1
|
Rubio S, Somers V, Fraussen J. The macrophage migration inhibitory factor/CD74 axis in traumatic spinal cord injury: lessons learned from animal and human studies. Eur J Immunol 2024; 54:e2451333. [PMID: 39491805 DOI: 10.1002/eji.202451333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Traumatic spinal cord injury (SCI) is a severe condition leading to long-term impairment of motor, sensory, and autonomic functions. Following the initial injury, a series of additional events is initiated further damaging the spinal cord. During this secondary injury phase, both an inflammatory and immune modulatory response are triggered that have damaging and anti-inflammatory properties, respectively. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) and its receptor CD74 have been extensively studied in traumatic SCI. MIF expression is increased in spinal cord tissue after experimental SCI, mainly in astrocytes and microglia, as well as in the plasma of SCI patients. Functionally, MIF and CD74 were shown to regulate astrocyte viability, proliferation and cholesterol metabolism, microglia migration, and neuronal viability. Moreover, inhibition of the MIF/CD74 axis improved the functional recovery of SCI animals. We provide a detailed overview of studies analyzing the role of MIF and CD74 in traumatic SCI. We describe results from animal studies, using rat and mouse models for SCI, and human studies. Furthermore, we propose a new path for investigation, focused on B cells, that might lead to a better understanding of how MIF and CD74 contribute to the secondary injury cascade following traumatic SCI.
Collapse
Affiliation(s)
- Serina Rubio
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| | - Veerle Somers
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| | - Judith Fraussen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| |
Collapse
|
2
|
Zylberberg B, Poodts M, Roncoroni J, Coronel MF, Mazzone GL. Resveratrol evokes neuroprotective effects and improves foot stance following kainate-induced excitotoxic damage to the mouse spinal cord. Neuropharmacology 2024; 250:109906. [PMID: 38494123 DOI: 10.1016/j.neuropharm.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Excitotoxicity, characterized by over-activation of glutamate receptors, is a major contributor to spinal cord injury (SCI) pathophysiology, resulting in neuronal death and loss of locomotor function. In our previous in vitro studies, we showed that excitotoxicity induced by the glutamate analogue kainate (KA) leads to a significant reduction in the number of neurons, providing a model for SCI. Our current objective was to assess the neuroprotective role of resveratrol (RESV), a natural polyphenol, following KA-induced SCI. In vivo excitotoxicity was induced by intraspinal injection of KA immediately followed by RESV administration to Balb/C adult male mice. In neonatal mouse spinal cord preparations, excitotoxicity was transiently induced by bath-applied KA, either with or without RESV. KA administration resulted in a significant deterioration in hindlimb motor coordination and balance during locomotion, which was partially reverted by RESV. Additionally, RESV preserved neurons in both dorsal and ventral regions. Sirtuin 2 (SIRT2) immunoreactive signal was increased by RESV, while the selective SIRT1 inhibitor 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (EX-527) attenuated RESV neuroprotective effects. These findings suggest that RESV attenuation of excitotoxic-induced neuronal loss and locomotor deficits is mediated, at least in part, through the activation of SIRT1, potentially involving SIRT2 as well. Indeed, our results highlight the potential use of RESV to enhance neuroprotective strategies for SCI.
Collapse
Affiliation(s)
- Benjamín Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Martina Poodts
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Julieta Roncoroni
- Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - M Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2024:S2090-1232(24)00174-7. [PMID: 38704090 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
4
|
Kumar V, Haldar S, Ghosh S, Saini S, Dhankhar P, Roy P. Pterostilbene-Isothiocyanate Inhibits Proliferation of Human MG-63 Osteosarcoma Cells via Abrogating β-Catenin/TCF-4 Interaction-A Mechanistic Insight. ACS OMEGA 2023; 8:43474-43489. [PMID: 38027335 PMCID: PMC10666272 DOI: 10.1021/acsomega.3c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Osteosarcoma, a highly metastasizing bone neoplasm, is a leading cause of death and disability in children and adolescents worldwide. Osteosarcoma is only suboptimally responsive to surgery and radio- and chemotherapy, that too with adverse side effects. Hence, there is a necessary need for safer alternative therapeutic approaches. This study evaluated the anticancer effects of the semi-synthetic compound, pterostilbene-isothiocyanate (PTER-ITC), on human osteosarcoma MG-63 cells through cytotoxicity, wound-healing, and transwell-migration assays. Results showed that PTER-ITC specifically inhibited the survival, proliferation, and migration of osteosarcoma cells. PTER-ITC induced apoptosis in MG-63 cells by disrupting mitochondrial membrane potential, as evident from the outcomes of different cytological staining. The antimetastatic potential of PTER-ITC was evaluated through immunostaining, RT-qPCR, and immunoblotting. In silico (molecular docking and dynamic simulation) and, subsequently, biochemical [co-immunoprecipitation (Co-IP) and luciferase reporter] assays deciphered the underlying mode-of-action of this compound. PTER-ITC increased E-cadherin and reduced N-cadherin levels, thereby facilitating the reversal of epithelial-mesenchymal transition (EMT). It also modulated the expressions of proliferative cell nuclear antigen (PCNA), caspase-3, poly [ADP-ribose] polymerase (PARP-1) and matrix metalloproteinase-2/9 (MMPs-2/9) at transcriptional and translational levels. PTER-ITC interfered with the β-catenin/transcription factor-4 (TCF-4) interaction in silico by occupying the β-catenin binding site on TCF-4, confirmed by their reduced physical interactions (Co-IP assay). This inhibited transcriptional activation of TCF-4 by β-catenin (as shown by luciferase reporter assay). In conclusion, PTER-ITC exhibited potent anticancer effects in vitro against human osteosarcoma cells by abrogating the β-catenin/TCF-4 interaction. Altogether, this study suggests that PTER-ITC may be regarded as a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Swati Haldar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Poonam Dhankhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| |
Collapse
|
5
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Guha L, Singh N, Kumar H. Different Ways to Die: Cell Death Pathways and Their Association With Spinal Cord Injury. Neurospine 2023; 20:430-448. [PMID: 37401061 PMCID: PMC10323345 DOI: 10.14245/ns.2244976.488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 07/22/2023] Open
Abstract
Cell death is a systematic/nonsystematic process of cessation of normal morphology and functional properties of the cell to replace and recycle old cells with new also promoting inflammation in some cases. It is a complicated process comprising multiple pathways. Some are well-explored, and others have just begun to be. The research on appropriate control of cell death pathways after acute and chronic damage of neuronal cells is being widely researched today due to the lack of regeneration and recovering potential of a neuronal cell after sustaining damage and the inability to control the direction of neuronal growth. In the progression and onset of various neurological diseases, impairments in programmed cell death signaling processes, like necroptosis, apoptosis, ferroptosis, pyroptosis, and pathways directly or indirectly linked, like autophagy as in nonprogrammed necrosis, are observed. Spinal cord injury (SCI) involves the temporary or permanent disruption of motor activities due to the death of a neuronal and glial cell in the spinal cord accompanied by axonal degeneration. Recent years have seen a significant increase in research on the intricate biochemical interactions that occur after a SCI. Different cell death pathways may significantly impact the subsequent damage processes that lead to the eventual neurological deficiency after an injury to the spinal cord. A better knowledge of the molecular basis of the involved cell death pathways might help enhance neuronal and glial survival and neurological deficits, promoting a curative path for SCI.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Ren J, Gosgnach S. Localization of Rhythm Generating Components of the Mammalian Locomotor Central Pattern Generator. Neuroscience 2023; 513:28-37. [PMID: 36702374 DOI: 10.1016/j.neuroscience.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Locomotor movements in mammals are generated by neural networks, situated in the spinal cord, known as central pattern generators (CPGs). Recently, significant strides have been made in the genetic identification of interneuronal components of the locomotor CPG and their specific function. Despite this progress, a population of interneurons that is required for locomotor rhythmogenesis has yet to be identified, and it has been suggested that subsets of interneurons belonging to several genetically-defined populations may be involved. In this study, rather than hunt for rhythmogenic neurons, we take a different approach and attempt to identify the specific region of the spinal cord in which they are located. Focal application of 5-hydroxytryptamine creatine sulfate complex (5-HT) and N-methyl-D-aspartate (NMDA) to the central canal of the rostral lumbar segments of newborn male and female mouse spinal cords quickly generates a robust pattern of fictive locomotion, while inhibition or ablation of neurons in this region disrupts the locomotor rhythm in both rostral and caudal lumbar segments. When applied to the central canal at caudal lumbar levels a higher volume of 5-HT and NMDA are required to elicit fictive locomotion, while inhibition of neurons surrounding the central canal at caudal levels again interrupts rhythmic activity at local segmental levels with minimal effects rostrally. The results of this study indicate that interneurons in the most medial laminae of the neonatal mouse spinal cord are both necessary and sufficient for the generation of locomotor activity, and suggests that this is the region where the rhythm generating core of the locomotor CPG resides.
