1
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Bakalar D, Sweat S, Drossel G, Jiang SZ, Samal BS, Stroth N, Xu W, Zhang L, Zhang H, Eiden LE. Relationships between constitutive and acute gene regulation, and physiological and behavioral responses, mediated by the neuropeptide PACAP. Psychoneuroendocrinology 2022; 135:105447. [PMID: 34741979 PMCID: PMC8900973 DOI: 10.1016/j.psyneuen.2021.105447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
Since the advent of gene knock-out technology in 1987, insight into the role(s) of neuropeptides in centrally- and peripherally-mediated physiological regulation has been gleaned by examining altered physiological functioning in mammals, predominantly mice, after genetic editing to produce animals deficient in neuropeptides or their cognate G-protein coupled receptors (GPCRs). These results have complemented experiments involving infusion of neuropeptide agonists or antagonists systemically or into specific brain regions. Effects of gene loss are often interpreted as indicating that the peptide and its receptor(s) are required for the physiological or behavioral responses elicited in wild-type mice at the time of experimental examination. These interpretations presume that peptide/peptide receptor gene deletion affects only the expression of the peptide/receptor itself, and therefore impacts physiological events only at the time at which the experiment is conducted. A way to support 'real-time' interpretations of neuropeptide gene knock-out is to demonstrate that the wild-type transcriptome, except for the deliberately deleted gene(s), in tissues of interest, is preserved in the knock-out mouse. Here, we show that there is a cohort of genes (constitutively PACAP-Regulated Genes, or cPRGs) whose basal expression is affected by constitutive knock-out of the Adcyap1 gene in C57Bl6/N mice, and additional genes whose expression in response to physiological challenge, in adults, is altered or impaired in the absence of PACAP expression (acutely PACAP-Regulated Genes, or aPRGs). Distinguishing constitutive and acute transcriptomic effects of neuropeptide deficiency on physiological function and behavior in mice reveals alternative mechanisms of action, and changing functions of neuropeptides, throughout the lifespan.
Collapse
Affiliation(s)
- Dana Bakalar
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Sean Sweat
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Gunner Drossel
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Sunny Z. Jiang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Babru S. Samal
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Nikolas Stroth
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Wenqin Xu
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Limei Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA,Department of Physiology, Autonomous National University of Mexico (UNAM) Medical School, Mexico City, Mexico
| | - Haiying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Lee E. Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA,Correspondence Lee E. Eiden, Ph.D., Section on Molecular Neuroscience, National Institute of Mental Heath – Intramural Research Program, Bethesda, MD. NIH, USA, Phone: +13014964110,
| |
Collapse
|
3
|
Guérineau NC. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus‐secretion coupling. IUBMB Life 2019; 72:553-567. [DOI: 10.1002/iub.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie C. Guérineau
- IGFUniv. Montpellier, CNRS, INSERM Montpellier France
- LabEx “Ion Channel Science and Therapeutics” Montpellier France
| |
Collapse
|
4
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
5
|
Rivnyak A, Kiss P, Tamas A, Balogh D, Reglodi D. Review on PACAP-Induced Transcriptomic and Proteomic Changes in Neuronal Development and Repair. Int J Mol Sci 2018; 19:ijms19041020. [PMID: 29596316 PMCID: PMC5979407 DOI: 10.3390/ijms19041020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse biological effects. Among its several different effects, of special importance is the action of PACAP on neuronal proliferation, differentiation and migration, and neuroprotection. The neuroprotective mechanism of PACAP is both direct and indirect, via neuronal and non-neuronal cells. Several research groups have performed transcriptomic and proteomic analysis on PACAP-mediated genes and proteins. Hundreds of proteins have been described as being involved in the PACAP-mediated neuroprotection. In the present review we summarize the few currently available transcriptomic data potentially leading to the proteomic changes in neuronal development and protection. Proteomic studies focusing on the neuroprotective role of PACAP are also reviewed and discussed in light of the most intriguing and promising effect of this neuropeptide, which may possibly have future therapeutic potential.
