1
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Chen D, He F, Lu T, Huang J, Li M, Cai D, Huang C, Chen D, Xiong F. VPS4B deficiency causes early embryonic lethality and induces signal transduction disorders of cell endocytosis. Genesis 2021; 59:e23415. [PMID: 33682352 DOI: 10.1002/dvg.23415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
VPS4B (vacuolar protein sorting 4B), a member of the ATPase associated with diverse cellular activities (AAA) protein family, is a component of the endosomal sorting complexes required for transport machinery which regulates the internalization and lysosomal degradation of membrane proteins. We previously reported that VPS4B is one of the pathogenic genes related to dentin dysplasia type I, although its function was largely unknown. To investigate the role of VPS4B in tooth development, we deleted the Vps4b gene in mice. We found that heterozygous knockout mice (Vps4b+/- ) developed normally and were fertile. However, homozygous deletion of the Vps4b gene resulted in early embryonic lethality of Vps4b-/- mice at approximately embryonic day 9.5 (E9.5). To investigate the underlying molecular mechanisms, we examined the molecular functions of VPS4B in vivo and in vitro. Cell experiments showed that VPS4B influenced the proliferation, apoptosis, and cell cycle of transfected human neuroblastoma cells (IMR-32 cells) with over-expression or knockdown of VPS4B. Moreover, qRT-PCR detection showed that the mRNA expression levels of apoptosis-, cell cycle-, and endocytosis-related genes was significantly down or up-regulated in RNA interference-mediated knockdown of VPS4B in IMR-32 cells and Vps4b+/- E12.5 embryos. We accordingly speculated that signal transduction disorders of cell endocytosis are a contributing factor to the prenatal lethality of Vps4b-/- mice.
Collapse
Affiliation(s)
- Danna Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dong Chen
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Single Cell Technology and Application in Guangdong, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
3
|
Zhou L, Yang W, Yao E, Li H, Wang J, Wang K, Zhong X, Peng Z, Huang X. MicroRNA-488-3p Regulates Neuronal Cell Death in Cerebral Ischemic Stroke Through Vacuolar Protein Sorting 4B (VPS4B). Neuropsychiatr Dis Treat 2021; 17:41-55. [PMID: 33442254 PMCID: PMC7800712 DOI: 10.2147/ndt.s255666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ischemic stroke, which often occurs with high morbidity, disability, and mortality, is a main cause of brain disease. In various types of human diseases, it is found that microRNAs (miRNAs) are considered as gene regulators. Increasing studies have proved that fluctuation of miRNAs, in the pathologies of ischemic stroke, plays a vital role. However, the accurate regulatory mechanism of cerebral ischemic stroke by miRNAs is still unclear. In this research, we investigated the inhibition mechanism of miR-488-3p on neuronal death through targeting vacuolar protein sorting 4B (VPS4B) in cerebral ischemia/reperfusion (I/R) injury. METHODS Western blot and qRT-PCR were utilized to detect the miR-488-3p level and VPS4B expression. The cell counting kit-8 (CCK-8) assay was utilized to measure the function of miR-488-3p in cell death induced by oxygen glucose deprivation/reoxygenation (OGD/R). After middle cerebral artery occlusion/reperfusion (MCAO/R), the impact of miR-488-3p on infarct volume in mouse brain was assessed. The targets of miR-488-3p were confirmed by luciferase analysis and bioinformatics software. RESULTS The miR-488-3p level remarkably reduced in primary neuronal cells administrated with OGD/R. Similarly, it also decreased in the mouse brain administrated with MCAO/R. Additionally, the up-regulation of miR-488-3p expression suppressed the death of neuronal cells and restrained ischemic brain infarction in ischemia-stroked mice. Besides, the results showed that VPS4B, which could be inhibited by miR-488-3p, was a direct target of miR-488-3p. This research revealed that the inhibition of VPS4B protected the neuronal cells in ischemic stroke both in vitro as well as in vivo. Meanwhile, this inhibition strengthened positive impact generated by miR-488-3p on ischemic injury. CONCLUSION Overall, miR-488-3p played a critical role on neuroprotective function via reducing VPS4B protein level. These results performed a new underlying curative target for the treatment of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Wanxin Yang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Enping Yao
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Haiyan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou510000, People’s Republic of China