Collapse
Affiliation(s)
- Jun Ren
- University of Alberta, Dept. of Physiology, 3-020M Katz Building, Edmonton, AL T6G 2E1, Canada
| | - Simon Gosgnach
- University of Alberta, Dept. of Physiology, 3-020M Katz Building, Edmonton, AL T6G 2E1, Canada.
| |
Collapse
|
8
|
Liu FS, Jiang C, Li Z, Wang XB, Li J, Wang B, Lv GH, Liu FB. Ca 2+ Regulates Autophagy Through CaMKKβ/AMPK/mTOR Signaling Pathway in Mechanical Spinal cord Injury: An in vitro Study. Neurochem Res 2023; 48:447-457. [PMID: 36315370 DOI: 10.1007/s11064-022-03768-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI), resulting in damage of the normal structure and function of the spinal cord, would do great harm to patients, physically and psychologically. The mechanism of SCI is very complex. At present, lots of studies have reported that autophagy was involved in the secondary injury process of SCI, and several researchers also found that calcium ions (Ca2+) played an important role in SCI by regulating necrosis, autophagy, or apoptosis. However, to our best of knowledge, no studies have linked the spinal cord mechanical injury, intracellular Ca2+, and autophagy in series. In this study, we have established an in vitro model of SCI using neural cells from fetal rats to explore the relationship among them, and found that mechanical injury could promote the intracellular Ca2+ concentration, and the increased Ca2+ level activated autophagy through the CaMKKβ/AMPK/mTOR pathway. Additionally, we found that apoptosis was also involved in this pathway. Thus, our study provides new insights into the specific mechanisms of SCI and may open up new avenues for the treatment of SCI.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Chang Jiang
- Zhongshan Hospital Affiliated to Fudan University, 200032, Shanghai, China
| | - Zheng Li
- The First Affiliated Hospital of University of Science and Technology of China, 230001, Anhui, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China. .,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, 411001, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wang X, Zhang W, Ge P, Yu M, Meng H. Parthanatos participates in glutamate-mediated HT22 cell injury and hippocampal neuronal death in kainic acid-induced status epilepticus rats. CNS Neurosci Ther 2022; 28:2032-2043. [PMID: 35909335 PMCID: PMC9627358 DOI: 10.1111/cns.13934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Epileptic seizures or status epilepticus (SE) can cause hippocampal neuronal death, which has detrimental effects. Parthanatos, a new form of programmed cell death, is characterized by hyperactivation of poly (ADP-ribose) polymerase-1 (PARP-1), excessive synthesis of poly ADP-ribose polymer, mitochondrial depolarization, and nuclear translocation of apoptosis-inducing factor, observed in various neurodegenerative disorders but rarely reported in epilepsy. We aimed to investigate whether parthanatos participates in the mechanism of seizure-induced hippocampal neuronal death. METHODS Glutamate-mediated excitotoxicity cell model was used to study the mechanism of seizure-induced cell injury. Injection of kainic acid into the amygdala was used to establish the epileptic rat model. Corresponding biochemical tests were carried out on hippocampal tissues and HT22 cells following indicated treatments. RESULTS In vitro, glutamate time-dependently induced HT22 cell death, accompanied by parthanatos-related biochemical events. Pretreatment with PJ34 (PARP-1 inhibitor) or small interfering RNA-mediated PARP-1 knockdown effectively protected HT22 cells against glutamate-induced toxic effects and attenuated parthanatos-related biochemical events. Application of the antioxidant N-acetylcysteine (NAC) rescued HT22 cell death and reversed parthanatos-related biochemical events. In vivo, PJ34 and NAC afforded protection against SE-induced hippocampal neuronal damage and inhibited parthanatos-related biochemical events. CONCLUSION Parthanatos participates in glutamate-induced HT22 cell injury and hippocampal neuronal damage in rats following epileptic seizures. ROS might be the initiating factor during parthanatos.
Collapse
Affiliation(s)
- Xue Wang
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunJilinPeople's Republic of China,Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Pengfei Ge
- Department of NeurologyFirst Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Miaomiao Yu
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Hongmei Meng
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| |
Collapse
|
10
|
Zhu S, Yang BS, Li SJ, Tong G, Tan JY, Wu GF, Li L, Chen GL, Chen Q, Lin LJ. Protein post-translational modifications after spinal cord injury. Neural Regen Res 2021; 16:1935-1943. [PMID: 33642363 PMCID: PMC8343325 DOI: 10.4103/1673-5374.308068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 11/04/2022] Open
Abstract
Deficits in intrinsic neuronal capacities in the spinal cord, a lack of growth support, and suppression of axonal outgrowth by inhibitory molecules mean that spinal cord injury almost always has devastating consequences. As such, one of the primary targets for the treatment of spinal cord injury is to develop strategies to antagonize extrinsic or intrinsic axonal growth-inhibitory factors or enhance the factors that support axonal growth. Among these factors, a series of individual protein level disorders have been identified during the generation of axons following spinal cord injury. Moreover, an increasing number of studies have indicated that post-translational modifications of these proteins have important implications for axonal growth. Some researchers have discovered a variety of post-translational modifications after spinal cord injury, such as tyrosination, acetylation, and phosphorylation. In this review, we reviewed the post-translational modifications for axonal growth, functional recovery, and neuropathic pain after spinal cord injury, a better understanding of which may elucidate the dynamic change of spinal cord injury-related molecules and facilitate the development of a new therapeutic strategy for spinal cord injury.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bing-Sheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Si-Jing Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ge Tong
- Department of Medical Ultrasonics, Guangdong Province Key Laboratory of Hepatology Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Ye Tan
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Feng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Li Chen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Li-Jun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Pizzolato C, Gunduz MA, Palipana D, Wu J, Grant G, Hall S, Dennison R, Zafonte RD, Lloyd DG, Teng YD. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions. Exp Neurol 2021; 339:113612. [DOI: 10.1016/j.expneurol.2021.113612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
12
|
Liakath-Ali K, Südhof TC. The Perils of Navigating Activity-Dependent Alternative Splicing of Neurexins. Front Mol Neurosci 2021; 14:659681. [PMID: 33767611 PMCID: PMC7985251 DOI: 10.3389/fnmol.2021.659681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Neurexins are presynaptic cell-adhesion molecules essential for synaptic function that are expressed in thousands of alternatively spliced isoforms. Recent studies suggested that alternative splicing at splice site 4 (SS4) of Nrxn1 is tightly regulated by an activity-dependent mechanism. Given that Nrxn1 alternative splicing at SS4 controls NMDA-receptor-mediated synaptic responses, activity-dependent SS4 alternative splicing would suggest a new synaptic plasticity mechanism. However, conflicting results confound the assessment of neurexin alternative splicing, prompting us to re-evaluate this issue. We find that in cortical cultures, membrane depolarization by elevated extracellular K+-concentrations produced an apparent shift in Nrxn1-SS4 alternative splicing by inducing neuronal but not astroglial cell death, resulting in persistent astroglial Nrxn1-SS4+ expression and decreased neuronal Nrxn1-SS4- expression. in vivo, systemic kainate-induced activation of neurons in the hippocampus produced no changes in Nrxn1-SS4 alternative splicing. Moreover, focal kainate injections into the mouse cerebellum induced small changes in Nrxn1-SS4 alternative splicing that, however, were associated with large decreases in Nrxn1 expression and widespread DNA damage. Our results suggest that although Nrxn1-SS4 alternative splicing may represent a mechanism of activity-dependent synaptic plasticity, common procedures for testing this hypothesis are prone to artifacts, and more sophisticated approaches will be necessary to test this important question.
