1
|
Chen H, Lu M, Lyu Q, Shi L, Zhou C, Li M, Feng S, Liang X, Zhou X, Ren L. Mitochondrial dynamics dysfunction: Unraveling the hidden link to depression. Biomed Pharmacother 2024; 175:116656. [PMID: 38678964 DOI: 10.1016/j.biopha.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Depression is a common mental disorder and its pathogenesis is not fully understood. However, more and more evidence shows that mitochondrial dynamics dysfunction may play an important role in the occurrence and development of depression. Mitochondria are the centre of energy production in cells, and are also involved in important processes such as apoptosis and oxidative stress. Studies have found that there are abnormalities in mitochondrial function in patients with depression, including mitochondrial morphological changes, mitochondrial dynamics disorders, mitochondrial DNA damage, and impaired mitochondrial respiratory chain function. These abnormalities may cause excessive free radicals and oxidative stress in mitochondria, which further damage cells and affect the balance of neurotransmitters, causing or aggravating depressive symptoms. Studies have shown that mitochondrial dynamics dysfunction may participate in the occurrence and development of depression by affecting neuroplasticity, inflammation and neurotransmitters. This article reviews the effects of mitochondrial dynamics dysfunction on the pathogenesis of depression and its potential molecular pathway. The restorers for the treatment of depression by regulating the function of mitochondrial dynamics were summarized and the possibility of using mitochondrial dynamics as a biomarker of depression was discussed.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Liuqing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Chuntong Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mingjie Li
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Shiyu Feng
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xicai Liang
- Experimental Animal Center of Liaoning University of traditional Chinese Medicine, Shenyang 110847, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Mental disorders research laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| |
Collapse
|
2
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. Brain Mitochondrial Dysfunction: A Possible Mechanism Links Early Life Anxiety to Alzheimer’s Disease in Later Life. Aging Dis 2022; 13:1127-1145. [PMID: 35855329 PMCID: PMC9286915 DOI: 10.14336/ad.2022.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengna Lu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyu Zhu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Correspondence should be addressed to: Dr. Mingmei Zhou, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail:
| |
Collapse
|
3
|
Głombik K, Detka J, Budziszewska B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021; 10:2937. [PMID: 34831160 PMCID: PMC8616269 DOI: 10.3390/cells10112937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
The developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system. Moreover, excess or deficiency of hormones is associated with cell damage and loss of function in mitochondria. This review aims to expound on the impact of hormones (GLP-1, insulin, thyroid hormones, glucocorticoids) on metabolic processes in the brain with special emphasis on oxidative phosphorylation dysregulation, which may contribute to the formation of pathological changes. Since the brain concentrations of sex hormones and neurosteroids decrease with age as well as in neurodegenerative diseases, in parallel with the occurrence of mitochondrial dysfunction and the weakening of cognitive functions, their beneficial effects on oxidative phosphorylation and expression of antioxidant enzymes are also discussed.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Olesen MA, Torres AK, Jara C, Murphy MP, Tapia-Rojas C. Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biol 2020; 34:101558. [PMID: 32447261 PMCID: PMC7248293 DOI: 10.1016/j.redox.2020.101558] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a process characterized by cognitive impairment and mitochondrial dysfunction. In neurons, these organelles are classified as synaptic and non-synaptic mitochondria depending on their localization. Interestingly, synaptic mitochondria from the cerebral cortex accumulate more damage and are more sensitive to swelling than non-synaptic mitochondria. The hippocampus is fundamental for learning and memory, synaptic processes with high energy demand. However, it is unknown if functional differences are found in synaptic and non-synaptic hippocampal mitochondria; and whether this could contribute to memory loss during aging. In this study, we used 3, 6, 12 and 18 month-old (mo) mice to evaluate hippocampal memory and the function of both synaptic and non-synaptic mitochondria. Our results indicate that recognition memory is impaired from 12mo, whereas spatial memory is impaired at 18mo. This was accompanied by a differential function of synaptic and non-synaptic mitochondria. Interestingly, we observed premature dysfunction of synaptic mitochondria at 12mo, indicated by increased ROS generation, reduced ATP production and higher sensitivity to calcium overload, an effect that is not observed in non-synaptic mitochondria. In addition, at 18mo both mitochondrial populations showed bioenergetic defects, but synaptic mitochondria were prone to swelling than non-synaptic mitochondria. Finally, we treated 2, 11, and 17mo mice with MitoQ or Curcumin (Cc) for 5 weeks, to determine if the prevention of synaptic mitochondrial dysfunction could attenuate memory loss. Our results indicate that reducing synaptic mitochondrial dysfunction is sufficient to decrease age-associated cognitive impairment. In conclusion, our results indicate that age-related alterations in ATP produced by synaptic mitochondria are correlated with decreases in spatial and object recognition memory and propose that the maintenance of functional synaptic mitochondria is critical to prevent memory loss during aging. Hippocampus-dependent learning and memory are impaired with age, which correlated with synaptic mitochondrial dysfunction. Synaptic mitochondria fail before non-synaptic mitochondria, indicating premature synaptic mitochondrial damage in aging. Reducing synaptic mitochondrial dysfunction, with MitoQ or Curcumin, decrease age-associated hippocampal memory impairment. Age-related changes in ATP production of synaptic mitochondria correlated with decreased hippocampal memory. Maintenance of functional synaptic mitochondria is critical to prevent memory loss during aging.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile.
| |
Collapse
|
5
|
Jojua N, Sharikadze N, Zhuravliova E, Zaalishvili E, Mikeladze DG. Nobiletin restores impaired hippocampal mitochondrial bioenergetics in hypothyroidism through activation of matrix substrate-level phosphorylation. Nutr Neurosci 2014; 18:225-31. [PMID: 24627959 DOI: 10.1179/1476830514y.0000000120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Evaluation of the effect of citrus flavonoid - nobiletin on the bioenergetics of synaptic and non-synaptic mitochondria in the hippocampus of hypothyroid rats. METHODS Male Wistar rats were divided into hypothyroid (methimazole-treated), nobiletin supplemented hypothyroid, thyroxine-treated hypothyroid, and euthyroid (control) groups. Synaptic and non-synaptic (cell) mitochondria were isolated from hippocampus. Oligomycin-sensitive, oligomycin-insensitive, α-ketoglutarate dehydrogenase-dependent synthesis of adenosine triphosphate (ATP), succinate dehydrogenase, and hexokinase activities were determined luminometrically and spectrophotometrically, respectively. RESULTS Decreased synthesis of oligomycin-sensitive and oligomycin-insensitive ATP in hypothyroid rat hippocampus was observed in synaptic and non-synaptic mitochondria. Supplementation of hypothyroid rats with nobiletin increases oligomycin-insensitive and α-ketoglutarate-dependent production of ATP in both types of mitochondria. The activity of succinate dehydrogenase in non-synaptic mitochondria and the activities of hexokinase in both types of mitochondria were normalized in nobiletin-treated hypothyroid rats. DISCUSSION Nobiletin restores reduced mitochondrial metabolism in hypothyroid rat hippocampus through acceleration of matrix substrate-level phosphorylation that may be important for the prevention of hypometabolic complications in neurological disorders.
Collapse
|