1
|
Malpigmentation of Common Sole ( Solea solea) during Metamorphosis Is Associated with Differential Synaptic-Related Gene Expression. Animals (Basel) 2021; 11:ani11082273. [PMID: 34438731 PMCID: PMC8388432 DOI: 10.3390/ani11082273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Common sole (Solea solea) is an important species for the aquaculture industry. Defects in pigmentation of the species are very common in farmed conditions. Differences in gene expression between normally pigmented juveniles and those that present both sides full pigmented, ocular and blind, were investigated. Differentially expressed transcripts were functionally annotated, and gene ontology was carried out. The results indicated that ambicolorated juveniles showed a significant upregulation of genes involved in the signal transmission at the synaptic level and regulation of ion channels, affecting the plasticity and the development of the synapses, as well as the transmission of signals or ions through channels. Abstract In farmed flatfish, such as common sole, color disturbances are common. Dyschromia is a general term that includes the color defects on the blind and ocular sides of the fish. The purpose was to examine the difference in gene expression between normal pigmented and juveniles who present ambicoloration. The analysis was carried out with next-generation sequencing techniques and de novo assembly of the transcriptome. Transcripts that showed significant differences (FDR < 0.05) in the expression between the two groups, were related to those of zebrafish (Danio rerio), functionally identified, and classified into categories of the gene ontology. The results revealed that ambicolorated juveniles exhibit a divergent function, mainly of the central nervous system at the synaptic level, as well as the ionic channels. The close association of chromophore cells with the growth of nerve cells and the nervous system was recorded. The pathway, glutamate binding–activation of AMPA and NMDA receptors–long-term stimulation of postsynaptic potential–LTP (long term potentiation)–plasticity of synapses, appears to be affected. In addition, the development of synapses also seems to be affected by the interaction of the LGI (leucine-rich glioma inactivated) protein family with the ADAM (a disintegrin and metalloprotease) ones.
Collapse
|
2
|
Wang Z, Zhao Y, Xu N, Zhang S, Wang S, Mao Y, Zhu Y, Li B, Jiang Y, Tan Y, Xie W, Yang BB, Zhang Y. NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell Mol Life Sci 2019; 76:3005-3018. [PMID: 31006037 PMCID: PMC6647258 DOI: 10.1007/s00018-019-03074-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
The accumulation of intracellular β-amyloid peptide (Aβ) is important pathological characteristic of Alzheimer's disease (AD). However, the exact underlying molecular mechanism remains to be elucidated. Here, we reported that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), a long n on-coding RNA, exhibits repressed expression in the early stage of AD and its down-regulation declines neuroglial cell mediating Aβ clearance via inhibiting expression of endocytosis-related genes. We find that NEAT1 is associated with P300/CBP complex and its inhibition affects H3K27 acetylation (H3K27Ac) and H3K27 crotonylation (H3K27Cro) located nearby to the transcription start site of many genes, including endocytosis-related genes. Interestingly, NEAT1 inhibition down-regulates H3K27Ac but up-regulates H3K27Cro through repression of acetyl-CoA generation. NEAT1 also mediates the binding between STAT3 and H3K27Ac but not H3K27Cro. Therefore, the decrease of H3K27Ac and/or the increase of H3K27Cro declines expression of multiple related genes. Collectively, this study first reveals the different roles of H3K27Ac and H3K27Cro in regulation of gene expression and provides the insight of the epigenetic regulatory mechanism of NEAT1 in gene expression and AD pathology.
Collapse
MESH Headings
- Acetyl Coenzyme A/metabolism
- Acetylation/drug effects
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/pharmacology
- Animals
- Caveolin 2/antagonists & inhibitors
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression/drug effects
- Histones/metabolism
- Mice
- Mice, Transgenic
- Neuroglia/cytology
- Neuroglia/metabolism
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- RNA Interference
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- STAT3 Transcription Factor/metabolism
- Transforming Growth Factor beta2/antagonists & inhibitors
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yiwan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Naihan Xu
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Shikuan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Songmao Wang
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yunhao Mao
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Yuanchang Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Bing Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ying Tan
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Weidong Xie
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China
| | - Burton B Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
| | - Yaou Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Key Laboratory in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- Open FIESTA Center, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Ries M, Sastre M. Mechanisms of Aβ Clearance and Degradation by Glial Cells. Front Aging Neurosci 2016; 8:160. [PMID: 27458370 PMCID: PMC4932097 DOI: 10.3389/fnagi.2016.00160] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022] Open
Abstract
Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field.