Collapse
Affiliation(s)
- Kif Liakath-Ali
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Thomas C. Südhof
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Wang X, Ge P. Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 2020; 449:241-250. [DOI: 10.1016/j.neuroscience.2020.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
|
14
|
Nishida F, Zappa Villar MF, Zanuzzi CN, Sisti MS, Camiña AE, Reggiani PC, Portiansky EL. Intracerebroventricular Delivery of Human Umbilical Cord Mesenchymal Stem Cells as a Promising Therapy for Repairing the Spinal Cord Injury Induced by Kainic Acid. Stem Cell Rev Rep 2020; 16:167-180. [PMID: 31760626 DOI: 10.1007/s12015-019-09934-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a common pathological condition that leads to permanent or temporal loss of motor and autonomic functions. Kainic acid (KA), an agonist of kainate receptors, a type of ionotropic glutamate receptor, is widely used to induce experimental neurodegeneration models of CNS. Mesenchymal Stem Cells (MSC) therapy applied at the injured nervous tissue have emerged as a promising therapeutic treatment. Here we used a validated SCI experimental model in which an intraparenchymal injection of KA into the C5 segment of rat spinal cord induced an excitotoxic lesion. Three days later, experimental animals were treated with an intracerebroventricular injection of human umbilical cord (hUC) MSC whereas control group only received saline solution. Sensory and motor skills as well as neuronal and glial reaction of both groups were recorded. Differences in motor behavior, neuronal counting and glial responses were observed between hUC-MSC-treated and untreated rats. According to the obtained results, we suggest that hUC-MSC therapy delivered into the fourth ventricle using the intracerebroventricular via can exert a neuroprotective or neurorestorative effect on KA-injected animals.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - María F Zappa Villar
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina.,Department of Histology and of Embryology B, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina. .,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina. .,Department of Histology and Embryology, School of Veterinary Sciences, UNLP, La Plata, Buenos Aires, Argentina.
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina
| | - Paula C Reggiani
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina.,Department of Histology and of Embryology B, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Yang S, Chen J, Tan T, Wang N, Huang Y, Wang Y, Yuan X, Zhang P, Luo J, Luo X. Evodiamine Exerts Anticancer Effects Against 143B and MG63 Cells Through the Wnt/β-Catenin Signaling Pathway. Cancer Manag Res 2020; 12:2875-2888. [PMID: 32425601 PMCID: PMC7196244 DOI: 10.2147/cmar.s238093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone neoplasm and is associated with abysmal prognosis. There are limitations of current treatment methods. Therefore, developing new agents to treat osteosarcoma is exceptionally urgent. Aim This study aimed to evaluate the anticancer effects of evodiamine (EVO) on osteosarcoma cells and, meanwhile, to investigate the underlying mechanisms involved. Materials and Methods The effect of EVO on the proliferation of osteosarcoma was detected by MTT assay, crystal violet assay and colony formation assay. The effects of EVO on the migration and invasion of osteosarcoma were detected by wound-healing assay and transwell assay. The effect of EVO on apoptosis of osteosarcoma was measured by Hoechst 33258 staining and cell cycle assay. The protein expression levels were detected by Western blotting assay. The activity of Wnt/β-Catenin signaling pathway was detected by luciferase reporter assay and Western blotting assay. Results According to MTT, crystal violet and colony formation assay results, EVO significantly inhibited the cell proliferation in a dose-dependent manner. Hoechst 33258 staining assay revealed that EVO induced cell apoptosis in a concentration-dependent manner. Moreover, EVO inhibited the migration and invasion of the osteosarcoma cells. Mechanistic studies revealed that EVO suppresses metastatic through suppressing epithelial–mesenchymal transition (EMT) as indicated by elevating the expression of epithelial marker E‐cadherin and reducing the expression of mesenchymal markers N‐cadherin and vimentin, as well as EMT transcription factors Snail and MMPs. Subsequently, EVO induced cell cycle arrest at the G2/M phase that correlated with reduced levels of cyclin D1 protein, while the apoptotic effects of EVO were associated with the upregulation of Bax and Bad and a decrease in Bcl-2 protein levels. Furthermore, EVO exerted the anticancer effects by suppressing Wnt/β-catenin signal pathway in osteosarcoma cells. Conclusion In summary, EVO exhibited potent anticancer effects against human osteosarcoma cells and promoted apoptosis through suppressing Wnt/β-catenin signaling pathway. These results indicated that EVO may be regarded as a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Shengdong Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Tao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Nan Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuping Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaohui Yuan
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ping Zhang
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jinyong Luo
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
16
|
Lu Y, Zhang P, Zhang Q, Yang C, Qian Y, Suo J, Tao X, Zhu J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J Pharmacol Exp Ther 2020; 373:453-462. [DOI: 10.1124/jpet.120.265082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
|
17
|
Yang D, Shu T, Zhao H, Sun Y, Xu W, Tu G. Knockdown of macrophage migration inhibitory factor (MIF), a novel target to protect neurons from parthanatos induced by simulated post-spinal cord injury oxidative stress. Biochem Biophys Res Commun 2020; 523:719-725. [PMID: 31948762 DOI: 10.1016/j.bbrc.2019.12.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 01/28/2023]
Abstract
Parthanatos is a form of regulated cell death (RCD) that is closely linked to DNA damage, which is a common consequence of oxidative stress due to central nervous trauma, such as spinal cord injury (SCI). The mechanism by which apoptosis-inducing factor (AIF) mediates DNA strand breaks in parthanatos was not clear until the discovery of the nuclease function of MIF. A previous study suggested that observed results may not be reliable if the oxidative stress induced in cells observed under experimental pathological conditions does not accurately replicate the specific pathologies being studied. According to an earlier direct measurement of extracellular oxidative stress in a rat SCI model, post-SCI oxidative stress was approximately the same as exposure to 150 μM H2O2. However, this concentration has been reported as sublethal oxidative stress in other cell types related to senescence, apoptosis, and parthanatos. Using sublethal H2O2 concentrations to induce oxidative stress is equivocal. Also, different cell types have diverse tolerances and responses to oxidative stress, and, therefore, exposure to H2O2. To avoid these limitations, the present study explored the mechanism of neuronal death under this simulated post-SCI oxidative stress and determined the effects of MIF knockdown in parthanatos associated with SCI. Immunofluorescence and flow cytometry were used to reveal typical characteristics of parthanatos that were blocked by PARP-1 inhibitors but not caspase inhibitors. In addition to classic features like PARP-1 and caspase-3 cleavage that were absent, we determined that parthanatos instead of apoptosis played a major role in the cell death caused by oxidative stress following SCI. Flow cytometry analysis of cells transfected by adenovirus with MIF-shRNA then exposed to H2O2 showed a significant decrease in cell death for MIF knockdown cells, even after AIF nuclear translocation. The comet assay also displayed significantly fewer DNA strand breaks after MIF knockdown. This is the first study has verified that MIF knockdown enables to protect neurons from parthanatos under a simulated in vivo oxidative stress following SCI. It suggests that MIF knockdown is a promising therapy to rescue neurons suffering from oxidative stress-induced SCI pathology.
