1
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Jorda A, Aldasoro M, Aldasoro C, Valles SL. Inflammatory Chemokines Expression Variations and Their Receptors in APP/PS1 Mice. J Alzheimers Dis 2021; 83:1051-1060. [PMID: 34397415 DOI: 10.3233/jad-210489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), an increase in inflammation is distinctive. Amyloid precursor protein plus presenilin-1 (APP/PS1 mice) is a model for this illness. Chemokines secreted by central nervous system (CNS) cells could play multiple important roles in AD. Data looking for the chemokines involved in inflammatory mechanisms are lacking. To understand the changes that occur in the inflammation process in AD, it is necessary to improve strategies to act on specific inflammatory targets. OBJECTIVE Chemokines and their receptors involved in phagocytosis, demyelination, chemotaxis, and coagulation were the objective of our study. METHODS Female APPswe/PS1 double-transgenic mice (B6C3-Tg) were used and cortex brain from 20-22-month-old mice obtained and used to quantify chemokines and chemokine receptors expression using RT-PCR technique. RESULTS Significant inflammatory changes were detected in APP/PS1 compared to wild type mice. CCR1, CCR3, CCR4, and CCR9 were elevated, and CCR2 were decreased compared with wild type mice. Their ligands CCL7, CCL11, CCL17, CCL22, CCL25, and CXCL4 showed an increase expression; however, changes were not observed in CCL2 in APP/PS1 compared to wild type mice. CONCLUSION This change in expression could explain the differences between AD patients and elderly people without this illness. This would provide a new strategy for the treatment of AD, with the possibility to act in specific inflammatory targets.
Collapse
Affiliation(s)
- Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Surgery and Chiropody, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| |
Collapse
|
3
|
Stozicka Z, Korenova M, Uhrinova I, Cubinkova V, Cente M, Kovacech B, Babindakova N, Matyasova K, Vargova G, Novak M, Novak P, Zilka N, Jadhav S. Environmental Enrichment Rescues Functional Deficit and Alters Neuroinflammation in a Transgenic Model of Tauopathy. J Alzheimers Dis 2021; 74:951-964. [PMID: 32116255 DOI: 10.3233/jad-191112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder, affecting over 44 million people worldwide. There are no effective pharmaco-therapeutic options for prevention and treatment of AD. Non-pharmacological approaches may help patients suffering from AD to significantly ameliorate disease progression. In this study, we exposed a transgenic rat model (tg) of human tauopathy to enriched environment for 3 months. Behavioral testing at 6 months of age revealed improvement in functional deficits of tg rats reared under enriched conditions, while sedentary tg rats remained severely impaired. Interestingly, enriched environment did not reduce tau pathology. Analysis of neurotrophic factors revealed an increase of nerve growth factor (NGF) levels in the hippocampus of both enriched groups (tg and non-tg rats), reflecting a known effect of enriched environment on the hippocampal formation. On the contrary, NGF levels decreased markedly in the brainstem of enriched groups. The non-pharmacological treatment also reduced levels of tissue inhibitor of metalloproteinase 1 in the brainstem of transgenic rats. Expression analysis of inflammatory pathways revealed upregulation of microglial markers, such as MHC class II and Cd74, whereas levels of pro-inflammatory cytokines remained unaffected by enriched environment. Our results demonstrate that exposure to enriched environment can rescue functional impairment in tau transgenic rats without reducing tau pathology. We speculate that non-pharmacological treatment modulates the immune response to pathological tau protein inclusions, and thus reduces the damage caused by neuroinflammation.
