1
|
Zhang Y, Wu D, Sun Q, Luo Z, Zhang Y, Wang B, Chen W. Atorvastatin combined with imipenem alleviates lung injury in sepsis by inhibiting neutrophil extracellular trap formation via the ERK/NOX2 signaling pathway. Free Radic Biol Med 2024; 220:179-191. [PMID: 38704053 DOI: 10.1016/j.freeradbiomed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Di Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Zhen Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yuhao Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Bowei Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Yu L, Huang L, Zhao Y, Liu S, Zhou R, Yue Y, Sun H, Su X, Liu Q, Li S, Ying J, Zhao F, Qu Y. Atorvastatin Promotes Pro/anti-inflammatory Phenotypic Transformation of Microglia via Wnt/β-catenin Pathway in Hypoxic-Ischemic Neonatal Rats. Mol Neurobiol 2024; 61:3559-3577. [PMID: 37996729 PMCID: PMC11087325 DOI: 10.1007/s12035-023-03777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Inflammatory reaction plays a key role in the pathogenesis of hypoxic-ischemic encephalopathy (HIE) in neonates. Microglia are resident innate immune cells in the central nervous system and are profoundly involved in neuroinflammation. Studies have revealed that atorvastatin exerts a neuroprotective effect by regulating neuroinflammation in adult animal models of brain stroke and traumatic brain injury, but its role regarding damage to the developing brain remains unclear. This study aimed to clarify the effect and mechanism of atorvastatin on the regulation of microglia function in neonatal hypoxic-ischemic brain damage (HIBD). The oxygen glucose deprivation (OGD) of microglia and neonatal rat HIBD model was established. Atorvastatin, recombinant sclerostin protein (SOST), and XAV939 (degradation of β-catenin) were administered to OGD microglia and HIBD rats. The pathological changes of brain tissue, cerebral infarction volume, learning and memory ability of rats, pro-inflammatory (CD16+/Iba1+) and anti-inflammatory (CD206+/Iba1+) microglia markers, inflammation-related indicators (Inos, Tnfα, Il6, Arg1, Tgfb, and Mrc1), and Wnt/β-catenin signaling molecules were examined. Atorvastatin reduced OGD-induced pro-inflammatory microglia and pro-inflammatory factors, while increasing anti-inflammatory microglia and anti-inflammatory factors. In vivo, atorvastatin attenuated hypoxia-ischemia (HI)-induced neuroinflammation and brain damage. Mechanistically, atorvastatin decreased SOST expression and activated the Wnt/β-catenin signaling pathway, and the administration of recombinant SOST protein or XAV939 inhibited Wnt/β-catenin signaling and attenuated the anti-inflammatory effect of atorvastatin. Atorvastatin promotes the pro/anti-inflammatory phenotypic transformation of microglia via the Wnt/β-catenin pathway in HI neonatal rats. Atorvastatin may be developed as a potent agent for the treatment of HIE in neonates.
Collapse
Affiliation(s)
- Luting Yu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingyi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Zhao
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shixi Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruixi Zhou
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Yue
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hao Sun
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojuan Su
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qian Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiping Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjie Ying
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fengyan Zhao
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Guo J, Kong Z, Yang S, Da J, Chu L, Han G, Liu J, Tan Y, Zhang J. Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice. J Neuroinflammation 2024; 21:131. [PMID: 38760784 PMCID: PMC11102217 DOI: 10.1186/s12974-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1β, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1β and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
4
|
Ferreira FM, Gomes SV, Carvalho LCF, de Alcantara AC, da Cruz Castro ML, Perucci LO, Pio S, Talvani A, de Abreu Vieira PM, Calsavara AJC, Costa DC. Potential of piperine for neuroprotection in sepsis-associated encephalopathy. Life Sci 2024; 337:122353. [PMID: 38104862 DOI: 10.1016/j.lfs.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.