Collapse
Affiliation(s)
- Dongfang Yang
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| | - Tingting Shu
- Dalian Medical University, Lvshunkou District, Dalian City, Liaoning Province, PR China.
| | - Haosen Zhao
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| | - Yang Sun
- Department of Hand and Foot Surgery, Dalian Municipal Central Hospital, Shahekou District, Dalian City, Liaoning Province, PR China.
| | - Weibing Xu
- Department of Spine Surgery, Dalian Municipal Central Hospital, Shahekou District, Dalian City, Liaoning Province, PR China.
| | - Guanjun Tu
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
18
|
Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019; 13:248. [PMID: 31244609 PMCID: PMC6563678 DOI: 10.3389/fncel.2019.00248] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the treatment of spinal cord injury (SCI). Advances in post-trauma management and intensive rehabilitation have significantly improved the prognosis of SCI and converted what was once an “ailment not to be treated” into a survivable injury, but the cold hard fact is that we still do not have a validated method to improve the paralysis of SCI. The irreversible functional impairment of the injured spinal cord is caused by the disruption of neuronal transduction across the injury lesion, which is brought about by demyelination, axonal degeneration, and loss of synapses. Furthermore, refractory substrates generated in the injured spinal cord inhibit spontaneous recovery. The discovery of the regenerative capability of central nervous system neurons in the proper environment and the verification of neural stem cells in the spinal cord once incited hope that a cure for SCI was on the horizon. That hope was gradually replaced with mounting frustration when neuroprotective drugs, cell transplantation, and strategies to enhance remyelination, axonal regeneration, and neuronal plasticity demonstrated significant improvement in animal models of SCI but did not translate into a cure in human patients. However, recent advances in SCI research have greatly increased our understanding of the fundamental processes underlying SCI and fostered increasing optimism that these multiple treatment strategies are finally coming together to bring about a new era in which we will be able to propose encouraging therapies that will lead to appreciable improvements in SCI patients. In this review, we outline the pathophysiology of SCI that makes the spinal cord refractory to regeneration and discuss the research that has been done with cell replacement and biomaterial implantation strategies, both by itself and as a combined treatment. We will focus on the capacity of these strategies to facilitate the regeneration of neural connectivity necessary to achieve meaningful functional recovery after SCI.
Collapse
Affiliation(s)
- Hiroyuki Katoh
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery - Surgical Sciences, School of Medicine, Tokai University, Tokyo, Japan
| | - Kazuya Yokota
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Spine Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
19
|
Mazzone GL, Nistri A. Modulation of extrasynaptic GABAergic receptor activity influences glutamate release and neuronal survival following excitotoxic damage to mouse spinal cord neurons. Neurochem Int 2019; 128:175-185. [PMID: 31051211 DOI: 10.1016/j.neuint.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Excitotoxic levels of released glutamate trigger a cascade of deleterious cellular events leading to delayed neuronal death. This phenomenon implies extensive dysregulation in the balance between network excitation and inhibition. Our hypothesis was that enhancing network inhibition should prevent excitotoxicity and provide neuroprotection. To test this notion, we used mouse organotypic spinal slice cultures and explored if excitotoxicity caused by the potent glutamate analogue kainate was blocked by pharmacological increase in GABAA receptor activity. To this end we monitored (with a biosensor) real-time glutamate release following 1 h kainate application and quantified neuronal survival 24 h later. Glutamate release evoked by kainate was strongly decreased by the allosteric GABAA modulator midazolam (10 nM) or the GABA agonist THIP (10 μM), leading to neuroprotection. On the contrary, much higher glutamate release was induced by the GABA antagonist bicuculline (20 μM) that inhibits synaptic and extrasynaptic GABAA receptors. Gabazine (20 μM), an antagonist of synaptic GABAA receptors, had no effect on glutamate release or neuroprotection. No effect was observed with the glycine antagonist strychnine or the glycine agonist L-alanine. These findings indicate that enhancement of GABA receptor activity was an effective tool to counteract excitotoxic death in spinal networks. In view of the potent activity by THIP, preferentially acting on extrasynaptic GABAA receptors, the present data imply a significant role for extrasynaptic GABAA receptors in sparing spinal cord neurons from injury.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
| | - Andrea Nistri
- Neuroscience Dept., International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
20
|
Rezk S, Althani A, Abd-elmaksoud A, Kassab M, Farag A, Lashen S, Cenciarelli C, Caceci T, Marei H. Effects of estrogen on Survival and Neuronal Differentiation of adult human olfactory bulb neural stem Cells Transplanted into Spinal Cord Injured Rats.. [DOI: 10.1101/571950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractIn the present study we developed an excitotoxic spinal cord injury (SCI) model using kainic acid (KA) to evaluate of the therapeutic potential of human olfactory bulb neural stem cells (h-OBNSCs) for spinal cord injury (SCI). In a previous study, we assessed the therapeutic potential of these cells for SCI; all transplanted animals showed successful engraftment. These cells differentiated predominantly as astrocytes, not motor neurons, so no improvement in motor functions was detected. In the current study we used estrogen as neuroprotective therapy before transplantation of OBNSCs to preserve some of endogenous neurons and enhance the differentiation of these cells towards neurons. The present work demonstrated that the h-GFP-OBNSCs were able to survive for more than eight weeks after sub-acute transplantation into injured spinal cord. Stereological quantification of OBNSCs showed approximately a 2.38-fold increase in the initial cell population transplanted. 40.91% of OBNSCs showed differentiation along the neuronal lineages, which was the predominant fate of these cells. 36.36% of the cells differentiated into mature astrocytes; meanwhile 22.73% of the cells differentiated into oligodendrocytes. Improvement in motor functions was also detected after cell transplantation.
Collapse
|
21
|
Petrovic A, Veeraraghavan P, Olivieri D, Nistri A, Jurcic N, Mladinic M. Loss of inhibitory synapses causes locomotor network dysfunction of the rat spinal cord during prolonged maintenance in vitro. Brain Res 2018; 1710:8-21. [PMID: 30578767 DOI: 10.1016/j.brainres.2018.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022]
Abstract
The isolated spinal cord of the neonatal rat is widely employed to clarify the basic mechanisms of network development or the early phase of degeneration after injury. Nevertheless, this preparation survives in Krebs solution up to 24 h only, making it desirable to explore approaches to extend its survival for longitudinal studies. The present report shows that culturing the spinal cord in oxygenated enriched Basal Medium Eagle (BME) provided excellent preservation of neurons (including motoneurons), glia and primary afferents (including dorsal root ganglia) for up to 72 h. Using DMEM medium was unsuccessful. Novel characteristics of spinal networks emerged with strong spontaneous activity, and deficit in fictive locomotion patterns with stereotypically slow cycles. Staining with markers for synaptic proteins synapsin 1 and synaptophysin showed thoroughly weaker signal after 3 days in vitro. Immunohistochemical staining of markers for glutamatergic and glycinergic neurons indicated significant reduction of the latter. Likewise, there was lower expression of the GABA-synthesizing enzyme GAD65. Thus, malfunction of locomotor networks appeared related to loss of inhibitory synapses. This phenomenon did not occur in analogous opossum preparations of the spinal cord kept in vitro. In conclusion, despite histological data suggesting that cultured spinal cords were undamaged (except for inhibitory biomarkers), electrophysiological data revealed important functional impairment. Thus, the downregulation of inhibitory synapses may account for the progressive hyperexcitability of rat spinal networks despite apparently normal histological appearance. Our observations may help to understand the basis of certain delayed effects of spinal injury like chronic pain and spasticity.
