1
|
Lin SY, Chang YC, Tien YW, Kuo YH, Chang HF, Ou LC, Chen YP, Chang KH, Hsu YT, Huang YC, Yang CM, Law PY, Xi JH, Tao PL, Loh HH, Yeh TK, Zhuang H, Hsieh HP, Shih C, Chen CT, Yeh SH, Ueng SH. DBPR116, a Prodrug of BPRMU191, in Combination with Naltrexone as a Safer Opioid Analgesic Than Morphine via Peripheral Administration. J Med Chem 2024; 67:19777-19790. [PMID: 39473174 DOI: 10.1021/acs.jmedchem.4c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The development of opioid analgesics with reduced adverse effects is an unmet need. In a previous study, we discovered a unique combination of BPRMU191 and morphinan antagonists that produced potent antinociception with reduced adverse effects after central administration (intrathecal or intracerebroventricular). BPRMU191/naltrexone exhibits notable in vitro and in vivo pharmacological properties. However, the poor blood-brain barrier penetrative ability of BPRMU191 restricts its clinical application. In this study, we utilized a prodrug strategy to deliver sufficient brain concentrations of BPRMU191 and selected compound 2 (DBPR116) with the best physicochemical and pharmacological properties among other in vivo active prodrugs. The in vivo pharmacological studies of compound 2/naltrexone, including thermally stimulated pain, cancer pain, constipation, sedation, psychological dependence, heart rate, and respiratory frequency measurements, demonstrated that it was a safer opioid analgesic than morphine in pain control.
Collapse
Affiliation(s)
- Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Yung-Chiao Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Ya-Wen Tien
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Yu-Hsien Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Ya-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Kuei-Hua Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Ying-Ting Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Chen-Ming Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, Minnesota 55455, United States
| | - Jing-Hua Xi
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, Minnesota 55455, United States
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Hong Zhuang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan R. O. C
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan R. O. C
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan R. O. C
| |
Collapse
|
2
|
Baamonde A, Menéndez L. Experiences and reflections about behavioral pain assays in laboratory animals. J Neurosci Methods 2023; 386:109783. [PMID: 36610617 DOI: 10.1016/j.jneumeth.2023.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Pharmacological assays based on the measurement of nociceptive responses in laboratory animals are a fundamental tool to assess analgesic strategies. During our experience with this type of experiments, we have been repeatedly challenged by different concerns related to their interpretation or relevance. Although these subjects are frequently discussed in our lab, they do not usually find a place in research articles with original data, in which the focus on results seems mandatory. In the present manuscript we try to discuss as central issues some of these aspects that often cross transversally our research. We have gathered them in five topics inspired by the results obtained in our laboratory. The two initial sections are devoted to the influence of the behavioral method used to assess nociception on the results achieved, as well as to the possibility that data may be more easily accepted when obtained with standard methods than with alternative ones. The third topic is related to the difficulties encountered when working with a molecule that may evoke dual effects, acting as pronociceptive or antinociceptive depending on the dose. The fourth point deals with the situation in which a particular hyperalgesic reaction is related to several molecules but the single inhibition of only one of them can completely prevent it. Finally, the last issue is addressed to comment the impact in the progress of pain research of experiments performed in animal models of pathological settings.
Collapse
Affiliation(s)
- Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo, Asturias, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo, Asturias, Spain.
| |
Collapse
|
3
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res 2022; 18:996-1003. [PMID: 36254980 PMCID: PMC9827765 DOI: 10.4103/1673-5374.355748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Correspondence to: Wei Mei, ; Ya-Qun Zhou, .
| | - Wei Mei
- Correspondence to: Wei Mei, ; Ya-Qun Zhou, .
