńska B, Harris PE, Leopoldo M. Design, synthesis, and characterization of a novel fluoroprobe for live human islet cell imaging of serotonin 5-HT1A receptor. ChemMedChem 2022; 17:e202100759. [PMID: 35286016 DOI: 10.1002/cmdc.202100759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Mounting evidence suggests that the serotonin system serves in signal transmission to regulate insulin secretion in pancreatic islets of Langerhans. Among the 5-HT receptor subtype found in pancreatic islets, serotonin receptor 1A (5-HT 1A ) demonstrates a unique ability to inhibit beta-cell insulin secretion. We report on the design, synthesis, and characterization of two novel fluorescent probes for the 5-HT 1A receptor. The compounds were prepared by conjugating the scaffold of the 5-HT 1A receptor agonist 8-OH-DPAT with two fluorophores suitable for live-cells imaging. Compound 5a showed a high affinity for the 5-HT 1A receptor ( K i = 1.8 nM). Fluoroprobe 5a was able to label the 5-HT 1A receptor in pancreatic islet cell cultures in a selective manner, as the fluorescence emission was significantly attenuated by co-administration of the 5-HT 1A receptor antagonist WAY-100635. Thus, fluoroprobe 5a showed useful properties to further characterize this unique receptor's role.
Collapse
Affiliation(s)
- Robert W Garvey
- Columbia University, Division of Endocrinology, Department of Medicine, UNITED STATES
| | - Enza Lacivita
- Universita' degli Studi di Bari, Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| | - Mauro Niso
- Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, Dipartimento di Farmacia -Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| | - Beata Duszyńska
- Institute of Pharmacology of the Polish Academy of Sciences: Instytut Farmakologii im Jerzego Maja Polskiej Akademii Nauk, Department of Medicinal Chemistry, Smetna, 12, 31-343, Krakow, POLAND
| | - Paul E Harris
- Columbia University, Division of Endocrinology, Department of Medicine, UNITED STATES
| | - Marcello Leopoldo
- Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| |
Collapse
|
24
|
Pal S, Chattopadhyay A. Hydration Dynamics in Biological Membranes: Emerging Applications of Terahertz Spectroscopy. J Phys Chem Lett 2021; 12:9697-9709. [PMID: 34590862 DOI: 10.1021/acs.jpclett.1c02576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water drives the spontaneous self-assembly of lipids and proteins into quasi two-dimensional biological membranes that act as catalytic scaffolds for numerous processes central to life. However, the functional relevance of hydration in membrane biology is only beginning to be addressed, predominantly because of challenges associated with direct measurements of hydration microstructure and dynamics in a biological milieu. Our recent work on the novel interplay of membrane electrostatics and crowding in shaping membrane hydration dynamics utilizing terahertz (THz) spectroscopy represents an important step in this context. In this Perspective, we provide a glimpse into the ever-broadening functional landscape of hydration dynamics in biological membranes in the backdrop of the unique physical chemistry of water molecules. We further highlight the immense (and largely untapped) potential of the THz toolbox in addressing contemporary problems in membrane biology, while emphasizing the adaptability of the analytical framework reported recently by us to such studies.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
25
|
Sharma A, Kumar GA, Chattopadhyay A. Late endosomal/lysosomal accumulation of a neurotransmitter receptor in a cellular model of Smith-Lemli-Opitz syndrome. Traffic 2021; 22:332-344. [PMID: 34418249 DOI: 10.1111/tra.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. It is characterized by accumulation of 7-dehydrocholesterol (the immediate biosynthetic precursor of cholesterol in the Kandutsch-Russell pathway) and an altered cholesterol to total sterol ratio. Because SLOS is associated with neurological malfunction, exploring the function and trafficking of neuronal receptors and their interaction with membrane lipids under these conditions assume significance. In this work, we generated a cellular model of SLOS in HEK-293 cells stably expressing the human serotonin1A receptor (an important neurotransmitter G-protein coupled receptor) using AY 9944, an inhibitor for the enzyme 3β-hydroxy-steroid-∆7 -reductase (7-DHCR). Using a quantitative flow cytometry based assay, we show that the plasma membrane population of serotonin1A receptors was considerably reduced under these conditions without any change in total cellular expression of the receptor. Interestingly, the receptors were trafficked to sterol-enriched LysoTracker positive compartments, which accumulated under these conditions. To the best of our knowledge, our results constitute one of the first reports demonstrating intracellular accumulation and misregulated traffic of a neurotransmitter GPCR in SLOS-like conditions. We believe these results assume relevance in our overall understanding of the molecular basis underlying the functional relevance of neurotransmitter receptors in SLOS.