Collapse
Affiliation(s)
- Adam Rivnyak
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Peter Kiss
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dorottya Balogh
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| |
Collapse
|
6
|
PACAP signaling in stress: insights from the chromaffin cell. Pflugers Arch 2017; 470:79-88. [PMID: 28965274 DOI: 10.1007/s00424-017-2062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was first identified in hypothalamus, based on its ability to elevate cyclic AMP in the anterior pituitary. PACAP has been identified as the adrenomedullary neurotransmitter in stress through a combination of ex vivo, in vivo, and in cellula experiments over the past two decades. PACAP causes catecholamine secretion, and activation of catecholamine biosynthetic enzymes, during episodes of stress in mammals. Features of PACAP signaling allowing stress transduction at the splanchnicoadrenomedullary synapse have yielded insights into the contrasting roles of acetylcholine's and PACAP's actions as first messengers at the chromaffin cell, via differential release at low and high rates of splanchnic nerve firing, and differential signaling pathway engagement leading to catecholamine secretion and chromaffin cell gene transcription. Secretion stimulated by PACAP, via calcium influx independent of action potential generation, is under active investigation in several laboratories both at the chromaffin cell and within autonomic ganglia of both the parasympathetic and sympathetic nervous systems. PACAP is a neurotransmitter important in stress transduction in the central nervous system as well, and is found at stress-transduction nuclei in brain including the paraventricular nucleus of hypothalamus, the amygdala and extended amygdalar nuclei, and the prefrontal cortex. The current status of PACAP as a master regulator of stress signaling in the nervous system derives fundamentally from the establishment of its role as the splanchnicoadrenomedullary transmitter in stress. Experimental elucidation of PACAP action at this synapse remains at the forefront of understanding PACAP's role in stress signaling throughout the nervous system.
Collapse
|
7
|
Jenkins DE, Sreenivasan D, Carman F, Samal B, Eiden LE, Bunn SJ. Interleukin-6-mediated signaling in adrenal medullary chromaffin cells. J Neurochem 2016; 139:1138-1150. [PMID: 27770433 DOI: 10.1111/jnc.13870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The pro-inflammatory cytokines, tumor necrosis factor-α, and interleukin-1β/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Consistent with ERK1/2 activation, IL6 rapidly increased tyrosine hydroxylase phosphorylation (serine-31) and activity, as well as up-regulated genes, encoding secreted proteins including galanin, vasoactive intestinal peptide, gastrin-releasing peptide, and parathyroid hormone-like hormone. The effects of IL6 on the entire bovine chromaffin cell transcriptome were compared to those generated by G-protein-coupled receptor (GPCR) agonists (histamine and pituitary adenylate cyclase-activating polypeptide) and the cytokine receptor agonists (interferon-α and tumor necrosis factor-α). Of 90 genes up-regulated by IL6, only 16 are known targets of IL6 in the immune system. Those remaining likely represent a combination of novel IL6/STAT3 targets, ERK1/2 targets and, potentially, IL6-dependent genes activated by IL6-induced transcription factors, such as hypoxia-inducible factor 1α. Notably, genes induced by IL6 include both neuroendocrine-specific genes activated by GPCR agonists, and transcripts also activated by the cytokines. These results suggest an integrative role for IL6 in the fine-tuning of the chromaffin cell response to a wide range of physiological and paraphysiological stressors, particularly when immune and endocrine stimuli converge.
Collapse
Affiliation(s)
- Danielle E Jenkins
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Fiona Carman
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Babru Samal
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Stephen J Bunn
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Garcia-Manteiga JM, Bonfiglio S, Folladori L, Malosio ML, Lazarevic D, Stupka E, Cittaro D, Meldolesi J. REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation. Front Cell Neurosci 2015; 9:438. [PMID: 26617488 PMCID: PMC4639699 DOI: 10.3389/fncel.2015.00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 11/23/2022] Open
Abstract
The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and functional role, deciphering new aspects of its participation in neuronal functions. The new findings could be relevant for further investigation and interpretation of physiological processes typical of neurons. Moreover, they could be employed as tools in the study of neuronal diseases recently shown to depend on REST for their development.