| |
Collapse
|
4
|
Baamonde A, Menéndez L, González-Rodríguez S, Lastra A, Seitz V, Stein C, Machelska H. A low pKa ligand inhibits cancer-associated pain in mice by activating peripheral mu-opioid receptors. Sci Rep 2020; 10:18599. [PMID: 33122720 PMCID: PMC7596718 DOI: 10.1038/s41598-020-75509-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
The newly designed fentanyl derivative [( ±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide] (NFEPP) was recently shown to produce analgesia selectively via peripheral mu-opioid receptors (MOR) at acidic pH in rat inflamed tissues. Here, we examined the pH-dependency of NFEPP binding to brain MOR and its effects on bone cancer-induced pain in mice. The IC50 of NFEPP to displace bound [3H]-DAMGO was significantly higher compared to fentanyl at pH 7.4, but no differences were observed at pH 5.5 or 6.5. Intravenous NFEPP (30-100 nmol/kg) or fentanyl (17-30 nmol/kg) inhibited heat hyperalgesia in mice inoculated with B16-F10 melanoma cells. The peripherally-restricted opioid receptor antagonist naloxone-methiodide reversed the effect of NFEPP (100 nmol/kg), but not of fentanyl (30 nmol/kg). The antihyperalgesic effect of NFEPP was abolished by a selective MOR- (cyprodime), but not delta- (naltrindole) or kappa- (nor-binaltorphimine) receptor antagonists. Ten-fold higher doses of NFEPP than fentanyl induced maximal antinociception in mice without tumors, which was reversed by the non-restricted antagonist naloxone, but not by naloxone-methiodide. NFEPP also reduced heat hyperalgesia produced by fibrosarcoma- (NCTC 2472) or prostate cancer-derived (RM1) cells. These data demonstrate the increased affinity of NFEPP for murine MOR at low pH, and its ability to inhibit bone cancer-induced hyperalgesia through peripheral MOR. In mice, central opioid receptors may be activated by ten-fold higher doses of NFEPP.
Collapse
Affiliation(s)
- Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Viola Seitz
- Department of Experimental Anesthesiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14474, Potsdam, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
5
|
Chao PK, Chang HF, Chang WT, Yeh TK, Ou LC, Chuang JY, Tsu-An Hsu J, Tao PL, Loh HH, Shih C, Ueng SH, Yeh SH. BPR1M97, a dual mu opioid receptor/nociceptin-orphanin FQ peptide receptor agonist, produces potent antinociceptive effects with safer properties than morphine. Neuropharmacology 2019; 166:107678. [PMID: 31278929 DOI: 10.1016/j.neuropharm.2019.107678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 01/14/2023]
Abstract
There is unmet need to design an analgesic with fewer side effects for severe pain management. Although traditional opioids are the most effective painkillers, they are accompanied by severe adverse responses, such as respiratory depression, constipation symptoms, tolerance, withdrawal, and addiction. We indicated BPR1M97 as a dual mu opioid receptor (MOP)/nociceptin-orphanin FQ peptide (NOP) receptor full agonist and investigated the pharmacology of BPR1M97 in multiple animal models. In vitro studies on BPR1M97 were assessed using cyclic-adenosine monophosphate production, β-arrestin, internalization, and membrane potential assays. In vivo studies were characterized using the tail-flick, tail-clip, lung functional, heart functional, acetone drop, von Frey hair, charcoal meal, glass bead, locomotor activity, conditioned place preference (CPP) and naloxone precipitation tests. BPR1M97 elicited full agonist properties for all cell-based assays tested in MOP-expressing cells. However, it acted as a G protein-biased agonist for NOP. BPR1M97 initiated faster antinociceptive effects at 10 min after subcutaneous injection and elicited better analgesia in cancer-induced pain than morphine. Unlike morphine, BPR1M97 caused less respiratory, cardiovascular, and gastrointestinal dysfunction. In addition, BPR1M97 decreased global activity and induced less withdrawal jumping precipitated by naloxone. Thus, BPR1M97 could serve as a novel small molecule dual receptor agonist for antinociception with fewer side effects than morphine. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Wan-Ting Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - John Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Heath Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455-0217, USA