Collapse
Affiliation(s)
- Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
26
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
27
|
Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A. A molecular sensor for cholesterol in the human serotonin 1A receptor. SCIENCE ADVANCES 2021; 7:7/30/eabh2922. [PMID: 34301606 PMCID: PMC8302130 DOI: 10.1126/sciadv.abh2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 05/10/2023]
Abstract
The function of several G protein-coupled receptors (GPCRs) exhibits cholesterol sensitivity. Cholesterol sensitivity of GPCRs could be attributed to specific sequence and structural features, such as the cholesterol recognition/interaction amino acid consensus (CRAC) motif, that facilitate their cholesterol-receptor interaction. In this work, we explored the molecular basis of cholesterol sensitivity exhibited by the serotonin1A receptor, the most studied GPCR in the context of cholesterol sensitivity, by generating mutants of key residues in CRAC motifs in transmembrane helix 2 (TM2) and TM5 of the receptor. Our results show that a lysine residue (K101) in one of the CRAC motifs is crucial for sensing altered membrane cholesterol levels. Insights from all-atom molecular dynamics simulations showed that cholesterol-sensitive functional states of the serotonin1A receptor are associated with reduced conformational dynamics of extracellular loops of the receptor. These results constitute one of the first reports on the molecular mechanism underlying cholesterol sensitivity of GPCRs.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bengaluru 560 065, India
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | | |
Collapse
|
28
|
Environment-Sensitive Fluorescence of 7-Nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-Labeled Ligands for Serotonin Receptors. Molecules 2021; 26:molecules26133848. [PMID: 34202630 PMCID: PMC8270269 DOI: 10.3390/molecules26133848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Serotonin is a neurotransmitter that plays a crucial role in the regulation of several behavioral and cognitive functions by binding to a number of different serotonin receptors present on the cell surface. We report here the synthesis and characterization of several novel fluorescent analogs of serotonin in which the fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group is covalently attached to serotonin. The fluorescent ligands compete with the serotonin1A receptor specific radiolabeled agonist for binding to the receptor. Interestingly, these fluorescent ligands display a high environmental sensitivity of their fluorescence. Importantly, the human serotonin1A receptor stably expressed in CHO-K1 cells could be specifically labeled with one of the fluorescent ligands with minimal nonspecific labeling. Interestingly, we show by spectral imaging that the NBD-labeled ligand exhibits a red edge excitation shift (REES) of 29 nm when bound to the receptor, implying that it is localized in a restricted microenvironment. Taken together, our results show that NBD-labeled serotonin analogs offer an attractive fluorescent approach for elucidating the molecular environment of the serotonin binding site in serotonin receptors. In view of the multiple roles played by the serotonergic systems in the central and peripheral nervous systems, these fluorescent ligands would be useful in future studies involving serotonin receptors.