Collapse
Affiliation(s)
- Zuzana Stozicka
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Miroslava Korenova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Ivana Uhrinova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Branislav Kovacech
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Nikoleta Babindakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Katarina Matyasova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Greta Vargova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia.,Axon Neuroscience SE, Larnaca, Cyprus
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia.,Axon Neuroscience CRM Services SE, Bratislava, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| |
Collapse
|
4
|
Marsland P, Parrella A, Orlofsky M, Lovelock DF, Vore AS, Varlinskaya EI, Deak T. Neuroendocrine and neuroimmune responses in male and female rats: evidence for functional immaturity of the neuroimmune system during early adolescence. Eur J Neurosci 2021; 55:2311-2325. [PMID: 33458889 PMCID: PMC8287786 DOI: 10.1111/ejn.15118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Adolescence is a developmental period characterized by rapid behavioral and physiological changes, including enhanced vulnerability to stress. Recent studies using rodent models of adolescence have demonstrated age differences in neuroendocrine responses and blunted neuroimmune responding to pharmacological challenges. The present study was designed to test whether this neuroimmune insensitivity would generalize to a non-pharmacological stress challenge. Male and female adolescent (P29-33) and adult (P70-80) Sprague Dawley rats were exposed to intermittent footshock for one-, two-, or two-hours + recovery. Plasma corticosterone and progesterone levels as well as gene expression of several cytokines and c-Fos gene expression in the paraventricular nucleus of the hypothalamus (PVN), the medial amygdala (MeA), and the ventral hippocampus (vHPC) were analyzed. The results of the present study demonstrated differences in response to footshock, with these differences dependent on age, sex, and brain region of interest. Adult males and females demonstrated time-dependent increases in IL-1β and IL-1R2 in the PVN, with these changes not evident in adolescent males and substantially blunted in adolescent females. TNFα expression was decreased in all regions of interest, with adults demonstrating more suppression relative to adolescents and age differences more apparent in males than in females. IL-6 expression was affected by footshock predominantly in the vHPC of adolescent and adult males and females, with females demonstrating prolonged elevation of IL-6 gene expression. In summary, central cytokine responses to acute stressor exposure are blunted in adolescent rats, with the most pronounced immaturity evident for the brain IL-1 signaling system.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Allissa Parrella
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Maya Orlofsky
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
An epigenome-wide association study of early-onset major depression in monozygotic twins. Transl Psychiatry 2020; 10:301. [PMID: 32843619 PMCID: PMC7447798 DOI: 10.1038/s41398-020-00984-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Major depression (MD) is a debilitating mental health condition with peak prevalence occurring early in life. Genome-wide examination of DNA methylation (DNAm) offers an attractive complement to studies of allelic risk given it can reflect the combined influence of genes and environment. The current study used monozygotic twins to identify differentially and variably methylated regions of the genome that distinguish twins with and without a lifetime history of early-onset MD. The sample included 150 Caucasian monozygotic twins between the ages of 15 and 20 (73% female; Mage = 17.52 SD = 1.28) who were assessed during a developmental stage characterized by relatively distinct neurophysiological changes. All twins were generally healthy and currently free of medications with psychotropic effects. DNAm was measured in peripheral blood cells using the Infinium Human BeadChip 450 K Array. MD associations with early-onset MD were detected at 760 differentially and variably methylated probes/regions that mapped to 428 genes. Genes and genomic regions involved neural circuitry formation, projection, functioning, and plasticity. Gene enrichment analyses implicated genes related to neuron structures and neurodevelopmental processes including cell-cell adhesion genes (e.g., PCDHA genes). Genes previously implicated in mood and psychiatric disorders as well as chronic stress (e.g., NRG3) also were identified. DNAm regions associated with early-onset MD were found to overlap genetic loci identified in the latest Psychiatric Genomics Consortium meta-analysis of depression. Understanding the time course of epigenetic influences during emerging adulthood may clarify developmental phases where changes in the DNA methylome may modulate individual differences in MD risk.