Collapse
Affiliation(s)
- Jose M Garcia-Manteiga
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Silvia Bonfiglio
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Lucrezia Folladori
- CNR Institute of Neuroscience and Humanitas Clinical and Research Centre Milan, Italy
| | - Maria L Malosio
- CNR Institute of Neuroscience and Humanitas Clinical and Research Centre Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Scientific Institute San Raffaele Milan, Italy
| | - Jacopo Meldolesi
- Division of Neurosciences, Vita-Salute San Raffaele University and Scientific Institute San Raffaele Milan, Italy
| |
Collapse
|
9
|
Acute Response of the Hippocampal Transcriptome Following Mild Traumatic Brain Injury After Controlled Cortical Impact in the Rat. J Mol Neurosci 2015; 57:282-303. [PMID: 26319264 DOI: 10.1007/s12031-015-0626-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that mild controlled cortical impact (mCCI) injury to rat cortex causes indirect, concussive injury to underlying hippocampus and other brain regions, providing a reproducible model for mild traumatic brain injury (mTBI) and its neurochemical, synaptic, and behavioral sequelae. Here, we extend a preliminary gene expression study of the hippocampus-specific events occurring after mCCI and identify 193 transcripts significantly upregulated, and 21 transcripts significantly downregulated, 24 h after mCCI. Fifty-three percent of genes altered by mCCI within 24 h of injury are predicted to be expressed only in the non-neuronal/glial cellular compartment, with only 13% predicted to be expressed only in neurons. The set of upregulated genes following mCCI was interrogated using Ingenuity Pathway Analysis (IPA) augmented with manual curation of the literature (190 transcripts accepted for analysis), revealing a core group of 15 first messengers, mostly inflammatory cytokines, predicted to account for >99% of the transcript upregulation occurring 24 h after mCCI. Convergent analysis of predicted transcription factors (TFs) regulating the mCCI target genes, carried out in IPA relative to the entire Affymetrix-curated transcriptome, revealed a high concordance with TFs regulated by the cohort of 15 cytokines/cytokine-like messengers independently accounting for upregulation of the mCCI transcript cohort. TFs predicted to regulate transcription of the 193-gene mCCI cohort also displayed a high degree of overlap with TFs predicted to regulate glia-, rather than neuron-specific genes in cortical tissue. We conclude that mCCI predominantly affects transcription of non-neuronal genes within the first 24 h after insult. This finding suggests that early non-neuronal events trigger later permanent neuronal changes after mTBI, and that early intervention after mTBI could potentially affect the neurochemical cascade leading to later reported synaptic and behavioral dysfunction.
Collapse
|
10
|
Samal B, Ait-Ali D, Bunn S, Mustafa T, Eiden LE. Discrete signal transduction pathway utilization by a neuropeptide (PACAP) and a cytokine (TNF-alpha) first messenger in chromaffin cells, inferred from coupled transcriptome-promoter analysis of regulated gene cohorts. Peptides 2013; 45:48-60. [PMID: 23608709 PMCID: PMC3807697 DOI: 10.1016/j.peptides.2013.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022]
Abstract
Cultured bovine adrenal chromaffin cells (BCCs) are employed to study first messenger-specific signaling by cytokines and neurotransmitters occurring in the adrenal medulla following immune-related stress responses. Here, we show that the cytokine TNF-alpha, and the neuropeptide transmitter PACAP, acting through the TNFR2 and PAC1 receptors, activate distinct signaling pathways, with correspondingly distinct transcriptomic signatures in chromaffin cells. We have carried out a comprehensive integrated transcriptome analysis of TNF-alpha and PACAP gene regulation in BCCs using two microarray platforms to maximize transcript identification. Microarray data were validated using qRT-PCR. More than 90% of the transcripts up-regulated either by TNF-alpha or PACAP were specific to a single first messenger. The final list of transcripts induced by each first messenger was subjected to multiple algorithms to identify promoter/enhancer response elements for trans-acting factors whose activation could account for gene expression by either TNF-alpha or PACAP. Distinct groups of transcription factors potentially controlling the expression of TNF-alpha or PACAP-responsive genes were found: most of the genes up-regulated by TNF-alpha contained transcription factor binding sites for members of the Rel transcription factor family, suggesting TNF-alpha-TNFR2 signaling occurs mainly through the NF-KB signaling pathway. Surprisingly, EGR1 was predicted to be the primary transcription factor controlling PACAP-modulated genes, suggesting PACAP signaling to the nucleus occurs predominantly through ERK, rather than CREB activation. Comparison of TNFR2-dependent versus TNFR1-dependent gene induction, and EGR1-mediated transcriptional activation, may provide a pharmacological avenue to the unique pathways activated by the first messengers TNF-alpha and PACAP in neuronal and endocrine cells.