Collapse
Affiliation(s)
- Flavia Monteiro Ferreira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luana Cristina Faria Carvalho
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Ana Carolina de Alcantara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sirlaine Pio
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Ayieng'a EO, Afify EA, Abuiessa SA, Elblehi SS, El-Gowilly SM, El-Mas MM. Morphine aggravates inflammatory, behavioral, and hippocampal structural deficits in septic rats. Sci Rep 2023; 13:21460. [PMID: 38052832 PMCID: PMC10697987 DOI: 10.1038/s41598-023-46427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Although pain and sepsis are comorbidities of intensive care units, reported data on whether pain control by opioid analgesics could alter inflammatory and end-organ damage caused by sepsis remain inconclusive. Here, we tested the hypothesis that morphine, the gold standard narcotic analgesic, modifies behavioral and hippocampal structural defects induced by sepsis in male rats. Sepsis was induced with cecal ligation and puncture (CLP) and behavioral studies were undertaken 24 h later in septic and/or morphine-treated animals. The induction of sepsis or exposure to morphine (7 mg/kg) elicited similar: (i) falls in systolic blood pressure, (ii) alterations in spatial memory and learning tested by the Morris water maze, and (iii) depression of exploratory behavior measured by the new object recognition test. These hemodynamic and cognitive defects were significantly exaggerated in septic rats treated with morphine compared with individual interventions. Similar patterns of amplified inflammatory (IL-1β) and histopathological signs of hippocampal damage were noted in morphine-treated septic rats. Additionally, the presence of intact opioid receptors is mandatory for the induction of behavioral and hemodynamic effects of morphine because no such effects were observed when the receptors were blocked by naloxone. That said, our findings suggest that morphine provokes sepsis manifestations of inflammation and interrelated hemodynamic, behavioral, and hippocampal deficits.
Collapse
Affiliation(s)
- Evans O Ayieng'a
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt.
| | - Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
6
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Krzyzaniak K, Krion R, Szymczyk A, Stepniewska E, Sieminski M. Exploring Neuroprotective Agents for Sepsis-Associated Encephalopathy: A Comprehensive Review. Int J Mol Sci 2023; 24:10780. [PMID: 37445958 DOI: 10.3390/ijms241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is a life-threatening condition resulting from an inflammatory overreaction that is induced by an infectious factor, which leads to multi-organ failure. Sepsis-associated encephalopathy (SAE) is a common complication of sepsis that can lead to acute cognitive and consciousness disorders, and no strict diagnostic criteria have been created for the complication thus far. The etiopathology of SAE is not fully understood, but plausible mechanisms include neuroinflammation, blood-brain barrier disruption, altered cerebral microcirculation, alterations in neurotransmission, changes in calcium homeostasis, and oxidative stress. SAE may also lead to long-term consequences such as dementia and post-traumatic stress disorder. This review aims to provide a comprehensive summary of substances with neuroprotective properties that have the potential to offer neuroprotection in the treatment of SAE. An extensive literature search was conducted, extracting 71 articles that cover a range of substances, including plant-derived drugs, peptides, monoclonal antibodies, and other commonly used drugs. This review may provide valuable insights for clinicians and researchers working in the field of sepsis and SAE and contribute to the development of new treatment options for this challenging condition.
Collapse
Affiliation(s)
- Klaudia Krzyzaniak
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Robert Krion
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Aleksandra Szymczyk
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Ewelina Stepniewska
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
8
|
Danielski LG, Giustina AD, Gava FF, Barichello T, Petronilho F. The Many Faces of Astrocytes in the Septic Brain. Mol Neurobiol 2022; 59:7229-7235. [PMID: 36136265 DOI: 10.1007/s12035-022-03027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Sepsis is a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Surviving patients have cognitive and memory damage that started during sepsis. These neurologic damages have been associated with increased BBB permeability and microglial activation. However, a few discrete studies have seen over the years pointing to the potential role of astrocytes in the pathophysiology of neurological damage after sepsis. The purpose of this article is to review information on the potential role of astrocytes during sepsis, as well as to provoke further studies in this area. These published articles show astrocytic activation after sepsis; they also evidence the release of inflammatory mediators by these cells. In this sense, the role of astrocytes should be better elucidated during sepsis progression.