Collapse
|
29
|
Kumar A, Sarkar P, Chattopadhyay A. Metabolic Depletion of Sphingolipids Reduces Cell Surface Population of the Human Serotonin 1A Receptor due to Impaired Trafficking. ACS Chem Neurosci 2021; 12:1189-1196. [PMID: 33760584 DOI: 10.1021/acschemneuro.1c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and their metabolites are increasingly implicated in the pathogenesis of many metabolic and neurological diseases. It has been postulated that sphingolipids coalesce with cholesterol to form laterally segregated lipid domains that are involved in protein sorting and trafficking. In this work, we have explored the effect of metabolic depletion of sphingolipids on cell surface expression of the human serotonin1A receptor, a neurotransmitter G protein-coupled receptor. We used fumonisin B1 (FB1), a fungal mycotoxin, to inhibit sphingolipid biosynthesis in HEK-293 cells stably expressing the human serotonin1A receptor. Our results obtained using flow cytometric analysis and confocal microscopic imaging show that the cell surface population of the serotonin1A receptor is reduced under sphingolipid-depleted condition. Western blot analysis confirmed that there was no significant difference in total cellular level of the serotonin1A receptor upon depletion of sphingolipids. Interestingly, the effect of FB1 on serotonin1A receptor population was reversed upon replenishment with sphingolipids. These results indicate that sphingolipid depletion does not alter total cellular receptor levels, but impairs serotonin1A receptor trafficking to the cellular plasma membrane. These results could provide mechanistic insights into the role of sphingolipids in modulation of neurotransmitter receptor signaling and trafficking in health and disease.
Collapse
Affiliation(s)
- Abhishek Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurugram 122 413, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
30
|
Sarkar P, Chattopadhyay A. Insights into cellular signaling from membrane dynamics. Arch Biochem Biophys 2021; 701:108794. [PMID: 33571482 DOI: 10.1016/j.abb.2021.108794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Biological membranes allow morphological compartmentalization of cells and represent complex micro-heterogeneous fluids exhibiting a range of dynamics. The plasma membrane occupies a central place in cellular signaling which allows the cell to perform a variety of functions. In this review, we analyze cellular signaling in a dynamic biophysical framework guided by the "mobile receptor hypothesis". We describe a variety of examples from literature in which lateral diffusion of signaling membrane proteins acts as an important determinant in the efficiency of signaling. A major focus in our review is on membrane-embedded G protein-coupled receptors (GPCRs) which act as cellular signaling hubs for diverse cellular functions. Taken together, we describe a dynamics-based signaling paradigm with chosen examples from literature to elucidate how such a paradigm helps us understand signaling by GPCRs, maintenance of cellular polarity in yeast and infection by pathogens. We envision that with further technological advancement, it would be possible to explore cellular signaling more holistically as cells undergo development, differentiation and aging, thereby providing us a robust window into the dynamics of the cellular interior and its functional correlates.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
31
|
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin 1A receptor: Insights from acute cholesterol depletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158882. [PMID: 33429076 DOI: 10.1016/j.bbalip.2021.158882] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-β-cyclodextrin (MβCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MβCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
32
|
Rao BD, Sarkar P, Chattopadhyay A. Effect of tertiary amine local anesthetics on G protein-coupled receptor lateral diffusion and actin cytoskeletal reorganization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183547. [PMID: 33417968 DOI: 10.1016/j.bbamem.2020.183547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Although widely used clinically, the mechanism underlying the action of local anesthetics remains elusive. Direct interaction of anesthetics with membrane proteins and modulation of membrane physical properties by anesthetics are plausible mechanisms proposed, although a combination of these two mechanisms cannot be ruled out. In this context, the role of G protein-coupled receptors (GPCRs) in local anesthetic action is a relatively new area of research. We show here that representative tertiary amine local anesthetics induce a reduction in two-dimensional diffusion coefficient of the serotonin1A receptor, an important neurotransmitter GPCR. The corresponding change in mobile fraction is varied, with tetracaine exhibiting the maximum reduction in mobile fraction, whereas the change in mobile fraction for other local anesthetics was not appreciable. These results are supported by quantitation of cellular F-actin, using a confocal microscopic approach previously developed by us, which showed that a pronounced increase in F-actin level was induced by tetracaine. These results provide a novel perspective on the action of local anesthetics in terms of GPCR lateral diffusion and actin cytoskeleton reorganization.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