Collapse
MESH Headings
- Adrenal Glands/cytology
- Adrenal Glands/drug effects
- Adrenal Glands/immunology
- Animals
- Cattle
- Chromaffin Cells/cytology
- Chromaffin Cells/drug effects
- Chromaffin Cells/immunology
- Enhancer Elements, Genetic/drug effects
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/immunology
- Gene Expression Profiling
- Gene Expression Regulation
- NF-kappa B/genetics
- NF-kappa B/immunology
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Primary Cell Culture
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Signal Transduction
- Stress, Physiological
- Transcriptome/drug effects
- Transcriptome/immunology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Babru Samal
- Section on Molecular Neuroscience, Laboratory of Cellular and
Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892,
USA
| | - Djida Ait-Ali
- Section on Molecular Neuroscience, Laboratory of Cellular and
Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892,
USA
| | - Stephen Bunn
- Centre for Neuroendocrinology, Department of Anatomy, School of
Medical Sciences, University of Otego, PO Box 913, Dunedin, New Zealand
| | - Tomris Mustafa
- Section on Molecular Neuroscience, Laboratory of Cellular and
Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892,
USA
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and
Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892,
USA
- Corresponding author at: Section on Molecular
Neuroscience, Building 49, Room 5A-38,9000 Rockville Pike, Bethesda, MD 20892,
USA. Tel.: +1 301 496 4110; fax: +1 301 402 1748
| |
Collapse
|
11
|
STC1 induction by PACAP is mediated through cAMP and ERK1/2 but not PKA in cultured cortical neurons. J Mol Neurosci 2013; 46:75-87. [PMID: 21975601 DOI: 10.1007/s12031-011-9653-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
The neuroprotective actions of PACAP (pituitary adenylate cyclase-activating polypeptide) in vitro and in vivo suggest that activation of its cognate G protein coupled receptor PAC1 or downstream signaling molecules,and thus activation of PACAP target genes, could be of therapeutic benefit. Here, we show that cultured rat cortical neurons predominantly expressed the PAC1hop and null variants. PACAP receptor activation resulted in the elevation of the two second messengers cAMP and Ca(2+) and expression of the putative neuroprotectant stanniocalcin 1(STC1). PACAP signaling to the STC1 gene proceeded through the extracellular signal-regulated kinases 1 and 2(ERK1/2), but not through the cAMP-dependent protein kinase (PKA), and was mimicked by the adenylate cyclase activator forskolin. PACAP- and forskolin-mediated activation of ERK1/2 occurred through cAMP, but not PKA.These results suggest that STC1 gene induction proceeds through cAMP and ERK1/2, independently of PKA, the canonical cAMP effector. In contrast, PACAP signaling to the BDNF gene proceeded through PKA, suggesting that two different neuroprotective cAMP pathways co-exist in differentiated cortical neurons. The selective activation of a potentially neuroprotective cAMP-dependent pathway different from the canonical cAMP pathway used in many physiological processes, such as memory storage, has implications for pharmacological activation of neuroprotection in vivo.
