1
|
Park JH, Kim DW, Lee TK, Park CW, Park YE, Ahn JH, Lee HA, Won MH, Lee CH. Improved HCN channels in pyramidal neurons and their new expression levels in pericytes and astrocytes in the gerbil hippocampal CA1 subfield following transient ischemia. Int J Mol Med 2019; 44:1801-1810. [PMID: 31573045 PMCID: PMC6777693 DOI: 10.3892/ijmm.2019.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been known to participate in the regulation of neuronal excitability, synaptic transmission and long-term potentiation in the hippocampus. The present study investigated transient ischemia-induced changes of HCN1 and HCN2 expressions in the Cornu Ammonis 1 (CA1) subfield of the hippocampus in gerbils subjected to 5 min transient global cerebral ischemia (tgCI). Neuronal death was exhibited in pyramidal neurons of the striatum pyramidale in the CA1 subfield 4 days after tgCI. HCN1 and HCN2 immunoreactivities were demonstrated in intact CA1 pyramidal neurons, and were transiently and markedly increased in the CA pyramidal neurons at 6 h after ischemia. Thereafter, they gradually decreased in a time-dependent manner. A total of 4 days after ischemia, HCN1 and HCN2 immunoreactivities were barely detected in the CA1 pyramidal neurons; however, HCN1 and HCN2 were began to be expressed in pericytes and astrocytes at 4 days after ischemia. The results indicated that HCN1 and HCN2 expression levels were apparently changed in the gerbil hippocampal CA1 subfield following tgCI and suggested that ischemia-induced alterations in HCN1 and HCN2 expression levels may be closely associated with the death of CA1 pyramidal neurons following 5 min of tgCI.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|
2
|
Zaric M, Drakulic D, Stojanovic IG, Mitrovic N, Grkovic I, Martinovic J. Regional-specific effects of cerebral ischemia/reperfusion and dehydroepiandrosterone on synaptic NMDAR/PSD-95 complex in male Wistar rats. Brain Res 2018; 1688:73-80. [PMID: 29577884 DOI: 10.1016/j.brainres.2018.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
Excessive glutamate efflux and N-methyl-D-aspartate receptor (NMDAR) over-activation represent well-known hallmarks of cerebral ischemia/reperfusion (I/R) injury, still, expression of proteins involved in this aspect of I/R pathophysiology show inconsistent data. Neurosteroid dehydroepiandrosterone (DHEA) has been proposed as potent NMDAR modulator, but its influence on I/R-induced changes up to date remains questionable. Therefore, I/R-governed alteration of vesicular glutamate transporter 1 (vGluT1), synaptic NMDAR subunit composition, postsynaptic density protein 95 (PSD-95) and neuronal morphology alone or following DHEA treatment were examined. For that purpose, adult male Wistar rats were treated with a single dose of vehicle or DHEA (20 mg/kg i.p.) 4 h following sham operation or 15 min bilateral common carotid artery occlusion. Western blot was used for analyses of synaptic protein expressions in hippocampus and prefrontal cortex, while neuronal morphology was assessed using Nissl staining. Regional-specific postischemic changes were detected on protein level i.e. signs of neuronal damage in CA1 area was accompanied with hippocampal vGluT1, NR1, NR2B enhancement and PSD-95 decrement, while histological changes observed in layer III were associated with decreased NR1 subunit in prefrontal cortex. Under physiological conditions DHEA had no effect on protein and histological appearance, while in ischemic milieu it restored hippocampal PSD-95 and NR1 in prefrontal cortex to the control level. Along with intact neurons, ones characterized by morphology observed in I/R group were also present. Future studies involving NMDAR-related intracellular signaling and immunohistochemical analysis will reveal precise effects of I/R and DHEA treatment in selected brain regions.