33
|
Structural Stringency and Optimal Nature of Cholesterol Requirement in the Function of the Serotonin1A Receptor. J Membr Biol 2020; 253:445-457. [DOI: 10.1007/s00232-020-00138-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
34
|
Sarkar P, Rao BD, Chattopadhyay A. Cell Cycle Dependent Modulation of Membrane Dipole Potential and Neurotransmitter Receptor Activity: Role of Membrane Cholesterol. ACS Chem Neurosci 2020; 11:2890-2899. [PMID: 32786305 DOI: 10.1021/acschemneuro.0c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a sequential multistep process essential for growth and proliferation of cells that make up multicellular organisms. A number of nuclear and cytoplasmic proteins are known to modulate the cell cycle. Yet, the role of lipids, membrane organization, and physical properties in cell cycle progression remains largely elusive. Membrane dipole potential is an important physicochemical property and originates due to the electrostatic potential difference within the membrane because of nonrandom arrangement of amphiphile dipoles and water molecules at the membrane interface. In this work, we explored the modulation of membrane dipole potential in various stages of the cell cycle in CHO-K1 cells. Our results show that membrane dipole potential is highest in the G1 phase relative to S and G2/M phases. This was accompanied by regulation of membrane cholesterol content in the cell cycle. The highest cholesterol content was found in the G1 phase with a considerable reduction in cholesterol in S and G2/M phases. Interestingly, we noted a similarity in the dependence of membrane dipole potential and cholesterol with progress of the cell cycle. In addition, we observed an increase in neutral lipid (which contains esterified cholesterol) content as cells progressed from the G1 to G2/M phase via the S phase of the cell cycle. Importantly, we further observed a cell cycle dependent reduction in ligand binding activity of serotonin1A receptors expressed in CHO-K1 cells. To the best of our knowledge, these results constitute the first report of cell cycle dependent modulation of membrane dipole potential and activity of a neurotransmitter receptor belonging to the G protein-coupled receptor family. We envision that understanding the basis of cell cycle events from a biophysical perspective would result in a deeper appreciation of the cell cycle and its regulation in relation to cellular function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
35
|
Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin 1A receptor. Chem Phys Lipids 2020; 232:104955. [PMID: 32846149 DOI: 10.1016/j.chemphyslip.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
The human serotonin1A receptor is a representative member of the superfamily of G protein-coupled receptors (GPCRs) and an important drug target for neurological disorders. Using a combination of biochemical, biophysical and molecular dynamics simulation approaches, we and others have shown that membrane cholesterol modulates the organization, dynamics and function of vertebrate serotonin1A receptors. Previous studies have shown that the cytoplasmic portion of transmembrane helix V (TM V) and the extramembraneous intracellular loop 3 are critical for G-protein coupling, phosphorylation and desensitization of the receptor. We have recently resolved a collage of putative cholesterol interaction motifs from the amino acid sequence overlapping this region. In this paper, we explore the sequence plasticity of this fragment that may have adapted to altered membrane lipidome, after vertebrates evolved from primordial invertebrates. Since invertebrates have lower levels of membrane cholesterol relative to vertebrates, we compared TM V sequence fragments from invertebrate serotonin1 receptors with vertebrate orthologs to infer the sequence plasticity in TM V. We report that the average number of cholesterol interaction motifs in TM V for diverse phyla represents an increasing trend that could mirror vertebrate evolution from primordial invertebrates. By statistical modeling, we propose that the collage of cholesterol interaction motifs in TM V of the human serotonin1A receptor may have evolved from rudimentary collages, reminiscent of primordial invertebrate orthologs. Taken together, we propose that a repertoire of cholesterol-philic nonsynonymous substitutions may have enhanced collage complexity in TM V during vertebrate evolution.
