1
|
Mu Y, Zhang N, Wei D, Yang G, Yao L, Xu X, Li Y, Xue J, Zhang Z, Chen T. Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions. Neural Regen Res 2025; 20:2116-2128. [PMID: 39254570 PMCID: PMC11691450 DOI: 10.4103/nrr.nrr-d-23-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 01/07/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00032/figure1/v/2024-09-09T124005Z/r/image-tiff A microgravity environment has been shown to cause ocular damage and affect visual acuity, but the underlying mechanisms remain unclear. Therefore, we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity. After 4 weeks of tail suspension, there were no notable alterations in retinal function and morphology, while after 8 weeks of tail suspension, significant reductions in retinal function were observed, and the outer nuclear layer was thinner, with abundant apoptotic cells. To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina, proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension. The results showed that the expression levels of fibroblast growth factor 2 (also known as basic fibroblast growth factor) and glial fibrillary acidic protein, which are closely related to Müller cell activation, were significantly upregulated. In addition, Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks, respectively, of simulated weightlessness. These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Ning Zhang
- Department of Emergency Medicine, Wuhan No.1 Hospital, Wuhan, Hubei Province, China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Guoqing Yang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Lilingxuan Yao
- Third Regiment, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xinyue Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yang Li
- Fourth Regiment, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Junhui Xue
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Sahin E, Orhan C, Sahin N, Padigaru M, Morde A, Lal M, Dhavan N, Erten F, Bilgic AA, Ozercan IH, Sahin K. Lutein/Zeaxanthin Isomers and Quercetagetin Combination Safeguards the Retina from Photo-Oxidative Damage by Modulating Neuroplasticity Markers and the Nrf2 Pathway. Pharmaceuticals (Basel) 2023; 16:1543. [PMID: 38004409 PMCID: PMC10675275 DOI: 10.3390/ph16111543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to light-emitting diode (LED) light is a primary cause of retinal damage, resulting in vision loss. Several plant-derived substances, such as lutein and quercetagetin (QCG), show promise in supporting eye health. In this study, the impact of lutein/zeaxanthin (L/Z, Lutemax 2020) and QCG were evaluated individually and together in a rat model of LED-induced retinal damage. A total of 63 Wistar rats were allocated into nine groups (n = 7). For 28 days, the rats received L/Z (10 or 20 mg/kg BW), quercetin (QC, 20 mg/kg BW), QCG (10 or 20 mg/kg BW), or a mixture of different lutein and QCG dosages, after which they were exposed to LED light for 48 h. LED exposure led to a spike in serum malondialdehyde (MDA) and inflammatory cytokines, as well as an increase in retinal NF-κB, ICAM, GFAP, and MCP-1 levels (p < 0.0001 for all). It also reduced serum antioxidant enzyme activities and retinal Nrf2, HO-1, GAP43, NCAM, and outer nuclear layer (ONL) thickness (p < 0.0001 for all). However, administering L/Z and QCG, particularly a 1:1 combination of L/Z and QCG at 20 mg/kg, effectively reversed these changes. The treatment suppressed NF-κB, ICAM, GFAP, and MCP-1 while enhancing Nrf2, HO-1, GAP43, and NCAM and preventing ONL thickness reduction in LED-induced retinal damage rats. In conclusion, while LED light exposure caused retinal damage, treatment with L/Z, QC, and QCG, particularly a combined L/Z and QCG regimen, exhibited protective effects on the retina. This is possibly due to the modulation of neuroplasticity markers and nuclear transcription factors in the rats' retinal cells.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.)
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.)
| | - Muralidhara Padigaru
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Abhijeet Morde
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Mohan Lal
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Nanasaheb Dhavan
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Fusun Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli 62500, Turkey;
| | - Ahmet Alp Bilgic
- Department of Ophtalmology, Ankara Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara 06110, Turkey;
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.)