| | - Jihui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou510000, People’s Republic of China
| | - Kun Wang
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou510310, People’s Republic of China
| | - Xiaohua Zhong
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Zhongxing Peng
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
- Zhongxing Peng Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China Email
| | - Xuming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
- Correspondence: Xuming Huang Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of ChinaTel +86-20-82804660 Email
| |
Collapse
|
4
|
TRPP2 associates with STIM1 to regulate cerebral vasoconstriction and enhance high salt intake-induced hypertensive cerebrovascular spasm. Hypertens Res 2019; 42:1894-1904. [PMID: 31541223 DOI: 10.1038/s41440-019-0324-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
Cerebrovascular spasm is a life-threatening event in salt-sensitive hypertension. The relationship between store-operated calcium entry (SOCE) and vasoconstriction in hypertension has not been fully clarified. This study investigated the changes in cerebrovascular contractile responses in high salt intake-induced hypertension and the functional roles of the main components of SOCE, namely, polycystin-2 (TRPP2), stromal interaction molecule 1 (STIM1), and Orai3. Polycystic kidney disease 2 (which encodes TRPP2) knockout mice displayed decreased cerebrovascular SOCE-induced contraction. The blood pressure of age-matched rats fed a normal or high-salt diet for 4 weeks was monitored weekly using noninvasive tail-cuff plethysmography. The systolic blood pressure of the rats fed a high-salt diet was significantly higher than that of controls. Western blotting and immunohistochemical results showed that these hypertensive rats expressed higher levels of cerebrovascular TRPP2, STIM1, and Orai3 than controls. Cerebrovascular tension measurements of the basilar artery indicated that SOCE-mediated contraction was significantly increased in hypertensive rats compared with control rats. In addition, SOCE-mediated contraction was decreased in the basilar arteries of rats pretreated with the SOCE inhibitor BTP-2 (10 μM) or transfected with TRPP2-specific or STIM1-specific small interfering RNA. Staining with 2,3,5-triphenyltetrazolium chloride (TTC) was used to quantify the infarcted brain area 24 h after middle cerebral artery occlusion, a model of ischemic stroke, in rodents. The infarcted brain area was significantly greater in hypertensive rats and significantly lower in BTP-2-treated rats than in controls. Taken together, these findings indicate that SOCE-induced contraction may be overactive in the basilar arteries of salt-sensitive hypertensive rats, suggesting the dysregulation of TRPP2 and SOCE and its other components.
Collapse
|
5
|
Chen D, Wang YY, Li XC, Lu FL, Li Q. [Spatio-temporal expression of dentin sialophosphoprotein and collagen Ⅰ during molar tooth germ development in vps4b knockout mouse]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:248-252. [PMID: 31218856 DOI: 10.7518/hxkq.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To verify the effect of the mutant gene vps4b on the expression of tooth development-related proteins, dentin sialophosphoprotein (DSPP) and collagenⅠ (COL-Ⅰ). METHODS Paraffin tissue sections of the first molar tooth germ were obtained from the heads of fetal mice at the embryonic stages of 13.5, 14.5, and 16.5 days and from the mandibles of larvae aged 2.5 and 7 days after birth. The immunohistochemical method was used to detect the expression and location of DSPP and COL-Ⅰ in wild-type mouse and vps4b knockout mouse. RESULTS DSPP and COL-Ⅰ were not found in the bud and cap stages of wild-type mouse molar germ. In the bell stage, DSPP was positively expressed in the inner enamel epithelium and dental papilla, whereas COL-Ⅰ was strongly expressed in the dental papilla and dental follicle. During the secretory and mineralized periods, DSPP and COL-Ⅰ were intensely observed in ameloblasts, odontoblasts, and dental follicles, but COL-Ⅰ was also expressed in the dental papilla. After vps4b gene knockout, DSPP was not expressed in the dental papilla of the bell stage and in the dental papilla and dental follicle of the secretory phase. The expression position of COL-Ⅰ in the bell and mineralization phase was consistent with that in the wild-type mice. Moreover, the expression of COL-Ⅰ in the dental papilla changed in the secretory stage. CONCLUSIONS Gene vps4b plays a significant role in the development of tooth germ. The expression of DSPP and COL-Ⅰ may be controlled by gene vps4b and regulates the development of tooth dentin and cementum together with vps4b.