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; School of Pharmacy, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
6
|
Synergistic combinations of the dual enkephalinase inhibitor PL265 given orally with various analgesic compounds acting on different targets, in a murine model of cancer-induced bone pain. Scand J Pain 2016; 14:25-38. [PMID: 28850427 DOI: 10.1016/j.sjpain.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first line pharmacological treatment of cancer pain is morphine and surrogates but a significant pain relief and a reduction of the side-effects of these compounds makes it necessary to combine them with other drugs acting on different targets. The aim of this study was to measure the antinociceptive effect on cancer-induced bone pain resulting from the association of the endogenous opioids enkephalin and non-opioid analgesic drugs. For this purpose, PL265 a new orally active single dual inhibitor of the two degrading enkephalins enzymes, neprilysin (NEP) and aminopeptidase N (APN) was used. It strictly increased the levels of enkephalin at their sites of releases. The selected non-opioid compounds are: gabapentin, A-317491 (P2X3 receptor antagonist), ACEA (CB1 receptor antagonist), AM1241 (CB2 receptor antagonist), JWH-133 (CB2 receptor antagonist), URB937 (FAAH inhibitor), and NAV26 (Nav1.7 channel blocker). METHODS Experiments. Experiments were performed in 5-6 weeks old (26-33g weight) C57BL/6 mice. Cell culture and cell inoculation. B16-F10 melanoma cells were cultured and when preconfluent, treated and detached. Finally related cells were resuspended to obtain a concentration of 2×106 cells/100μL. Then 105 cells were injected into the right tibial medullar cavity. Control mice were treated by killed cells by freezing. Behavioural studies. Thermal withdrawal latencies were measured on a unilatered hot plate (UHP) maintained at 49±0.2°C. Mechanical threshold values were obtained by performing the von Frey test using the "up and down" method. To evaluate the nature (additive or synergistic) of the interactions between PL265 and different drugs, an isobolographic analysis following the method described by Tallarida was performed. RESULTS The results demonstrate the ability of PL265, a DENKI that prevents the degradation of endogenous ENKs, to counteract cancer-induced bone thermal hyperalgesia in mice, by exclusively stimulating peripheral opioid receptors as demonstrated by used of an opioid antagonist unable to enter the brain. The development of such DENKIs, endowed with druggable pharmacokinetic characteristics, such as good absorption by oral route, can be considered as an important step in the development of much needed novel antihyperalgesic drugs. Furthermore, all the tested combinations resulted in synergistic antihyperalgesic effects. As shown here, the greatest synergistic antinociceptive effect (doses could be lowered by 70%) was produced by the combination of PL265 with the P2X3 receptor antagonist (A-317491), cannabinoid CB1 receptor agonist (exogenous, ACEA and endogenous URB937-protected-AEA) and Nav1.7 blocker (NAV26) whose mechanism of action involves the direct activation of the enkephalinergic system. CONCLUSIONS These multi-target-based antinociceptive strategies using combinations of non-opioid drugs with dual inhibitors of enkephalin degrading enzymes may bring therapeutic advantages in terms of efficacy and safety by allowing the reduction of doses of one of the compounds or of both, which is of the utmost interest in the chronic treatment of cancer pain. IMPLICATIONS This article presents synergistic antinociceptive effect produced by the combination of PL265 with non-opioid analgesic drugs acting via unrelated mechanisms. These multi-target-based antinociceptive strategies may bring therapeutic advantages by allowing the reduction of doses, which is of great interest in the chronic treatment of cancer pain.