| |
Collapse
|
3
|
Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235:109645. [PMID: 37683797 DOI: 10.1016/j.exer.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Müller glial cells (MC) support various metabolic functions of the retinal neurons, and maintain the homeostasis. Oxidative stress is intensified with aging, and in human retina, MC and photoreceptors undergo lipid peroxidation and protein nitration. Information on how MC respond to oxidative stress is vital to understand the fate of aging retinal neurons. This study examined age-related changes in MC of donor human retina (age: 35-98 years; N = 18 donors). Ultrastructural and immunohistochemical observations indicate that MC undergo gliosis and increased lipid peroxidation, and show osmotic changes with advanced aging (>80 years). Photoreceptor cells also undergo oxidative-nitrosative stress with aging, and their synapses also show clear osmotic swelling. MC respond to oxidative stress via proliferation of smooth endoplasmic reticulum in their processes, and increased expression of aquaporin-4 in endfeet and outer retina. In advanced aged retinas (81-98 years), they showed mitochondrial disorganisation, accumulation of lipids and autophagosomes, lipofuscin granules and axonal remnants in phagolysosomes in their inner processes, suggesting a reduced phagocytotic potential in them with aging. Glutamine synthetase expression does not alter until advanced aging, when the retinas show its increased expression in endfeet and Henle fiber layer. It is evident that MC are vulnerable with normal aging and this could be a reason for photoreceptor cell abnormalities reported with aging of the human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, Gupta S, Roy TS. Changes in the Inner Retinal Cells after Intense and Constant Light Exposure in Sprague-Dawley Rats. Photochem Photobiol 2020; 96:1061-1073. [PMID: 32112401 DOI: 10.1111/php.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Light insult causes photoreceptor death. Few studies reported that continuous exposure to light affects horizontal, Müller and ganglion cells. We aimed to see the effect of constant light exposure on bipolar and amacrine cells. Adult Sprague-Dawley rats were exposed to 300 or 3000 lux for 7 days in 12-h light: 12-h dark cycles (12L:12D). The latter group was then exposed to 24L:0D for 48 h to induce significant damage. The same animals were reverted to 300 lux and reared for 15 days in 12L:12D cycles. They were sacrificed on different days to find the degree of retinal recovery, if any, from light injury. Besides photoreceptor death, continuous light for 48 h resulted in downregulation of parvalbumin in amacrine cells and recoverin in cone bipolar cells (CBC). Rod bipolar cells (RBC) maintained an unaltered pattern of PKC-α expression. Upon reversal, there were increased expressions of parvalbumin in amacrine cells and recoverin in CBC, while RBC showed an increasing trend of PKC-α expression. The data show that damage in bipolar and amacrine cells after exposure to intense, continuous light can be ameliorated upon reversal to normal LD cycles to which the animals were initially acclimated to.
Collapse
Affiliation(s)
- Chandan L Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Zhang YL, Wang RB, Li WY, Xia FZ, Liu L. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int J Ophthalmol 2017; 10:1812-1818. [PMID: 29259897 DOI: 10.18240/ijo.2017.12.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/25/2017] [Indexed: 01/16/2023] Open
Abstract
AIM To explore the role of Pioglitazone (Pio) on a mouse model of retinal ischemia/reperfusion (I/R) injury and to elucidate the potential mechanism. METHODS Retinal ischemia was induced in mice by increasing the intraocular pressure, and Pio was administered 4h though periocular injection before I/R. The number of cells in the ganglion cell layer (GCL) was counted 7d after retinal I/R injury. Glial fibrillary acidic protein (GFAP), nuclear factor-kappa B (NF-κB), p38, phosphorylated-p38, PPAR-γ, interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), NLRP3, cleaved caspase-1, caspase-1 were determined by real-time polymerase chain reaction and Western blotting. RESULTS Pio promoted the survival of retinal cells in GCL following retinal I/R injury (P<0.05). Besides, retinal I/R injury stimulated the expression of GFAP and TLR4, which were partially reversed by Pio treatment (P<0.05). Retinal I/R injury-upregulated expression of NLRP3, cleaved caspase-1, IL-1β was attenuated after Pio treatment (P<0.05). Moreover, I/R injury induced activation of NF-κB and p38 were inhibited by Pio treatment (P<0.05). CONCLUSION Pio promotes retinal ganglion cells survival by suppressing I/R-induced activation of TLR4/NLRP3 inflammasomes via inhibiting NF-κB and p38 phosphorylation.
Collapse
Affiliation(s)
- Yue-Lu Zhang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruo-Bing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Yi Li
- Department of Ophthalmology, Shandong University Qilu Hospital (Qingdao), Qingdao 266035, Shandong Province, China
| | - Fang-Zhou Xia
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|