Collapse
Affiliation(s)
- Antonela Petrovic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Dario Olivieri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Nina Jurcic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
22
|
Zanuzzi CN, Nishida F, Sisti MS, Barbeito CG, Portiansky EL. Reactivity of microglia and astrocytes after an excitotoxic injury induced by kainic acid in the rat spinal cord. Tissue Cell 2018; 56:31-40. [PMID: 30736902 DOI: 10.1016/j.tice.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
After injury of the nervous system glial cells react according to the stimuli by modifying their morphology and function. Glia activation was reported in different kainic acid (KA)-induced neurodegeneration models. Here, we describe glial morphometric changes occurring in an excitotoxic KA-induced cervical spinal cord injury model. Concomitant degenerative and apoptotic processes are also reported. Male rats injected at the spinal cord C5 segment either with KA or saline were euthanized at post-injection (PI) days 1, 2, 3 or 7. Anti-IBA-1 and anti-GFAP antibodies were used to identify microglia and activated astrocytes, respectively, and to morphometrically characterized them. Fluoro-Jade B staining and TUNEL reaction were used to determine neuronal and glial degeneration and apoptosis. KA-injected group showed a significant increase in microglia number at the ipsilateral side by PI day 3. Different microglia reactive phenotypes were observed. Reactive microglia was still present by PI day 7. Astrocytes in KA-injected group showed a biphasic increase in number at PI days 1 and 3. Degenerative and apoptotic events were only observed in KA-injected animals, increasing mainly by PI day 1. Understanding the compromise of glia in different neurodegenerative processes may help to define possible common or specific therapeutic approaches directed towards neurorestorative strategies.
Collapse
Affiliation(s)
- Carolina Natalia Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - María Susana Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - Claudio Gustavo Barbeito
- Laboratory of Descriptive, Experimental and Comparative, Histology and Embriology, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - Enrique Leo Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| |
Collapse
|
23
|
Petrović A, Kaur J, Tomljanović I, Nistri A, Mladinic M. Pharmacological induction of Heat Shock Protein 70 by celastrol protects motoneurons from excitotoxicity in rat spinal cord in vitro. Eur J Neurosci 2018; 49:215-231. [PMID: 30362615 DOI: 10.1111/ejn.14218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
The secondary phase of spinal cord injury arising after the primary lesion largely extends the damage severity with delayed negative consequences for sensory-motor pathways. It is, therefore, important to find out if enhancing intrinsic mechanisms of neuroprotection can spare motoneurons that are very vulnerable cells. This issue was investigated with an in vitro model of rat spinal cord excitotoxicity monitored for up to 24 hr after the primary injury evoked by kainate. This study sought to pharmacologically boost the expression of heat shock proteins (HSP) to protect spinal motoneurons using celastrol to investigate if the rat spinal cord can upregulate HSP as neuroprotective mechanism. Despite its narrow range of drug safety in vitro, celastrol was not toxic to the rat spinal cord at 0.75 μM concentration and enhanced the expression of HSP70 by motoneurons. When celastrol was applied either before or after kainate, the number of dead motoneurons was significantly decreased and the nuclear localization of the cell death biomarker AIF strongly inhibited. Nevertheless, electrophysiological recording showed that protection of lumbar motor networks by celastrol was rather limited as reflex activity was impaired and fictive locomotion largely depressed, suggesting that functional deficit persisted, though the networks could express slow rhythmic oscillations. While our data do not exclude further recovery at later times beyond the experimental observations, the present results indicate that the upregulated expression of HSP in the aftermath of acute injury may be an interesting avenue for early protection of spinal motoneurons.
Collapse
Affiliation(s)
- Antonela Petrović
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.,Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Jaspreet Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
24
|
Kaur J, Rauti R, Nistri A. Nicotine‐mediated neuroprotection of rat spinal networks against excitotoxicity. Eur J Neurosci 2018; 47:1353-1374. [DOI: 10.1111/ejn.13950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jaspreet Kaur
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
- Jaspreet Kaur, Institute of Neurosciences of Timone (IMAPATH Team) ‐ CERIMEDUMR 7289Aix‐Marseille University 27, boulevard Jean Moulin Marseille Cedex 05 13385 France
| | - Rossana Rauti
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
| | - Andrea Nistri
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
| |
Collapse
|
25
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 711] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
26
|
Mechanism of Neuroprotection Against Experimental Spinal Cord Injury by Riluzole or Methylprednisolone. Neurochem Res 2017; 44:200-213. [PMID: 29290040 DOI: 10.1007/s11064-017-2459-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
Abstract
Any spinal cord injury carries the potential for persistent disability affecting motor, sensory and autonomic functions. To prevent this outcome, it is highly desirable to block a chain of deleterious reactions developing in the spinal areas immediately around the primary lesion. Thus, early timing of pharmacological neuroprotection should be one major strategy whose impact may be first studied with preclinical models. Using a simple in vitro model of the rat spinal cord it is possible to mimic pathological processes like excitotoxicity that damages neurons because of excessive glutamate receptor activation due to injury, or hypoxic/dysmetabolic insult that preferentially affects glia following vascular dysfunction. While ongoing research is exploring the various components of pathways leading to cell death, current treatment principally relies on the off-label use of riluzole (RLZ) or methylprednisolone sodium succinate (MPSS). The mechanism of action of these drugs is diverse as RLZ targets mainly neurons and MPSS targets glia. Even when applied after a transient excitotoxic stimulus, RLZ can provide effective prevention of secondary excitotoxic damage to premotoneurons, although not to motoneurons that remain very vulnerable. This observation indicates persistent inability to express locomotor activity despite pharmacological treatment conferring some histological protection. MPSS can protect glia from dysmetabolic insult, yet it remains poorly effective to prevent neuronal death. In summary, it appears that these pharmacological agents can produce delayed protection for certain cell types only, and that their combined administration does not provide additional benefit. The search should continue for better, mechanism-based neuroprotective agents.
Collapse
|
27
|
JNK1 and JNK3 play a significant role in both neuronal apoptosis and necrosis. Evaluation based on in vitro approach using tert-butylhydroperoxide induced oxidative stress in neuro-2A cells and perturbation through 3-aminobenzamide. Toxicol In Vitro 2017; 41:168-178. [DOI: 10.1016/j.tiv.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/05/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022]
|
28
|
Kaur J, Flores Gutiérrez J, Nistri A. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro. Eur J Neurosci 2016; 44:2418-2430. [PMID: 27468970 DOI: 10.1111/ejn.13353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Javier Flores Gutiérrez
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
29
|
Zhao N, Mao Y, Han G, Ju Q, Zhou L, Liu F, Xu Y, Zhao X. YM155, a survivin suppressant, triggers PARP-dependent cell death (parthanatos) and inhibits esophageal squamous-cell carcinoma xenografts in mice. Oncotarget 2016; 6:18445-59. [PMID: 26090615 PMCID: PMC4621902 DOI: 10.18632/oncotarget.4315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
Here we demonstrated that sepantronium bromide (YM155), a survivin suppressant, inhibited esophageal squamous-cell carcinoma (ESCC) growth in mice bearing human ESCC xenografts without affecting body weight. In cell culture, YM155 decreased survivin levels and caused PARP-1 activation, poly-ADP polymer formation, and AIF translocation from the cytosol to the nucleus. Genetic knockdown of PARP-1 or AIF abrogated YM155-induced parthanatos cell death. Furthermore, FOS, JUN and c-MYC gene transcription, which is stimulated by activated PARP-1, was increased following YM155 treatment. Our data demonstrate that YM155 did not trigger apoptosis, but induced parthanatos, a cell death dependent on PARP-1 hyper-activation, and support clinical development of YM155 in ESCC.