Collapse
|
6
|
Chen K, Tang Y, Zhao X, Hou C, Li G, Zhang B. Association of IL1R2 rs34043159 with sporadic Alzheimer's disease in southern Han Chinese. Eur J Neurol 2020; 27:1844-1847. [PMID: 32402117 DOI: 10.1111/ene.14319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The objective of the study was to investigate the relationship between IL1R2 rs34043159 and Alzheimer's disease (AD) in the Chinese population. METHODS A total of 500 AD patients and 500 healthy controls were recruited. The SNaPshot technique was used to detect IL1R2 rs34043159. RESULTS The dominant and recessive models of IL1R2 rs34043159 were associated with AD with or without adjustment of age, gender and education [dominant model, P = 0.019, odds ratio (OR) 1.42, 95% confidence interval (CI) 1.06-1.89, adjusted; recessive model, P = 0.011, OR 0.69, 95% CI 0.51-0.92, adjusted]. The recessive model of IL1R2 rs34043159 was associated with early-onset AD (EOAD) with or without adjustment of age, gender and education (recessive model, P = 0.038, OR 0.60, 95% CI 0.37-0.97, adjusted). The additive model was associated with late-onset AD (LOAD) (P = 0.041). The dominant model of IL1R2 rs34043159 was associated with LOAD with or without adjustment of age, gender and education (dominant model, P = 0.005, OR 1.68, 95% CI 1.17-2.44, adjusted). CONCLUSION An association between the dominant and recessive model of IL1R2 rs34043159 and AD was found. The recessive model of IL1R2 rs34043159 was associated with EOAD. The additive and dominant models of IL1R2 rs34043159 were associated with LOAD.
Collapse
Affiliation(s)
- K Chen
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Y Tang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - X Zhao
- Department of Neurology, Suzhou Ninth People's Hospital, Jiangsu Province, Shanghai, China
| | - C Hou
- Department of Interventional Medicine, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - G Li
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - B Zhang
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Inflammation in Post-Traumatic Stress Disorder (PTSD): A Review of Potential Correlates of PTSD with a Neurological Perspective. Antioxidants (Basel) 2020; 9:antiox9020107. [PMID: 31991875 PMCID: PMC7070581 DOI: 10.3390/antiox9020107] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a chronic condition characterized by symptoms of physiological and psychosocial burden. While growing research demonstrated signs of inflammation in PTSD, specific biomarkers that may be representative of PTSD such as the detailed neural correlates underlying the inflammatory responses in relation to trauma exposure are seldom discussed. Here, we review recent studies that explored alterations in key inflammatory markers in PTSD, as well as neuroimaging-based studies that further investigated signs of inflammation within the brain in PTSD, as to provide a comprehensive summary of recent literature with a neurological perspective. A search was conducted on studies published from 2009 through 2019 in PubMed and Web of Science. Fifty original articles were selected. Major findings included elevated levels of serum proinflammatory cytokines in individuals with PTSD across various trauma types, as compared with those without PTSD. Furthermore, neuroimaging-based studies demonstrated that altered inflammatory markers are associated with structural and functional alterations in brain regions that are responsible for the regulation of stress and emotion, including the amygdala, hippocampus, and frontal cortex. Future studies that utilize both central and peripheral inflammatory markers are warranted to elucidate the underlying neurological pathway of the pathophysiology of PTSD.
Collapse
|
8
|
Peña-Bautista C, Casas-Fernández E, Vento M, Baquero M, Cháfer-Pericás C. Stress and neurodegeneration. Clin Chim Acta 2020; 503:163-168. [PMID: 31987795 DOI: 10.1016/j.cca.2020.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a great concern because of aging worldwide population. Despite substantial effort to advance our understanding of the etiology and potential treatment of neurodegeneration, there remains a paucity of information with respect to this complex disease process. Interestingly, stress has been implicated among the potential mechanisms implicated in neurodegenerative pathology. Given the increase in chronic stress in modern society, this premise warrants further investigation. The aim of this review is to evaluate the influence of stress on neurodegeneration, the effect of neurodegenerative diseases diagnosis on stress, and therapeutic strategies for neurodegenerative diseases with a special focus on stress reduction. Neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's Disease showed an acceleration in disease progression and a worsening of symptoms under stress. Some therapies (e.g., yoga, meditation) focused on reducing stress showed beneficial effects against neurodegeneration. Nevertheless, more studies are necessary in order to completely understand the implications of stress in neurodegeneration and the usefulness of stress reduction in the treatment thereof.