Collapse
Affiliation(s)
- Dong Chen
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ying-Ying Wang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiao-Cong Li
- Dept. of Stomatology, Puyang People's Hospital, Puyang 457099, China
| | - Fang-Li Lu
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiang Li
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
6
|
Vps4b heterozygous mice do not develop tooth defects that replicate human dentin dysplasia I. BMC Genet 2019; 20:7. [PMID: 30634912 PMCID: PMC6330468 DOI: 10.1186/s12863-018-0699-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vacuolar protein sorting-associated protein 4B (VPS4B) is a member of the ATP enzyme AAA protein family, and is mainly involved in protein degradation and cell membrane fusion. Recently, a dominant mutation in this gene was identified in human dentin dysplasia type I (DD-I). Herein, we report the generation of Vps4b knockout (Vps4b KO) mice; however, the homozygous Vps4b KO mutation was embryonic lethal at the early stages of embryo development, and we therefore report the results of heterozygous mutant mice. RESULTS Mice heterozygous for Vps4b did not develop tooth defects replicating human DD-I. Immunohistochemistry showed that gene KO was successful, as there was decreased expression of Vps4b in heterozygous mice; hematoxylin and eosin (H&E) staining also showed that the width of the pre-dentin zone was increased in heterozygous mice, although the arrangement of the odontoblasts was not significantly different from wild-type (WT) mice. However, H&E staining showed no obvious abnormalities in the bones of heterozygous mice. Moreover, stereomicroscopic and X-ray radiography results indicated no abnormal manifestations in teeth or bones. Furthermore, statistical analysis of the volume and density of dentin and enamel, as well as skeletal analysis, including the volume and separation of trabecular bone analyzed by micro-CT, all showed no differences between Vps4b heterozygotes and WT mice. In addition, there also were no significant differences in bone or cartilage mineralization as evaluated by Alcian blue-Alizarin red staining. CONCLUSIONS The heterozygous Vps4b KO mice do not develop tooth defects that replicate human DD-I and this is likely to be due to differences in tooth development between the two species. Consequently, further studies are needed to determine whether mice are an appropriate animal model for human tooth diseases.
Collapse
|
7
|
Chen D, Li X, Lu F, Wang Y, Xiong F, Li Q. Dentin dysplasia type I-A dental disease with genetic heterogeneity. Oral Dis 2018; 25:439-446. [PMID: 29575674 PMCID: PMC7818184 DOI: 10.1111/odi.12861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
Hereditary dentin disorders include dentinogenesis imperfecta (DGI) and dentin dysplasia (DD), which are autosomal dominant diseases characterized by altered dentin structure such as abnormality in dentin mineralization and the absence of root dentin. Shields classified DGI into three subgroups and DD into two subtypes. Although they are all hereditary dentin diseases, they do not share the same causative genes. To date, the pathogenic genes of DGI type I, which is considered a clinical manifestation of syndrome osteogenesis imperfecta, include COL1A1 and COL1A2. Mutations of the DSPP gene, which encodes the dentin sialophosphoprotein, a major non-collagenous protein, are responsible for three isolated dentinal diseases: DGI-II, DGI-III, and DD-II. However, DD-I appears to be special in that researchers have found three pathogenicity genes-VPS4B, SSUH2, and SMOC2-in three affected families from different countries. It is believed that DD-I is a genetically heterogeneous disease and is distinguished from other types of dentin disorders. This review summarizes the DD-I literature in the context of clinical appearances, radiographic characteristics, and functions of its pathogenic genes and aims to serve clinicians in further understanding and diagnosing this disease.