Collapse
Affiliation(s)
- Nan Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yousheng Mao
- Department of Thoracic Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaijing Han
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiang Ju
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Xu
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Sámano C, Kaur J, Nistri A. A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience 2015; 315:136-49. [PMID: 26701292 DOI: 10.1016/j.neuroscience.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. With this model, a differential lesion affecting mainly either neurons or glia can be produced via kainate-evoked excitotoxicity or application of a pathological medium (lacking O2 and glucose), respectively. MPSS (6-10 μM) applied for 24 h after 1-h pathological medium protected astrocytes and oligodendrocytes especially in the ventrolateral white matter. This effect was accompanied by the return of slow, alternating oscillations (elicited by NMDA and 5-hydroxytryptamine (5-HT)) reminiscent of a sluggish fictive locomotor pattern. MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1 mM; 1 h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - J Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - A Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory) Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
31
|
Shabbir A, Bianchetti E, Cargonja R, Petrovic A, Mladinic M, Pilipović K, Nistri A. Role of HSP70 in motoneuron survival after excitotoxic stress in a rat spinal cord injury modelin vitro. Eur J Neurosci 2015; 42:3054-65. [DOI: 10.1111/ejn.13108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Ayisha Shabbir
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Elena Bianchetti
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Renato Cargonja
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Antonela Petrovic
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Miranda Mladinic
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Kristina Pilipović
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Andrea Nistri
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
32
|
Nishida F, Zanuzzi CN, Martínez A, Barbeito CG, Portiansky EL. Functional and histopathological changes induced by intraparenchymal injection of kainic acid in the rat cervical spinal cord. Neurotoxicology 2015; 49:68-78. [PMID: 26014486 DOI: 10.1016/j.neuro.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/04/2023]
Abstract
Kainic acid (KA) is an analog of the neurotransmitter glutamate and is widely used as an excitotoxic agent to lesion spinal cord networks, thus, providing an interesting model to learn basic mechanisms of spinal cord injury. The present work was aimed to evaluate motor and sensory performance of rats and analyze morphometric parameters of spinal cord neurons after KA injection. Animals were injected either with 0.75, 1 or 1.25 mM of KA at the C5 segment of the cervical spinal cord. Motor and sensory performance of the rats were evaluate at day 0 (before injection) and at days 1, 2, 3 and 7 post-injection (pi) and compared with those of saline-treated and non-operated animals. Animals were sacrificed at each time point for morphometric and histopathological analysis and compared among groups. All KA-treated animals showed a significant impairment at the motor and sensory tests for the ipsilateral forelimb in a concentration-dependent manner in comparison to saline-treated and non-operated animals. Neuronal cell count showed a significant loss of neurons at C4, C5 and C6 cervical segments when compared with those of saline-treated and non-operated animals. The contralateral side of the cervical segments in KA-treated rats remained unchanged. Some improvement at the motor and sensory tests was observed in animals injected with 0.75 and 1mM KA. Moreover, a mild increase in the neuronal count of the damaged segments was also recorded. The improvement recorded in the motor and sensory tests by day 7 pi may be a consequence of a neuron repairing mechanism triggered soon after the KA excitotoxic effect.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Agustín Martínez
- National Institute of Agricultural Technology (INTA), Bariloche, Argentina.
| | - Claudio G Barbeito
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| |
Collapse
|
33
|
Han B, Wang TD, Shen SM, Yu Y, Mao C, Yao ZJ, Wang LS. Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism. BMC Cancer 2015; 15:139. [PMID: 25885900 PMCID: PMC4379763 DOI: 10.1186/s12885-015-1133-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/24/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. METHODS We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and related proteins were characterized by western blot. Immunofluorescence and subcellular fractionation were used to evaluate AIF nuclear translocation. Reactive oxygen species were assessed by using redox-sensitive dye DCFDA. RESULTS AA005 induces a unique type of cell death in colorectal adenocarcinoma cells, characterized by lack of caspase-3 activation or apoptotic body formation, sensitivity to poly (ADP-ribose) polymerase inhibitor Olaparib (AZD2281) but not pan-caspase inhibitor Z-VAD.fmk, and dependence on apoptosis-inducing factor (AIF). AA005 treatment also reduced expression of mitochondrial Complex I components, and leads to accumulation of intracellular reactive oxygen species (ROS) at the early stage. Blocking ROS formation significantly suppresses AA005-induced cell death in SW620 cells. Moreover, blocking activation of RIP-1 by necroptosis inhibitor necrotatin-1 inhibits AIF translocation and partially suppresses AA005-induced cell death in SW620 cells demonstrating that RIP-1 protein may be essential for cell death. CONCLUSIONS AA005 may trigger the cell death via mediated by AIF through caspase-3 independent pathway. Our work provided new mechanisms for AA005-induced cancer cell death and novel clues for cancer treatment via AIF dependent cell death.
Collapse
Affiliation(s)
- Bing Han
- Center for Molecular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tong-Dan Wang
- Center for Molecular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shao-Ming Shen
- Center for Molecular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yun Yu
- Center for Molecular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chan Mao
- State Key Laboratory of Coordination Chemistry, Institute of Chemical Biology and Drug Innovation, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry, Institute of Chemical Biology and Drug Innovation, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. .,Shanghai Universities E-Institute for Chemical Biology, Shanghai, 200025, China.
| | - Li-Shun Wang
- Center for Molecular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Universities E-Institute for Chemical Biology, Shanghai, 200025, China.
| |
Collapse
|
34
|
Zhou M, Ottenberg G, Sferrazza GF, Hubbs C, Fallahi M, Rumbaugh G, Brantley AF, Lasmézas CI. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment. ACTA ACUST UNITED AC 2015; 138:992-1008. [PMID: 25678560 DOI: 10.1093/brain/awv002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer's, Parkinson's and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD(+)) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD(+) followed by decreased ATP production, and are completely rescued by treatment with NAD(+) or its precursor nicotinamide because of restoration of physiological NAD(+) levels. Toxic prion protein-induced NAD(+) depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD(+). Intranasal NAD(+) treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD(+) starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD(+) replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases.
Collapse
Affiliation(s)
- Minghai Zhou
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Gregory Ottenberg
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Gian Franco Sferrazza
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Christopher Hubbs
- 2 Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Mohammad Fallahi
- 3 Informatics Core, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- 2 Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Alicia F Brantley
- 4 Behaviour Core, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Corinne I Lasmézas
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
35
|
The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience 2014; 285:269-80. [PMID: 25446348 DOI: 10.1016/j.neuroscience.2014.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022]
Abstract
Neuroprotection of the spinal cord during the early phase of injury is an important goal to determine a favorable outcome by prevention of delayed pathological events, including excitotoxicity, which otherwise extend the primary damage and amplify the often irreversible loss of motor function. While intensive care and neurosurgical intervention are important treatments, effective neuroprotection requires further experimental studies focused to target vulnerable neurons, particularly motoneurons. The present investigation examined whether the volatile general anesthetic methoxyflurane might protect spinal locomotor networks from kainate-evoked excitotoxicity using an in vitro rat spinal cord preparation as a model. The protocols involved 1h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing on day 2. A single administration of methoxyflurane applied together with kainate (1h), or 30 or even 60 min later prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyflurane per se temporarily decreased synaptic transmission and motoneuron excitability, effects readily reversible on washout. Spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved on the second day after application of methoxyflurane together with (or after) kainate. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled expression of locomotor network activity 1 day after the excitotoxic challenge. It is hypothesized that the benefits of early neurosurgery for acute spinal cord injury (SCI) might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is exploited.