Collapse
|
12
|
Mustafa T. Pituitary adenylate cyclase-activating polypeptide (PACAP): a master regulator in central and peripheral stress responses. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:445-57. [PMID: 24054157 DOI: 10.1016/b978-0-12-411512-5.00021-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is a master regulator of central and peripheral stress responses required to restore and maintain homeostasis. PACAP modulates the hypothalamic-pituitary-adrenal (HPA) axis in response to acute psychogenic but not systemic stressors, through activation of corticotropin-releasing hormone (CRH) release to drive adrenal corticosterone (CORT) output. During direct high-frequency stimulation of the splanchnic nerve that is designed to mimic stress, PACAP regulates adrenomedullary catecholamine secretion. In addition to transmission, PACAP simultaneously facilitates the biosynthesis of adrenomedullary catecholamines through stimulus-secretion-synthesis coupling. During periods of chronic psychogenic stress, PACAP-mediated CORT elevation fails to desensitize and contributes to the development of maladaptive behaviors such as anxiety and depression. Based on these findings, PACAP regulates not only adaptive responses to stress but also maladaptive responses to sustained psychological stress. PACAP receptor antagonists could have therapeutic relevance in preventing hyperactivity of the HPA axis and offering protection against chronic stress-associated anxiety and depression.
Collapse
Affiliation(s)
- Tomris Mustafa
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bethesda, Maryland, USA.
| |
Collapse
|
13
|
Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J Mol Neurosci 2012; 48:403-12. [PMID: 22610912 DOI: 10.1007/s12031-012-9749-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/06/2012] [Indexed: 01/05/2023]
Abstract
It has been known for more than a decade that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) is co-stored with acetylcholine in the splanchnic nerve terminals innervating the adrenal medulla. Both transmitters are robust secretagogues for catecholamine release from chromaffin cells. Here, we review the unique contribution of PACAP to the functioning of the splanchnic-adrenal synapse in stress. While acetylcholine is released across a wide range of firing frequencies, PACAP is released only at high frequencies of stimulation, and its role in the regulation of epinephrine secretion and biosynthesis is highly specialized. PACAP is responsible for long-term catecholamine secretion using secretory mechanisms different from the rapidly desensitizing depolarization evoked by acetylcholine through nicotinic receptor activation. PACAP signaling also maintains catecholamine synthesis required for sustained secretion during prolonged stress via induction of the enzymes TH and PNMT, and enhances transcription of additional secreted molecules found in chromaffin cells that alter further secretion through both autocrine and paracrine mechanisms. PACAP thus mediates chromaffin cell plasticity via functional encoding of cellular experience. These features of PACAP action at the splanchnic-adrenal synapse may be paradigmatic for the general actions of neuropeptides as effectors of stimulus-secretion-synthesis coupling in stress.
Collapse
|
14
|
Modulation of Dopaminergic Neuronal Differentiation from Sympathoadrenal Progenitors. J Mol Neurosci 2012; 48:420-6. [DOI: 10.1007/s12031-012-9746-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/05/2012] [Indexed: 12/25/2022]
|
15
|
Bunn SJ, Ait-Ali D, Eiden LE. Immune-neuroendocrine integration at the adrenal gland: cytokine control of the adrenomedullary transcriptome. J Mol Neurosci 2012; 48:413-9. [PMID: 22421803 DOI: 10.1007/s12031-012-9745-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/29/2012] [Indexed: 02/07/2023]
Abstract
The bovine chromaffin cell represents an ideal model for the study of cell signaling to gene expression by first messengers. An abundance of GPCR, ionotropic, and growth factor receptors are expressed on these cells, and they can be obtained and studied as an abundant highly enriched cell population; importantly, this is true of no other postmitotic neuroendocrine or neuronal cell type. Chromaffin cells have now been shown to bear receptors for cytokines whose expression in the circulation is highly elevated in inflammation, including tumor necrosis factor, interferon, interleukin-1, and interleukin-6. The use of bovine-specific microarrays, and various biochemical measurements in this highly homogenous cell preparation reveals unique cohorts of distinct genes regulated by cytokines in chromaffin cells, via signaling pathways that are in some cases uniquely neuroendocrine. The transcriptomic signatures of cytokine signaling in chromaffin cells suggest that the adrenal medulla may integrate neuronal, hormonal, and immune signaling during inflammation, through induction of paracrine factors that signal to both adrenal cortex and sensory afferents of the adrenal gland, and autocrine factors, which determine the duration and type of paracrine secretory signaling that occurs in either acute or chronic inflammatory conditions.