Collapse
|
7
|
Lesniak A, Bochynska-Czyz M, Sacharczuk M, Benhye S, Misicka A, Bujalska-Zadrozny M, Lipkowski AW. Biphalin preferentially recruits peripheral opioid receptors to facilitate analgesia in a mouse model of cancer pain - A comparison with morphine. Eur J Pharm Sci 2016; 89:39-49. [DOI: 10.1016/j.ejps.2016.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/30/2023]
|
8
|
Alexa T, Luca A, Dondas A, Bohotin CR. Preconditioning with cobalt chloride modifies pain perception in mice. Exp Ther Med 2015; 9:1465-1469. [PMID: 25780453 PMCID: PMC4353805 DOI: 10.3892/etm.2015.2235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cobalt chloride (CoCl2) modifies mitochondrial permeability and has a hypoxic-mimetic effect; thus, the compound induces tolerance to ischemia and increases resistance to a number of injury types. The aim of the present study was to investigate the effects of CoCl2 hypoxic preconditioning for three weeks on thermonociception, somatic and visceral inflammatory pain, locomotor activity and coordination in mice. A significant pronociceptive effect was observed in the hot plate and tail flick tests after one and two weeks of CoCl2 administration, respectively (P<0.001). Thermal hyperalgesia (Plantar test) was present in the first week, but recovered by the end of the experiment. Contrary to the hyperalgesic effect on thermonociception, CoCl2 hypoxic preconditioning decreased the time spent grooming the affected area in the second phase of the formalin test on the orofacial and paw models. The first phase of formalin-induced pain and the writhing test were not affected by CoCl2 preconditioning. Thus, the present study demonstrated that CoCl2 preconditioning has a dual effect on pain, and these effects should be taken into account along with the better-known neuro-, cardio- and renoprotective effects of CoCl2.
Collapse
Affiliation(s)
- Teodora Alexa
- Center for the Study and Therapy of Pain, 'Grigore T. Popa' University of Medicine and Pharmacy, Iaşi, Moldavia 70115, Romania
| | - Andrei Luca
- Center for the Study and Therapy of Pain, 'Grigore T. Popa' University of Medicine and Pharmacy, Iaşi, Moldavia 70115, Romania
| | - Andrei Dondas
- Center for the Study and Therapy of Pain, 'Grigore T. Popa' University of Medicine and Pharmacy, Iaşi, Moldavia 70115, Romania
| | - Catalina Roxana Bohotin
- Center for the Study and Therapy of Pain, 'Grigore T. Popa' University of Medicine and Pharmacy, Iaşi, Moldavia 70115, Romania
| |
Collapse
|
9
|
Pevida M, Lastra A, Meana Á, Hidalgo A, Baamonde A, Menéndez L. The chemokine CCL5 induces CCR1-mediated hyperalgesia in mice inoculated with NCTC 2472 tumoral cells. Neuroscience 2013; 259:113-25. [PMID: 24316469 DOI: 10.1016/j.neuroscience.2013.11.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/20/2023]
Abstract
Although the expression of the chemokine receptor CCR1 has been demonstrated in several structures related to nociception, supporting the nociceptive role of chemokines able to activate it, the involvement of CCR1 in neoplastic pain has not been previously assessed. We have assayed the effects of a CCR1 antagonist, J113863, in two murine models of neoplastic hyperalgesia based on the intratibial injection of either NCTC 2472 fibrosarcoma cells, able to induce osteolytic bone injury, or B16-F10 melanoma cells, associated to mixed osteolytic/osteoblastic bone pathological features. The systemic administration of J113863 inhibited thermal and mechanical hyperalgesia but not mechanical allodynia in mice inoculated with NCTC 2472 cells. Moreover, in these mice, thermal hyperalgesia was counteracted following the peritumoral (10-30μg) but not spinal (3-5μg) administration of J113863. In contrast, hyperalgesia and allodynia measured in mice inoculated with B16-F10 cells remained unaffected after the administration of J113863. The inoculation of tumoral cells did not modify the levels of CCL3 at tumor or spinal cord. In contrast, although the concentration of CCL5 remained unmodified in mice inoculated with B16-F10 cells, increased levels of this chemokine were measured in tumor-bearing limbs, but not the spinal cord, of mice inoculated with NCTC 2472 cells. Increased levels of CCL5 were also found following the incubation of NCTC 2472, but not B16-F10, cells in the corresponding culture medium. The intraplantar injection of CCL5 (0.5ng) to naïve mice evoked thermal hyperalgesia prevented by the coadministration of J113863 or the CCR5 antagonist, d-Ala-peptide T-amide (DAPTA), demonstrating that CCL5 can induce thermal hyperalgesia in mice through the activation of CCR1 or CCR5. However, contrasting with the inhibitory effect evoked by J113863, the systemic administration of DAPTA did not prevent tumoral hyperalgesia. Finally, the peritumoral administration of an anti-CCL5 antibody completely inhibited thermal hyperalgesia evoked by the inoculation of NCTC 2472 cells.