Collapse
|
36
|
Li J, Chen L, Li G, Chen X, Hu S, Zheng L, Luria V, Lv J, Sun Y, Xu Y, Yu Y. Sub-Acute Treatment of Curcumin Derivative J147 Ameliorates Depression-Like Behavior Through 5-HT 1A-Mediated cAMP Signaling. Front Neurosci 2020; 14:701. [PMID: 32733195 PMCID: PMC7360862 DOI: 10.3389/fnins.2020.00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Major depressive disorder (MDD) is a severe mental disorder related to the deficiency of monoamine neurotransmitters, particularly to abnormalities of 5-HT (5-hydroxytryptamine, serotonin) and its receptors. Our previous study suggested that acute treatment with a novel curcumin derivative J147 exhibited antidepressant-like effects by increasing brain derived neurotrophic factor (BDNF) level in the hippocampus of mice. The present study expanded upon our previous findings and investigated the antidepressant-like effects of sub-acute treatment of J147 for 3 days in male ICR mice and its possible relevancy to 5-HT1A and 5-HT1B receptors and downstream cAMP-BDNF signaling. Methods J147 at doses of 1, 3, and 9 mg/kg (via gavage) was administered for 3 days, and the anti-immobility time in the forced swimming and tail suspension tests (FST and TST) was recorded. The radioligand binding assay was used to determine the affinity of J147 to 5-HT1A and 5-HT1B receptor. Moreover, 5-HT1A or 5-HT1B agonist or its antagonist was used to determine which 5-HT receptor subtype is involved in the antidepressant-like effects of J147. The downstream signaling molecules such as cAMP, PKA, pCREB, and BDNF were also measured to determine the mechanism of action. Results The results demonstrated that sub-acute treatment of J147 remarkably decreased the immobility time in both the FST and TST in a dose-dependent manner. J147 displayed high affinity in vitro to 5-HT1A receptor prepared from mice cortical tissue and was less potent at 5-HT1B receptor. These effects of J147 were blocked by pretreatment with a 5-HT1A antagonist NAD-299 and enhanced by a 5-HT1A agonist 8-OH-DPAT. However, 5-HT1B receptor antagonist NAS-181 did not appreciably alter the effects of J147 on depression-like behaviors. Moreover, pretreatment with NAD-299 blocked J147-induced increases in cAMP, PKA, pCREB, and BDNF expression in the hippocampus, while 8-OH-DPAT enhanced the effects of J147 on these proteins’ expression. Conclusion The results suggest that J147 induces rapid antidepressant-like effects during a 3-day treatment period without inducing drug tolerance. These effects might be mediated by 5-HT1A-dependent cAMP/PKA/pCREB/BDNF signaling.
Collapse
Affiliation(s)
- Jianxin Li
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaowen Li
- Ningbo College of Health Sciences, Ningbo, China.,Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Xiaojuan Chen
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Sisi Hu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Liang Zheng
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Victor Luria
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Jinpeng Lv
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yingcong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
37
|
Rao BD, Sarkar P, Chattopadhyay A. Selectivity in agonist and antagonist binding to Serotonin 1A receptors via G-protein coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183265. [PMID: 32156647 DOI: 10.1016/j.bbamem.2020.183265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins in higher eukaryotes, and facilitate information transfer from the extracellular environment to the cellular interior upon activation by ligands. Their role in diverse signaling processes makes them an attractive choice as drug targets. GPCRs are coupled to heterotrimeric G-proteins which represent an important interface through which signal transduction occurs across the plasma membrane upon activation by ligands. To obtain further insight into the molecular details of interaction of G-proteins with GPCRs, in this work, we explored the selectivity of binding of specific agonists and antagonists to the serotonin1A receptor under conditions of progressive G-protein inactivation. The serotonin1A receptor is an important neurotransmitter receptor belonging to the GPCR family and is a popular drug target. By use of a number of agents to inactivate G-proteins, we show here that the serotonin1A receptor displays differential discrimination between agonist and antagonist binding. Our results show a reduction in binding sites of the receptor upon treatment with G-protein inactivating agents. In addition, G-protein coupling efficiency was enhanced when G-proteins were inactivated using urea and alkaline pH. We envision that our results could be useful in achieving multiple signaling states of the receptor by fine tuning the conditions of G-protein inactivation and in structural biology of GPCRs bound to specific ligands.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