Collapse
Affiliation(s)
- Stephen J Bunn
- Centre for Neuroendocrinology, Department of Anatomy, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
16
|
Holighaus Y, Mustafa T, Eiden LE. PAC1hop, null and hip receptors mediate differential signaling through cyclic AMP and calcium leading to splice variant-specific gene induction in neural cells. Peptides 2011; 32:1647-55. [PMID: 21693142 PMCID: PMC3163081 DOI: 10.1016/j.peptides.2011.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)-mediated activation of its G protein-coupled receptor PAC1 results in activation of the two G proteins Gs and Gq to alter second messenger generation and gene transcription in the nervous system, important for homeostatic responses to stress and injury. Heterologous expression of the three major splice variants of the rat PAC1 receptor, PAC1hop, null and hip, in neural NG108-15 cells conferred PACAP-mediated intracellular cAMP generation, while elevation of [Ca(2+)](i) occurred only in PAC1hop-, and to a lesser extent in PAC1null-expressing cells. Induction of vasoactive intestinal polypeptide (VIP) and stanniocalcin 1 (STC1), two genes potentially involved in PACAP's homeostatic responses, was examined as a function of the expressed PAC1 variant. VIP induction was greatest in PAC1hop-expressing cells, suggesting that a maximal transcriptional response requires combinatorial signaling through both cAMP and Ca(2+). STC1 induction was similar for all three receptor splice variants and was mimicked by the adenylate cyclase activator forskolin, indicating that cAMP elevation is sufficient to induce STC1. The degree of activation of two different second messenger pathways appears to determine the transcriptional response, suggesting that cellular responses to stressors are fine-tuned through differential receptor isoform expression. Signaling to the VIP gene proceeded through cAMP and protein kinase A (PKA) in these cells, independently of the MAP kinase ERK1/2. STC1 gene induction by PACAP was dependent on cAMP and ERK1/2, independently of PKA. Differential gene induction via different cAMP dependent signaling pathways potentially provides further targets for the design of treatments for stress-associated disorders.
Collapse
Affiliation(s)
- Yvonne Holighaus
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
17
|
Stroth N, Holighaus Y, Ait-Ali D, Eiden LE. PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci 2011; 1220:49-59. [PMID: 21388403 DOI: 10.1111/j.1749-6632.2011.05904.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is released from stress-transducing neurons. It exerts postsynaptic effects required to complete the hypothalamo-pituitary-adrenocortical (HPA) and hypothalamo-sympatho-adrenal (HSA) circuits activated by psychogenic and metabolic stressors. Upon activation of these circuits, PACAP-responsive (in cell culture models) and PACAP-dependent (in vivo) transcriptomic responses in the adrenal gland, hypothalamus, and pituitary have been identified. Gene products produced in response circuits during stress include additional neuropeptides, neurotransmitter biosynthetic enzymes, and neuroprotective factors. Major portions of HPA and HSA stress responses are abolished in PACAP-deficient mice. This deficit occurs at the level of both the hypothalamus (HPA axis) and the adrenal medulla (HSA axis). PACAP-dependent transcriptional stress responses are conveyed through noncanonical cyclic AMP- and calcium-initiated signaling pathways within the HSA circuit. PACAP transcriptional regulation of the HPA axis, in the hypothalamus, is likely to be mediated via canonical cyclic AMP signaling through protein kinase A.
Collapse
Affiliation(s)
- Nikolas Stroth
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIMH-IRP, NIH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|