Collapse
Affiliation(s)
- M Pevida
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias, Spain.
| | - A Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias, Spain.
| | - Á Meana
- Centro Comunitario de Sangre y Tejidos del Principado de Asturias, CIBER de Enfermedades Raras (CIBERER), U714, Oviedo, Asturias, Spain.
| | - A Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias, Spain.
| | - A Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias, Spain.
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
10
|
Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain 2013; 155:28-36. [PMID: 23999057 DOI: 10.1016/j.pain.2013.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
Cancer in bone is frequently a result of metastases from distant sites, particularly from the breast, lung, and prostate. Pain is a common and often severe pathological feature of cancers in bone, and is a significant impediment to the maintenance of quality of life of patients living with bone metastases. Cancer cell lines have been demonstrated to release significant amounts of the neurotransmitter and cell-signalling molecule l-glutamate via the system xC(-) cystine/glutamate antiporter. We have developed a novel mouse model of breast cancer bone metastases to investigate the impact of inhibiting cancer cell glutamate transporters on nociceptive behaviour. Immunodeficient mice were inoculated intrafemorally with the human breast adenocarcinoma cell line MDA-MB-231, then treated 14days later via mini-osmotic pumps inserted intraperitoneally with sulfasalazine, (S)-4-carboxyphenylglycine, or vehicle. Both sulfasalazine and (S)-4-carboxyphenylglycine attenuated in vitro cancer cell glutamate release in a dose-dependent manner via the system xC(-) transporter. Animals treated with sulfasalazine displayed reduced nociceptive behaviours and an extended time until the onset of behavioural evidence of pain. Animals treated with a lower dose of (S)-4-carboxyphenylglycine did not display this reduction in nociceptive behaviour. These results suggest that a reduction in glutamate secretion from cancers in bone with the system xC(-) inhibitor sulfasalazine may provide some benefit for treating the often severe and intractable pain associated with bone metastases.
Collapse
|
11
|
CCL2 released at tumoral level contributes to the hyperalgesia evoked by intratibial inoculation of NCTC 2472 but not B16-F10 cells in mice. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1053-61. [DOI: 10.1007/s00210-012-0787-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/18/2012] [Indexed: 01/01/2023]
|
12
|
Eaton MJ, Berrocal Y, Wolfe SQ, Widerström-Noga E. Review of the history and current status of cell-transplant approaches for the management of neuropathic pain. PAIN RESEARCH AND TREATMENT 2012; 2012:263972. [PMID: 22745903 PMCID: PMC3382629 DOI: 10.1155/2012/263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022]
Abstract
Treatment of sensory neuropathies, whether inherited or caused by trauma, the progress of diabetes, or other disease states, are among the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord would be the logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the transplant of cells or a cell line to treat human disease. The history of the research and development of useful cell-transplant-based approaches offers an understanding of the advantages and problems associated with these technologies, but as an adjuvant or replacement for current pharmacological treatments, cell therapy is a likely near future clinical tool for improved health care.