Collapse
Affiliation(s)
- Marina Zaric
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Dunja Drakulic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ivana Gusevac Stojanovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Natasa Mitrovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena Martinovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Abstract
Major depressive disorder (MDD) is a chronic and potentially life threatening illness that carries a staggering global burden. Characterized by depressed mood, MDD is often difficult to diagnose and treat owing to heterogeneity of syndrome and complex etiology. Contemporary antidepressant treatments are based on improved monoamine-based formulations from serendipitous discoveries made > 60 years ago. Novel antidepressant treatments are necessary, as roughly half of patients using available antidepressants do not see long-term remission of depressive symptoms. Current development of treatment options focuses on generating efficacious antidepressants, identifying depression-related neural substrates, and better understanding the pathophysiological mechanisms of depression. Recent insight into the brain's mesocorticolimbic circuitry from animal models of depression underscores the importance of ionic mechanisms in neuronal homeostasis and dysregulation, and substantial evidence highlights a potential role for ion channels in mediating depression-related excitability changes. In particular, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential regulators of neuronal excitability. In this review, we describe seminal research on HCN channels in the prefrontal cortex and hippocampus in stress and depression-related behaviors, and highlight substantial evidence within the ventral tegmental area supporting the development of novel therapeutics targeting HCN channels in MDD. We argue that methods targeting the activity of reward-related brain areas have significant potential as superior treatments for depression.
Collapse
Affiliation(s)
- Stacy M Ku
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Rho-kinase inhibitor prevents acute injury against transient focal cerebral ischemia by enhancing the expression and function of GABA receptors in rats. Eur J Pharmacol 2017; 797:134-142. [DOI: 10.1016/j.ejphar.2017.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/01/2023]
|
5
|
Haghani M, Keshavarz S, Nazari M, Rafati A. Electrophysiology of cerebral ischemia and reperfusion: First evidence for the role of synapse in ischemic tolerance. Synapse 2016; 70:351-60. [PMID: 27124112 DOI: 10.1002/syn.21910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The subthreshold brain-damaging stimulus may protect the brain from subsequent ischemia; this phenomenon has been named "ischemic tolerance" (IT). We focused on the synaptic properties of the neurons after mild and severe ischemia to determine the association between IT and synaptic efficacy. EXPERIMENTAL DESIGN Adult male rats were randomly divided into four experimental groups including control, sham, permanent ischemia (pI/R), and mild ischemia (mI/R). Middle cerebral artery occlusion (MCAO) method was applied to induce brain ischemia. Seven days after the insult, long-term potentiation (LTP) induced by high-frequency stimulation (HFS) and paired-pulse ratio (PPR) were monitored before and after the HFS delivery. RESULTS The field potential recording demonstrated that mild ischemia significantly increased the basal synaptic transmission. Additionally, the HFS produced a significant potentiation compared to its baseline level in the mI/R group. Moreover, mild ischemia prevented depression of PPR by HFS. This effect was accompanied by a significant increase in the normalized PPR (PPR after HFS/PPR before HFS) in this group. CONCLUSIONS Our data indicated that a mild reduction in brain perfusion without permanent lesion can dramatically increase the basal synaptic transmission. This effect may be associated with an increase in the neurotransmitter content of the pre-synaptic neurons. This hypothesis could provide a new insight into the relationship between IT and synaptic efficacy. Synapse 70:351-360, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masoud Haghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Keshavarz
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nazari
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Zhao F, Qu Y, Liu H, Du B, Mu D. Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci 2014; 38:147-54. [PMID: 24999119 DOI: 10.1016/j.ijdevneu.2014.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD), a leading cause of perinatal disability and death, has limited therapeutic options. Stem cell therapy has been demonstrated as a potential novel therapy for neurological disorders. Compared with other types of stem cells, umbilical cord blood mesenchymal stem cells (UCB-MSCs) have several unique characteristics, such as a higher rate of cell proliferation and clonality. However, the limited life span of UCB-MSCs hinders their clinical application. Therefore, efforts are urgently needed to circumvent this disadvantage. Telomerase reverse transcriptase (TERT), which promotes cell proliferation and survival, plays a protective role in hypoxic-ischemic (HI) brain injury. Thus, it is reasonable to propose that UCB-MSCs modified by exogenous TERT expression might have a longer lifespan and increased viability. Moreover, brain-derived neurotrophic factor (BDNF), a neurotrophin that regulates development, regeneration, survival and maintenance of neurons, facilitates post-injury recovery when administered by infusion or virus-mediated delivery. Therefore, TERT- and BDNF-modified UCB-MSCs may have a longer lifespan and also maintain neural differentiation, thus promoting the recovery of neurological function following hypoxic-ischemic brain damage (HIBD) and thereby representing a new effective strategy for HIBD in neonates.
Collapse
Affiliation(s)
- Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Haiting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Baowen Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China; Department of Pediatrics and Neurology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|