Collapse
Affiliation(s)
| | | | - Máximo Vento
- Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
9
|
Kline SA, Mega MS. Stress-Induced Neurodegeneration: The Potential for Coping as Neuroprotective Therapy. Am J Alzheimers Dis Other Demen 2020; 35:1533317520960873. [PMID: 32969239 PMCID: PMC10623922 DOI: 10.1177/1533317520960873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Stress responses are essential for survival, but become detrimental to health and cognition with chronic activation. Chronic hypothalamic-pituitary-adrenal axis release of glucocorticoids induces hypothalamic-pituitary-adrenal axis dysfunction and neuronal loss, decreases learning and memory, and modifies glucocorticoid receptor/mineralocorticoid receptor expression. Elderly who report increased stress are nearly 3 times more likely to develop Alzheimer's disease, have decreased global cognition and faster cognitive decline than those reporting no stress. Patients with mild cognitive impairment are more sensitive to stress compared to healthy elderly and those with Alzheimer's disease. Stress may also transduce neurodegeneration via the gut microbiome. Coping styles determine hippocampal mineralocorticoid receptor expression in mice, indicating that coping modifies cortisol's effect on the brain. Identifying neuroprotective coping strategies that lessen the burden of stress may prevent or slow cognitive decline. Treatments and education designed to reduce stress should be recognized as neuroprotective.
Collapse
|
10
|
Exposure to a single immobilization or lipopolysaccharide challenge increases expression of genes implicated in the development of Alzheimer's disease in the mice brain cortex. Endocr Regul 2019; 53:100-109. [PMID: 31517627 DOI: 10.2478/enr-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Despite extensive research efforts, mechanisms participating on development of Alzheimer's disease (AD) are covered only partially. Data from the last decades indicate that various stressors, as etiological factors, may play a role of in the AD. Therefore, we investigated the effect of two acute stressors, immobilization (IMO) and lipopolysaccharide (LPS), on the AD-related neuropathology. METHODS Adult C57BL/6J mice males were exposed to a single IMO stress or a single intraperitoneal injection of LPS (250 µg/kg body weight). After terminating the experiments, the brains were removed and their cortices isolated. Gene expression of pro-inflammatory cytokines, as well as expression of genes implicated in the AD neuropathology were determined. In addition, mediators related to the activation of the microglia, monocytes, and perivascular macrophages were determined in brain cortices, as well. RESULTS In comparison with the control animals, we found increased gene expression of proinflammatory mediators in mice brain cortex in both IMO and LPS groups. In stressed animals, we also showed an increased expression of genes related to the AD neuropathology, as well as positive correlations between genes implicated in AD development and associated neuroinflammation. CONCLUSIONS Our data indicate that acute exposure to a strong IMO stressor, composed of the combined physical and psychological challenges, induces similar inflammatory and other ADrelated neuropathological changes as the immune LPS treatment. Our data also indicate that cytokines are most likely released from the peripheral immune cells, as we detected myeloid cells activity, without any microglia response. We hypothesize that stress induces innate immune response in the brain that consequently potentiate the expression of genes implicated in the AD-related neuropathology.
Collapse
|
11
|
Novak P, Cehlar O, Skrabana R, Novak M. Tau Conformation as a Target for Disease-Modifying Therapy: The Role of Truncation. J Alzheimers Dis 2018; 64:S535-S546. [DOI: 10.3233/jad-179942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Significance of the Stress Research: “In Memoriam, Richard Kvetnansky”. Cell Mol Neurobiol 2017. [DOI: 10.1007/s10571-017-0569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|