Collapse
Affiliation(s)
- Mary J. Eaton
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
| | - Yerko Berrocal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Stacey Q. Wolfe
- Department of Neurosurgery, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, HI 96859, USA
| | - Eva Widerström-Noga
- Miami VA Health System Center, D806C, 1201 NW 16th Street, Miami, FL 33125, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine at the University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
González-Rodríguez S, Llames S, Hidalgo A, Baamonde A, Menéndez L. Potentiation of acute morphine-induced analgesia measured by a thermal test in bone cancer-bearing mice. Fundam Clin Pharmacol 2011; 26:363-72. [DOI: 10.1111/j.1472-8206.2010.00921.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Curto-Reyes V, Llames S, Hidalgo A, Menéndez L, Baamonde A. Spinal and peripheral analgesic effects of the CB2 cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. Br J Pharmacol 2010; 160:561-73. [PMID: 20233215 DOI: 10.1111/j.1476-5381.2009.00629.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The activation of CB(2) receptors induces analgesia in experimental models of chronic pain. The present experiments were designed to study whether the activation of peripheral or spinal CB(2) receptors relieves thermal hyperalgesia and mechanical allodynia in two models of bone cancer pain. EXPERIMENTAL APPROACH NCTC 2472 osteosarcoma or B16-F10 melanoma cells were intratibially inoculated to C3H/He and C57BL/6 mice. Thermal hyperalgesia was assessed by the unilateral hot plate test and mechanical allodynia by the von Frey test. AM1241 (CB(2) receptor agonist), AM251 (CB(1) receptor antagonist), SR144528 (CB(2) receptor antagonist) and naloxone were used. CB(2) receptor expression was measured by Western blot. KEY RESULTS AM1241 (0.3-10 mg.kg(-1)) abolished thermal hyperalgesia and mechanical allodynia in both tumour models. The antihyperalgesic effect was antagonized by subcutaneous, intrathecal or peri-tumour administration of SR144528. In contrast, the antiallodynic effect was inhibited by systemic or intrathecal, but not peri-tumour, injection of SR144528. The effects of AM1241 were unchanged by AM251 but were prevented by naloxone. No change in CB(2) receptor expression was found in spinal cord or dorsal root ganglia. CONCLUSIONS AND IMPLICATIONS Spinal CB(2) receptors are involved in the antiallodynic effect induced by AM1241 in two neoplastic models while peripheral and spinal receptors participate in the antihyperalgesic effects. Both effects were mediated by endogenous opiates. The use of drugs that activate CB(2) receptors could be a useful strategy to counteract bone cancer-induced pain symptoms.
Collapse
Affiliation(s)
- V Curto-Reyes
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
15
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:46-51. [DOI: 10.1097/spc.0b013e3283372479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
González-Rodríguez S, Hidalgo A, Baamonde A, Menéndez L. Spinal and peripheral mechanisms involved in the enhancement of morphine analgesia in acutely inflamed mice. Cell Mol Neurobiol 2010; 30:113-21. [PMID: 19655242 DOI: 10.1007/s10571-009-9436-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The analgesic effect induced by opiates is often potentiated during experimental inflammatory processes. We describe here that lower doses of systemic morphine are necessary to increase thermal withdrawal latencies measured in both hind paws of mice acutely inflamed with carrageenan than in healthy ones. This bilateral potentiation seems mediated through spinal opioid receptors since it is inhibited by the intrathecal (i.t.), but not intraplantar (i.pl.) administration of the opioid receptor antagonist naloxone-methiodide, and also appears when morphine is i.t. administered. Furthermore, the i.pl. administration of the nitric oxide (NO) synthase inhibitor, L-NMMA, or the K (ATP) (+) -channel blocker, glibenclamide, to carrageenan-inflamed mice inhibits the enhanced effect of systemic morphine in the paw that receives the injection of the drug, without affecting the potentiation observed in the contralateral one. The i.pl. administration of L-NMMA also partially antagonised the analgesic effect induced by i.t. morphine in inflamed mice. Finally, the increased analgesic effect evoked by the i.pl. administration of the NO donor SIN-1 either in the inflamed or in the contralateral paw of carrageenan-inflamed mice suggests that enhanced responsiveness to the peripheral analgesic effect of NO may be also underlying the bilateral potentiation of morphine-induced analgesia in acutely inflamed mice.
Collapse
Affiliation(s)
- Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | | | | | | |
Collapse
|
17
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|