Collapse
Affiliation(s)
- D Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Lu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Q Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Xu L, Zhai L, Ge Q, Liu Z, Tao R. Vacuolar Protein Sorting 4B (VPS4B) Regulates Apoptosis of Chondrocytes via p38 Mitogen-Activated Protein Kinases (MAPK) in Osteoarthritis. Inflammation 2017; 40:1924-1932. [DOI: 10.1007/s10753-017-0633-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Ren J, Yuan D, Xie L, Tao X, Duan C, Bao Y, He Y, Ge J, Lu H. Up-regulation of Vps4A promotes neuronal apoptosis after intracerebral hemorrhage in adult rats. Metab Brain Dis 2017; 32:565-575. [PMID: 28064406 DOI: 10.1007/s11011-016-9943-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
Abstract
Vps4, vacuolar protein sorting 4, belongs to ATPases Associated with diverse cellular Activities (AAA) protein family which is made up of Vps4A and Vps4B. Previous studies demonstrated that Vps4A plays vital roles in diverse aspects such as virus budding, the efficient transport of H-Ras to the PM (plasma membrane) and the involvement in the MVB (multivesiculate bodies) pathway. Interestingly, Vps4A is also expressed in the brain. However, the distribution and function of Vps4A in ICH diseases remain unclear. In this study, we show that Vps4A may be involved in neuronal apoptosis during pathophysiological processes of intracerebral hemorrhage (ICH). Based on the results of Western blot and immunohistochemistry, we found a remarkable up-regulation of Vps4A expression surrounding the hematoma after ICH. Double labeled immunofluorescence showed that Vps4A was co-expressed with NeuN but rarely with astrocytes and microglia. Morever, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with Vps4A. Additionaly, Vps4A knockdown in vitro specifically leads to decreasing neuronal apoptosis coupled with increased Akt phosphorylation. All datas suggested that Vps4A was involved in promoting neuronal apoptosis via inhibiting Akt phosphorylation after ICH.
Collapse
Affiliation(s)
- Jianbing Ren
- Department of Rehabilitation, the Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| | - Debin Yuan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Lili Xie
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xuelei Tao
- Department of Rehabilitation, the Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| | - Chenwei Duan
- Department of Rehabilitation, the Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yifeng Bao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yunfeng He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jianbin Ge
- Department of Rehabilitation, the Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China.
| | - Hongjian Lu
- Department of Rehabilitation, the Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
10
|
Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, Zhao L, Ye Y, Zhou H, Hu L, Tian Z, Shang X, Zhang L, Wei X, Zhou W, Li D, Zhang W, Xu X. A splicing mutation inVPS4Bcauses dentin dysplasia I. J Med Genet 2016; 53:624-33. [DOI: 10.1136/jmedgenet-2015-103619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
|
11
|
Tang J, Ji L, Wang Y, Huang Y, Yin H, He Y, Liu J, Miao X, Wu Y, Xu X, He S, Cheng C. Cell adhesion down-regulates the expression of vacuolar protein sorting 4B (VPS4B) and contributes to drug resistance in multiple myeloma cells. Int J Hematol 2015; 102:25-34. [DOI: 10.1007/s12185-015-1783-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022]
|
12
|
Vacuolar protein sorting 4B regulates apoptosis of intestinal epithelial cells via p38 MAPK in Crohn's disease. Exp Mol Pathol 2015; 98:55-64. [DOI: 10.1016/j.yexmp.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/16/2023]
|
13
|
Henriques A, Kastner S, Chatzikonstantinou E, Pitzer C, Plaas C, Kirsch F, Wafzig O, Krüger C, Spoelgen R, Gonzalez De Aguilar JL, Gretz N, Schneider A. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF. Front Cell Neurosci 2015; 8:464. [PMID: 25653590 PMCID: PMC4299451 DOI: 10.3389/fncel.2014.00464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.
Collapse
Affiliation(s)
- Alexandre Henriques
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | | | | | | | | | | | | | | | | | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | | |
Collapse
|