38
|
Unterholzner J, Gryglewski G, Philippe C, Seiger R, Pichler V, Godbersen GM, Berroterán-Infante N, Murgaš M, Hahn A, Wadsak W, Mitterhauser M, Kasper S, Lanzenberger R. Topologically Guided Prioritization of Candidate Gene Transcripts Coexpressed with the 5-HT1A Receptor by Combining In Vivo PET and Allen Human Brain Atlas Data. Cereb Cortex 2020; 30:3771-3780. [PMID: 31989157 PMCID: PMC7232988 DOI: 10.1093/cercor/bhz341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The serotonin-1A receptor (5-HT1AR) represents a viable target in the treatment of disorders of the brain. However, development of psychiatric drugs continues to be hindered by the relative inaccessibility of brain tissue. Although the efficacy of drugs selective for the 5-HT1AR has not been proven, research continues to focus on drugs that influence this receptor subtype. To further knowledge on this topic, we investigated the topological coexpression patterns of the 5-HT1AR. We calculated Spearman's rho for the correlation of positron emission tomography-binding potentials (BPND) of the 5-HT1AR assessed in 30 healthy subjects using the tracer [carbonyl-11C]WAY-100635 and predicted whole-brain mRNA expression of 18 686 genes. After applying a threshold of r > 0.3 in a leave-one-out cross-validation of the prediction of mRNA expression, genes with ρ ≥ 0.7 were considered to be relevant. In cortical regions, 199 genes showed high correlation with the BPND of the 5-HT1AR, in subcortical regions 194 genes. Using our approach, we could consolidate the role of BDNF and implicate new genes (AnxA8, NeuroD2) in serotonergic functioning. Despite its explorative nature, the analysis can be seen as a gene prioritization approach to reduce the number of genes potentially connected to 5-HT1AR functioning and guide future in vitro studies.
Collapse
Affiliation(s)
- Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Neydher Berroterán-Infante
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Centre for Biomarker Research in Medicine (CBmed), Stiftingtalstrasse 5, 8010, Graz, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
39
|
Silveira MM, Wittekindt SN, Mortazavi L, Hathaway BA, Winstanley CA. Investigating serotonergic contributions to cognitive effort allocation, attention, and impulsive action in female rats. J Psychopharmacol 2020; 34:452-466. [PMID: 31913079 DOI: 10.1177/0269881119896043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Individuals must frequently evaluate whether it is worth allocating cognitive effort for desired outcomes. Motivational deficits are a common feature of psychiatric illness such as major depression. Selective serotonin reuptake inhibitors are commonly used to treat this disorder, yet some data suggest these compounds are ineffective at treating amotivation, and may even exacerbate it. AIMS Here we used the rodent Cognitive Effort Task (rCET) to assess serotonergic (5-hydroxytryptamine, 5-HT) contributions to decision-making with cognitive effort costs. METHODS The rCET is a modified version of the 5-choice serial reaction time task, a well-validated test of visuospatial attention and impulse control. At the start of each rCET trial, rats chose one of two levers, which set the difficulty of an attentional challenge, namely the localization of a visual stimulus illuminated for 0.2 or 1 s on hard versus easy trials. Successful completion of hard trials was rewarded with double the sugar pellets. Twenty-four female Long-Evans rats were trained on the rCET and systemically administered the 5-HT1A agonist 8-OH-DPAT, the 5-HT2A antagonist M100907, the 5-HT2C agonist Ro-60-0175, as well as the 5-HT2C antagonist SB 242, 084. RESULTS 5-HT2A antagonism dose-dependently reduced premature responding, while 5-HT2C antagonism had the opposite effect. 8-OH-DPAT impaired accuracy of target detection at higher doses, while Ro-60-0175 dose-dependently improved accuracy on difficult trials. However, none of the drugs affected the rats' choice of the harder option. CONCLUSION When considered with existing work evaluating decision-making with physical effort costs, it appears that serotonergic signalling plays a minor role in guiding effort allocation.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sebastian N Wittekindt