Collapse
|
36
|
Mazzone GL, Nistri A. S100β as an early biomarker of excitotoxic damage in spinal cord organotypic cultures. J Neurochem 2014; 130:598-604. [PMID: 24766228 DOI: 10.1111/jnc.12748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
S100β is a cytoplasmic calcium-binding protein mainly expressed by glia and considered to be a useful biomarker for brain or spinal cord injury. Indeed, clinical studies suggest that the S100β concentration in serum or cerebrospinal fluid may predict lesion outcome and prognosis. The relation of S100β levels to damage severity and its timecourse remains, however, unclear. This study used a validated in vitro model of spinal cord injury induced by kainate-mediated excitotoxicity to investigate these issues. After 22 days in vitro, rat organotypic spinal cord slices were subjected to one transient application (1 h) of 1 or 100 μM kainate followed by washout. While the lower kainate concentration did not evoke neuronal loss or S100β increase, the larger concentration elicited 40% neuronal death, no change in glial number and a delayed, significant rise in extracellular S100β that peaked at 24 h. This increase was associated with a stronger expression of the S100β protein as indicated by western blotting and immunohistochemistry. Application of the microtubule disrupting agent colchicine did not change the rise in S100β induced by kainate, an effect blocked by the glutamate receptor antagonists CNQX and APV. Our data suggest that excitotoxicity was followed by release of S100β perhaps from a readily releasable pool through a mechanism independent of microtubule assembly. The raised extracellular level of S100β appeared to reflect glial reactivity to the kainate-evoked lesion in accordance with the view that this protein may be involved in tissue protection and repair after acute injury. Excitotoxicity is a major mechanism responsible for neuronal death following acute spinal cord injury. The calcium-binding protein S100β is released by astrocytes into the extracellular compartment during the first 24 h after the initial insult and represents a useful biomarker of lesion progression as its level is related to the occurrence and severity of neuronal loss.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | | |
Collapse
|
37
|
ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord. Stem Cell Res 2014; 12:815-27. [DOI: 10.1016/j.scr.2014.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/31/2022] Open
|
38
|
Mechanisms underlying cell death in ischemia-like damage to the rat spinal cord in vitro. Cell Death Dis 2013; 4:e707. [PMID: 23828570 PMCID: PMC3730411 DOI: 10.1038/cddis.2013.237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/09/2022]
Abstract
New spinal cord injury (SCI) cases are frequently due to non-traumatic causes, including vascular disorders. To develop mechanism-based neuroprotective strategies for acute SCI requires full understanding of the early pathophysiological changes to prevent disability and paralysis. The aim of our study was to identify the molecular and cellular mechanisms of cell death triggered by a pathological medium (PM) mimicking ischemia in the rat spinal cord in vitro. We previously showed that extracellular Mg2+ (1 mM) worsened PM-induced damage and inhibited locomotor function. The present study indicated that 1 h of PM+Mg2+ application induced delayed pyknosis chiefly in the spinal white matter via overactivation of poly (ADP-ribose) polymerase 1 (PARP1), suggesting cell death mediated by the process of parthanatos that was largely suppressed by pharmacological block of PARP-1. Gray matter damage was less intense and concentrated in dorsal horn neurons and motoneurons that became immunoreactive for the mitochondrial apoptosis-inducing factor (the intracellular effector of parthanatos) translocated into the nucleus to induce chromatin condensation and DNA fragmentation. Immunoreactivity to TRPM ion channels believed to be involved in ischemic brain damage was also investigated. TRPM2 channel expression was enhanced 24 h later in dorsal horn and motoneurons, whereas TRPM7 channel expression concomitantly decreased. Conversely, TRPM7 expression was found earlier (3 h) in white matter cells, whereas TRPM2 remained undetectable. Simulating acute ischemic-like damage in vitro in the presence of Mg2+ showed how, during the first 24 h, this divalent cation unveiled differential vulnerability of white matter cells and motoneurons, with distinct changes in their TRPM expression.
Collapse
|
39
|
Mladinic M, Nistri A. Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. FRONTIERS IN NEUROENGINEERING 2013; 6:2. [PMID: 23459694 PMCID: PMC3586932 DOI: 10.3389/fneng.2013.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
Collapse
Affiliation(s)
- Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA) Trieste, Italy ; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione Udine, Italy ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|
40
|
Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ. Poly(ADP-ribose) signaling in cell death. Mol Aspects Med 2013; 34:1153-67. [PMID: 23416893 DOI: 10.1016/j.mam.2013.01.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/22/2013] [Accepted: 01/30/2013] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a reversible protein modification carried out by the concerted actions of poly(ADP-ribose) polymerase (PARP) enzymes and poly(ADP-ribose) (PAR) decomposing enzymes such as PAR glycohydrolase (PARG) and ADP-ribosyl hydrolase 3 (ARH3). Reversible PARylation is a pleiotropic regulator of various cellular functions but uncontrolled PARP activation may also lead to cell death. The cellular demise pathway mediated by PARylation in oxidatively stressed cells has been described almost thirty years ago. However, the underlying molecular mechanisms have only begun to emerge relatively recently. PARylation has been implicated in necroptosis, autophagic cell death but its role in extrinsic and intrinsic apoptosis appears to be less predominant and depends largely on the cellular model used. Currently, three major pathways have been made responsible for PARP-mediated necroptotic cell death: (1) compromised cellular energetics mainly due to depletion of NAD, the substrate of PARPs; (2) PAR mediated translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus (parthanatos) and (3) a mostly elusive crosstalk between PARylation and cell death/survival kinases and phosphatases. Here we review how these PARP-mediated necroptotic pathways are intertwined, how PARylation may contribute to extrinsic and intrinsic apoptosis and discuss recent developments on the role of PARylation in autophagy and autophagic cell death.
Collapse
Affiliation(s)
- László Virág
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; MTA DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| | | | | | | |
Collapse
|
41
|
Poly(ADP-ribose) polymerase inhibition protects epileptic hippocampal neurons from apoptosis via suppressing Akt-mediated apoptosis-inducing factor translocation in vitro. Neuroscience 2013. [DOI: 10.1016/j.neuroscience.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Mladinic M, Nistri A, Taccola G. Acute Spinal Cord Injury In Vitro: Insight into Basic Mechanisms. ANIMAL MODELS OF SPINAL CORD REPAIR 2013. [DOI: 10.1007/978-1-62703-197-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Sámano C, Nasrabady S, Nistri A. A study of the potential neuroprotective effect of riluzole on locomotor networks of the neonatal rat spinal cord in vitro damaged by excitotoxicity. Neuroscience 2012; 222:356-65. [DOI: 10.1016/j.neuroscience.2012.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
|
44
|
Abstract
Many advances have been achieved in terms of understanding the molecular and cellular mechanisms of ischemic stroke. But thus far, clinically effective neuroprotectants remain elusive. In this minireview, we summarize the basics of ischemic cascades after stroke, covering neuronal death mechanisms, white matter pathophysiology, and inflammation with an emphasis on microglia. Translating promising mechanistic knowledge into clinically meaningful stroke drugs is very challenging. An integrative approach that encompasses the multimodal and multicell signaling phenomenon of stroke will be required to move forward.
Collapse
Affiliation(s)
- Changhong Xing
- Department of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
45
|
Cifra A, Mazzone GL, Nani F, Nistri A, Mladinic M. Postnatal developmental profile of neurons and glia in motor nuclei of the brainstem and spinal cord, and its comparison with organotypic slice cultures. Dev Neurobiol 2012; 72:1140-60. [PMID: 22021114 DOI: 10.1002/dneu.20991] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/18/2011] [Indexed: 01/31/2023]
Abstract
In vitro preparations of the neonatal rat spinal cord or brainstem are useful to investigate the organization of motor networks and their dysfunction in neurological disease models. Long-term spinal cord organotypic cultures can extend our understanding of such pathophysiological processes over longer times. It is, however, surprising that detailed descriptions of the type (and number) of neurons and glia in such preparations are currently unavailable to evaluate cell-selectivity of experimental damage. The focus of the present immunohistochemical study is the novel characterization of the cell population in the lumbar locomotor region of the rat spinal cord and in the brainstem motor nucleus hypoglossus at 0-4 postnatal days, and its comparison with spinal organotypic cultures at 2-22 days in vitro. In the nucleus hypoglossus, neurons were 40% of all cells and 80% of these were motoneurons. Astrocytes (35% of total cells) were the main glial cells, while microglia was <10%. In the spinal gray matter, the highest neuronal density was in the dorsal horn (>80%) and the lowest in the ventral horn (≤57%) with inverse astroglia numbers and few microglia. The number of neurons (including motoneurons) and astrocytes was stable after birth. Like in the spinal cord, motoneurons in organotypic spinal culture were <10% of ventral horn cells, with neurons <40%, and the rest made up by glia. The present report indicates a comparable degree of neuronal and glial maturation in brainstem and spinal motor nuclei, and that this condition is also observed in 3-week-old organotypic cultures.