Collapse
Affiliation(s)
- Miriam Ries
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital London, UK
| | - Magdalena Sastre
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital London, UK
| |
Collapse
|
5
|
Kim HA, Park WJ, Jeong HS, Lee HE, Lee SH, Kwon NS, Baek KJ, Kim DS, Yun HY. Leucine-rich glioma inactivated 3 regulates adipogenesis through ADAM23. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:914-22. [PMID: 22405860 DOI: 10.1016/j.bbalip.2012.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 12/19/2022]
Abstract
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein and a member of LGI/epitempin family. We previously showed that LGI3 was highly expressed in brain and played regulatory roles in neuronal exocytosis and differentiation. Besides the nervous system, LGI3 was shown to be expressed in diverse tissues. In this study, we found that LGI3 and its receptor candidate ADAM23 were expressed in adipose tissues and 3T3-L1 cells. 3T3-L1 preadipocytes secreted a 60-kDa protein, a major secreted form of LGI3, which declined with adipocyte differentiation. LGI3 was also expressed in adipose tissue macrophages in the ob/ob mice and in macrophage cell line. The 60-kDa LGI3 protein was selectively increased in the ob/ob adipose tissues comparing with the lean mice. Pull-down experiments, coimmunoprecipitation and immunocytochemistry indicated that LGI3 associated with ADAM23 in adipose tissues and 3T3-L1 cells. Knockdown of LGI3 or ADAM23 by siRNA increased adipogenesis in 3T3-L1 cells. Treatment with LGI3 protein did not affect preadipocyte proliferation but attenuated adipogenesis and this effect was reversed by siRNA-mediated knockdown of ADAM23. Taken together, we propose that LGI3 may be a candidate adipokine that is perturbed in obesity and suppresses adipogenesis through its receptor, ADAM23.
Collapse
Affiliation(s)
- Hyun A Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, 84 Heukseok-ro, Seoul 156-861, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Park WJ, Lee SE, Kwon NS, Baek KJ, Kim DS, Yun HY. Leucine-rich glioma inactivated 3 associates with syntaxin 1. Neurosci Lett 2008; 444:240-4. [PMID: 18760330 DOI: 10.1016/j.neulet.2008.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
Abstract
Leucine-rich glioma inactivated 3 (LGI3) is a member of LGI/epitempin (EPTP) family. The biological function of LGI3 and its association with disease are not known. We previously reported that mouse LGI3 was highly expressed in brain in a developmentally and transcriptionally regulated manner. In this study, we identified syntaxin 1, a SNARE component in exocytosis, as a candidate functional target of LGI3. Western blot analysis of mouse brain extract with LGI3 antibodies detected multiple protein forms (75-, 60-, 35- and 25-kDa). Proteomic analysis, pull-down and coimmunoprecipitation experiments identified syntaxin 1 as an LGI3-associated protein. LGI3 colocalized with syntaxin 1 in processes of cortical neurons with punctate synaptic pattern and was enriched in synaptosomal fraction. Coimmunoprecipitation showed that LGI3-syntaxin 1 complex did not contain other SNARE components, SNAP25 and VAMP2. Recombinant LGI3 attenuated Ca(2+)-evoked glutamate release from digitonin-permeabilized synaptosomes and transfection of PC12 cells with LGI3 decreased K(+)-induced secretion of human growth hormone. Thus, LGI3 may play a regulatory role in neuronal exocytosis via its interaction with syntaxin 1.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Chung-Ang University, 221 Heuksuk-dong, Dongjak-koo, Seoul 156-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Okabayashi S, Kimura N. Immunohistochemical and biochemical analyses of LGI3 in monkey brain: LGI3 accumulates in aged monkey brains. Cell Mol Neurobiol 2007; 27:819-30. [PMID: 17786549 DOI: 10.1007/s10571-007-9205-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/13/2007] [Indexed: 01/03/2023]
Abstract
Leucine-rich glioma inactivated (LGI) 3 encodes a leucine-rich repeat protein. The precise function of LGI3, however, remains unknown. We have previously shown that amyloid-beta peptide (Abeta) upregulates LGI3 and that Abeta and LGI3 colocalize on plasma membranes of cultured rat astrocytes. In the present study, we performed immunohistochemical and biochemical analyses of LGI3 using various aged monkey brains. Immunohistochemistry showed that LGI3 was present in almost all neural cells and mainly localized at plasma membranes and nuclei. In aged monkey brains, we found that LGI3 accumulated on or near the plasma membranes of neurons, and colocalized with endocytosis-associated proteins and lipid raft markers. Double immunohistochemistry also showed that LGI3 colocalized with Abeta in astrocytes of aged brains. Moreover, Western blot analyses revealed that LGI3 may be cleaved in brain. Additionally, in aged monkeys LGI3 accumulated in microsomal and nuclear brain fractions.
Collapse
Affiliation(s)
- Sachi Okabayashi
- Laboratory of Disease Control, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1-1 Hachimandai, Tsukuba-shi, Ibaraki 305-0843, Japan
| | | |
Collapse
|