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leili Mortazavi
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Hathaway
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Kumar GA, Chattopadhyay A. Statin-Induced Chronic Cholesterol Depletion Switches GPCR Endocytosis and Trafficking: Insights from the Serotonin 1A Receptor. ACS Chem Neurosci 2020; 11:453-465. [PMID: 31880914 DOI: 10.1021/acschemneuro.9b00659] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocytosis is a key regulatory mechanism adopted by G protein-coupled receptors (GPCRs) to modulate downstream signaling responses within a stringent spatiotemporal regime. Although the role of membrane lipids has been extensively studied in the context of the function, organization, and dynamics of GPCRs, their role in receptor endocytosis remains largely unexplored. Cholesterol, the predominant sterol in higher eukaryotes, plays a crucial role in maintaining the structure and organization of cell membranes and is involved in essential cellular processes in health and disease. The serotonin1A receptor is a representative GPCR involved in neuronal development and in neuropsychiatric disorders such as anxiety and depression. We recently combined quantitative flow cytometric and confocal microscopic approaches to demonstrate that the serotonin1A receptor undergoes clathrin-mediated endocytosis upon agonist stimulation and subsequently traffics along the endosomal recycling pathway. In this work, we show that statin-induced chronic cholesterol depletion switches the endocytic pathway of the serotonin1A receptor from clathrin- to caveolin-mediated endocytosis. Interestingly, under these conditions, a significant proportion of endocytosed receptors is rerouted toward lysosomal degradation. To the best of our knowledge, these results constitute one of the first comprehensive reports on the role of membrane cholesterol in GPCR endocytosis and trafficking. These results are significant in our overall understanding of the modulatory effects of membrane lipids on GPCR endocytosis and trafficking and could provide novel insight in developing therapeutic interventions against neuropsychiatric disorders such as depression.
Collapse
Affiliation(s)
- G. Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
41
|
Role of cholesterol-mediated effects in GPCR heterodimers. Chem Phys Lipids 2019; 227:104852. [PMID: 31866438 DOI: 10.1016/j.chemphyslip.2019.104852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that mediate a large number of cellular responses. The organization of GPCRs into dimers and higher-order oligomers is known to allow a larger repertoire of downstream signaling events. In this context, a crosstalk between the adenosine and dopamine receptors has been reported, indicating the presence of heterodimers that are functionally relevant. In this paper, we explored the effect of membrane cholesterol on the adenosine2A (A2A) and dopamine D3 (D3) receptors using coarse-grain molecular dynamics simulations. We analyzed cholesterol interaction sites on the A2A receptor and were able to reproduce the sites indicated by crystallography and previous atomistic simulations. We predict novel cholesterol interaction sites on the D3 receptor that could be important in the reported cholesterol sensitivity in receptor function. Further, we analyzed the formation of heterodimers between the two receptors. Our results suggest that membrane cholesterol modulates the relative population of several co-existing heterodimer conformations. Both direct receptor-cholesterol interaction and indirect membrane effects contribute toward the modulation of heterodimer conformations. These results constitute one of the first examples of modulation of GPCR hetero-dimerization by membrane cholesterol, and could prove to be useful in designing better therapeutic strategies.