Collapse
Affiliation(s)
- Alessandra Cifra
- Neurobiology Sector and IIT Unit, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | |
Collapse
|
46
|
Unusual increase in lumbar network excitability of the rat spinal cord evoked by the PARP-1 inhibitor PJ-34 through inhibition of glutamate uptake. Neuropharmacology 2012; 63:415-26. [PMID: 22561282 DOI: 10.1016/j.neuropharm.2012.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Overactivity of poly(ADP-ribose) polymerase enzyme 1 (PARP-1) is suggested to be a major contributor to neuronal damage following brain or spinal cord injury, and has led to study the PARP-1 inhibitor 2-(dimethylamino)-N-(5,6-dihydro-6-oxophenanthridin-2yl)acetamide (PJ-34) as a neuroprotective agent. Unexpectedly, electrophysiological recording from the neonatal rat spinal cord in vitro showed that, under control conditions, 1-60 μM PJ-34 per se strongly increased spontaneous network discharges occurring synchronously on ventral roots, persisting for 24 h even after PJ-34 washout. The PARP-1 inhibitor PHE had no similar effect. The action by PJ-34 was reversibly suppressed by glutamate ionotropic receptor blockers and remained after applying strychnine and bicuculline. Fictive locomotion evoked by neurochemicals or by dorsal root stimulation was present 24 h after PJ-34 application. In accordance with this observation, lumbar neurons and glia were undamaged. Neurochemical experiments showed that PJ-34 produced up to 33% inhibition of synaptosomal glutamate uptake with no effect on GABA uptake. In keeping with this result, the glutamate uptake blocker TBOA (5 μM) induced long-lasting synchronous discharges without suppressing the ability to produce fictive locomotion after 24 h. The novel inhibition of glutamate uptake by PJ-34 suggested that this effect may compound tests for its neuroprotective activity which cannot be merely attributed to PARP-1 block. Furthermore, the current data indicate that the neonatal rat spinal cord could withstand a strong, long-lasting rise in network excitability without compromising locomotor pattern generation or circuit structure in contrast with the damage to brain circuits known to be readily produced by persistent seizures.
Collapse
|
47
|
Kuzhandaivel A, Nistri A, Mazzone GL, Mladinic M. Molecular Mechanisms Underlying Cell Death in Spinal Networks in Relation to Locomotor Activity After Acute Injury in vitro. Front Cell Neurosci 2011; 5:9. [PMID: 21734866 PMCID: PMC3119860 DOI: 10.3389/fncel.2011.00009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022] Open
Abstract
Understanding the pathophysiological changes triggered by an acute spinal cord injury is a primary goal to prevent and treat chronic disability with a mechanism-based approach. After the primary phase of rapid cell death at the injury site, secondary damage occurs via autodestruction of unscathed tissue through complex cell-death mechanisms that comprise caspase-dependent and caspase-independent pathways. To devise novel neuroprotective strategies to restore locomotion, it is, therefore, necessary to focus on the death mechanisms of neurons and glia within spinal locomotor networks. To this end, the availability of in vitro preparations of the rodent spinal cord capable of expressing locomotor-like oscillatory patterns recorded electrophysiologically from motoneuron pools offers the novel opportunity to correlate locomotor network function with molecular and histological changes long after an acute experimental lesion. Distinct forms of damage to the in vitro spinal cord, namely excitotoxic stimulation or severe metabolic perturbation (with oxidative stress, hypoxia/aglycemia), can be applied with differential outcome in terms of cell types and functional loss. In either case, cell death is a delayed phenomenon developing over several hours. Neurons are more vulnerable to excitotoxicity and more resistant to metabolic perturbation, while the opposite holds true for glia. Neurons mainly die because of hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) with subsequent DNA damage and mitochondrial energy collapse. Conversely, glial cells die predominantly by apoptosis. It is likely that early neuroprotection against acute spinal injury may require tailor-made drugs targeted to specific cell-death processes of certain cell types within the locomotor circuitry. Furthermore, comparison of network size and function before and after graded injury provides an estimate of the minimal network membership to express the locomotor program.
Collapse
|
48
|
Delayed neuroprotection by riluzole against excitotoxic damage evoked by kainate on rat organotypic spinal cord cultures. Neuroscience 2011; 190:318-27. [PMID: 21689734 DOI: 10.1016/j.neuroscience.2011.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/24/2011] [Accepted: 06/04/2011] [Indexed: 12/12/2022]
Abstract
Kainate-mediated excitotoxicity of organotypic spinal cord cultures is an in vitro model advantageous to investigate basic mechanisms of acute spinal injury and its pharmacological neuroprotection. Using such cultures, the putative neuroprotective agent riluzole applied at 5 μM (plasma therapeutic concentration) was studied for its ability to prevent neurotoxicity evoked by 1 h administration of kainate. We monitored real-time release of glutamate, release of lactate dehydrogenase (LDH) (cell damage marker), occurrence of cell pyknosis, the number of surviving neurons and motoneurons, and cell culture metabolic activity. Co-applied riluzole strongly blocked the kainate-evoked early rise in extracellular glutamate (via calcium dependent or independent processes) and suppressed LDH release (limited to <20% of total). Although there were no significant cell losses within the first h after kainate washout, pyknosis, fewer neurons and motoneurons were observed 24 h later. MTT assay demonstrated that surviving cells were metabolically competent. Co-application of kainate and tetrodotoxin also failed to protect spinal cord slices 24 h later. When riluzole application begun at kainate washout and continued for 24 h, significant neuroprotection was observed for neurons in the central and dorsal regions, while ventral horn cells (including motoneurons) were not protected. Our data suggest that riluzole neuroprotection against excitotoxicity was feasible, although it paradoxically required delayed drug administration, and was not extended to the ventral horn. We propose that riluzole was acting on yet-unidentified processes downstream of glutamate release and receptor activation. Deciphering their identity and role in cell death mechanisms may be an important goal to develop neuroprotection.
Collapse
|
49
|
Nasrabady SE, Kuzhandaivel A, Nistri A. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro. Eur J Neurosci 2011; 33:2216-27. [PMID: 21623955 DOI: 10.1111/j.1460-9568.2011.07714.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles.
Collapse
Affiliation(s)
- Sara E Nasrabady
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | | | | |
Collapse
|
50
|
Nasrabady SE, Kuzhandaivel A, Mladinic M, Nistri A. Effects of 6(5H)-phenanthridinone, an inhibitor of poly(ADP-ribose)polymerase-1 activity (PARP-1), on locomotor networks of the rat isolated spinal cord. Cell Mol Neurobiol 2011; 31:503-8. [PMID: 21331624 DOI: 10.1007/s10571-011-9661-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Excitotoxicity is considered to be a major pathophysiological mechanism responsible for extensive neuronal death after acute spinal injury. The chief effector of such a neuronal death is thought to be the hyperactivation of intracellular PARP-1 that leads to cell energy depletion and DNA damage with the manifestation of non-apoptotic cell death termed parthanatos. An in vitro lesion model using the neonatal rat spinal cord has recently shown PARP-1 overactivity to be closely related to neuronal losses after an excitotoxic challenge by kainate: in this system the PARP-1 inhibitor 6(5H)-phenanthridinone (PHE) appeared to be a moderate histological neuroprotector. This article investigated whether PHE could actually preserve the function of locomotor networks in vitro from excitotoxicity. Bath-applied PHE (after a 60 min kainate application) failed to recover locomotor network function 24 h later. When the PHE administration was advanced by 30 min (during the administration of kainate), locomotor function could still not be recovered, while basic network rhythmicity persisted. Histochemical analysis showed that, even if the number of surviving neurons was improved with this protocol, it had failed to reach the threshold of minimal network membership necessary for expressing locomotor patterns. These results suggest that PARP-1 hyperactivity was a rapid onset mechanism of neuronal loss after an excitotoxic challenge and that more selective and faster-acting PARP-1 inhibitors are warranted to explore their potential neuroprotective role.
Collapse
Affiliation(s)
- Sara Ebrahimi Nasrabady
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | | | | | | |
Collapse
|