Collapse
|
42
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
43
|
Theoretical modeling of the hydrated serotonin in solution: Insight into intermolecular hydrogen bonding dynamics and spectral shift in the electronic excited states. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Kumar GA, Sarkar P, Jafurulla M, Singh SP, Srinivas G, Pande G, Chattopadhyay A. Exploring Endocytosis and Intracellular Trafficking of the Human Serotonin1A Receptor. Biochemistry 2019; 58:2628-2641. [DOI: 10.1021/acs.biochem.9b00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G. Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Md. Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Gunda Srinivas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Gopal Pande
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
45
|
Fatakia SN, Sarkar P, Chattopadhyay A. A collage of cholesterol interaction motifs in the serotonin 1A receptor: An evolutionary implication for differential cholesterol interaction. Chem Phys Lipids 2019; 221:184-192. [PMID: 30822391 DOI: 10.1016/j.chemphyslip.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
The serotonin1A receptor is a representative member of the G protein-coupled receptor (GPCR) superfamily and acts as an important drug target. In our previous work, we comprehensively demonstrated that membrane cholesterol is necessary in the organization, dynamics and function of the serotonin1A receptor. In this context, analysis of high-resolution GPCR crystal structures in general and in silico studies of the serotonin1A receptor in particular, have suggested the presence of cholesterol interaction sites (hotspots) in various regions of the receptor. In this work, we have identified an evolutionarily conserved collage of four categories of cholesterol interaction motifs associated with transmembrane helix V and the adjacent intracellular loop 3 fragment of the vertebrate serotonin1A receptor. This collage of motifs represents a total of twenty diverse context-dependent cholesterol interaction configurations. We envision that the gamut of cholesterol interaction sites, characterized by sequence plasticity in cholesterol interaction, could be relevant in receptor-cholesterol interaction in membranes of varying cholesterol content and organization, as found in diverse cell types. We conclude that an evolutionarily conserved mechanism of GPCR-cholesterol interaction allows the serotonin1A receptor to adapt to diverse membrane cholesterol levels during natural evolution.
Collapse
Affiliation(s)
- Sarosh N Fatakia
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
46
|
Sarkar P, Chattopadhyay A. Exploring membrane organization at varying spatiotemporal resolutions utilizing fluorescence-based approaches: implications in membrane biology. Phys Chem Chem Phys 2019; 21:11554-11563. [DOI: 10.1039/c9cp02087j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Representative experimental approaches based on dynamic fluorescence microscopy to analyze organization and dynamics of membrane lipids and proteins.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
| | | |
Collapse
|
47
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
48
|
Rao BD, Shrivastava S, Pal S, Chattopadhyay A. Effect of Local Anesthetics on the Organization and Dynamics of Hippocampal Membranes: A Fluorescence Approach. J Phys Chem B 2018; 123:639-647. [DOI: 10.1021/acs.jpcb.8b10232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
49
|
|
50
|
Constrained dynamics of the sole tryptophan in the third intracellular loop of the serotonin 1A receptor. Biophys Chem 2018; 240:34-41. [PMID: 29885563 DOI: 10.1016/j.bpc.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are major signaling proteins in eukaryotic cells and are important drug targets. In spite of their role in GPCR function, the extramembranous regions of GPCRs are relatively less appreciated. The third intracellular loop (ICL3), which connects transmembrane helices V and VI, is important in this context since its crucial role in signaling has been documented for a number of GPCRs. Unfortunately, the structure of this loop is generally not visualized in x-ray crystallographic studies since this flexible loop is either stabilized using a monoclonal antibody or replaced with lysozyme. In this work, we expressed and purified the ICL3 region of the serotonin1A receptor and monitored its motional restriction and organization utilizing red edge excitation shift (REES) of its sole tryptophan and circular dichroism (CD) spectroscopy. Our results show that the tryptophan in ICL3 exhibits REES of 4 nm, implying that it is localized in a restricted microenvironment. These results are further supported by wavelength-selective changes in fluorescence anisotropy and lifetime. This constrained dynamics was relaxed upon denaturation of the peptide, thereby suggesting the involvement of the peptide secondary structure in the observed motional restriction, as evident from CD spectroscopy and apparent rotational correlation time. To the best of our knowledge, these results constitute one of the first measurements of motional constraint in the ICL3 region of GPCRs. Our results are relevant in the context of the reported intrinsically disordered nature of ICL3 and its role in providing functional diversity to GPCRs due to conformational plasticity.
Collapse
|