Collapse
Affiliation(s)
- Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.,Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Della Giustina
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
9
|
Jamshidnejad-Tosaramandani T, Kashanian S, Al-Sabri MH, Kročianová D, Clemensson LE, Gentreau M, Schiöth HB. Statins and cognition: Modifying factors and possible underlying mechanisms. Front Aging Neurosci 2022; 14:968039. [PMID: 36046494 PMCID: PMC9421063 DOI: 10.3389/fnagi.2022.968039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Statins are a class of widely prescribed drugs used to reduce low-density lipoprotein cholesterol (LDL-C) and important to prevent cardiovascular diseases (CVD). Most statin users are older adults with CVD, who are also at high risk of cognitive decline. It has been suggested that statins can alter cognitive performance, although their positive or negative effects are still debated. With more than 200 million people on statin therapy worldwide, it is crucial to understand the reasons behind discrepancies in the results of these studies. Here, we review the effects of statins on cognitive function and their association with different etiologies of dementia, and particularly, Alzheimer's disease (AD). First, we summarized the main individual and statin-related factors that could modify the cognitive effects of statins. Second, we proposed the underlying mechanisms for the protective and adverse effects of statins on cognitive performance. Finally, we discussed potential causes of discrepancies between studies and suggested approaches to improve future studies assessing the impact of statins on dementia risk and cognitive function.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah, Iran
| | - Mohamed H. Al-Sabri
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniela Kročianová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Laura E. Clemensson
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Li Y, Ji M, Yang J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front Immunol 2022; 13:855006. [PMID: 35603184 PMCID: PMC9120941 DOI: 10.3389/fimmu.2022.855006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is recognized as a life-threatening multi-organ dysfunction resulting from a dysregulated host response to infection. Although the incidence and mortality of sepsis decrease significantly due to timely implementation of anti-infective and support therapies, accumulating evidence suggests that a great proportion of survivors suffer from long-term cognitive impairment after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. Several mechanisms have been proposed for long-term cognitive impairment after sepsis, which are not mutually exclusive, including blood-brain barrier disruption, neuroinflammation, neurotransmitter dysfunction, and neuronal loss. Targeting these critical processes might be effective in preventing and treating long-term cognitive impairment. However, future in-depth studies are required to facilitate preventive and/or treatment strategies for long-term cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Jiangyin Hospital, Affiliated to Southeast University Medical School, Jiangyin, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
12
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Zhang XB, Cheng HJ, Yuan YT, Chen Y, Chen YY, Chiu KY, Zeng HQ. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY) 2021; 13:18870-18878. [PMID: 34289453 PMCID: PMC8351704 DOI: 10.18632/aging.203339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnea (OSA), is associated with various cardiovascular diseases. In the present study, we assessed the effect of the lipid reducing agent atorvastatin on CIH-induced myocardial oxidative stress and apoptosis in a mouse OSA model. Forty-eight C57BL/6J mice were evenly divided among normoxia + vehicle, normoxia + atorvastatin, CIH + vehicle, and CIH + atorvastatin groups. CIH consisted of a hypoxia-reoxygenation cycle in which oxygen concentrations fluctuated from 21% to 6% and back over two minutes for 8 hours each day (30 events/hour). CIH exposure continued for 12 weeks. Atorvastatin (5 mg/kg) was administered from week 6 through the end of the experiment. CIH increased malondialdehyde levels and decreased superoxide dismutase activity, total antioxidant capacity, and nuclear factor erythroid 2-related factor 2 levels in cardiac tissue, indicating a reduction in antioxidant activity. Atorvastatin significantly reversed those effects (p < 0.05). CIH also increased B-cell lymphoma 2-associated protein X and cleaved caspased-3 levels as well as the myocardial apoptotic rate, as indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Atorvastatin had no effect on those changes (p > 0.05). Thus, atorvastatin administration exerts antioxidant but not anti-apoptotic effects after CIH and may therefore have therapeutic potential in OSA patients with cardiovascular comorbidities.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Hui-Juan Cheng
- Department of Medical Affairs, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Ya-Ting Yuan
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Yi-Yuan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Kam Yu Chiu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
14
|
Zhang D, Li S, Hou L, Jing L, Ruan Z, Peng B, Zhang X, Hong JS, Zhao J, Wang Q. Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson's disease model. J Neuroinflammation 2021; 18:4. [PMID: 33402167 PMCID: PMC7786472 DOI: 10.1186/s12974-020-02065-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cognitive decline occurs frequently in Parkinson’s disease (PD), which greatly decreases the quality of life of patients. However, the mechanisms remain to be investigated. Neuroinflammation mediated by overactivated microglia is a common pathological feature in multiple neurological disorders, including PD. This study is designed to explore the role of microglia in cognitive deficits by using a rotenone-induced mouse PD model. Methods To evaluate the role of microglia in rotenone-induced cognitive deficits, PLX3397, an inhibitor of colony-stimulating factor 1 receptor, and minocycline, a widely used antibiotic, were used to deplete or inactivate microglia, respectively. Cognitive performance of mice among groups was detected by Morris water maze, objective recognition, and passive avoidance tests. Neurodegeneration, synaptic loss, α-synuclein phosphorylation, glial activation, and apoptosis were determined by immunohistochemistry and Western blot or immunofluorescence staining. The gene expression of inflammatory factors and lipid peroxidation were further explored by using RT-PCR and ELISA kits, respectively. Results Rotenone dose-dependently induced cognitive deficits in mice by showing decreased performance of rotenone-treated mice in the novel objective recognition, passive avoidance, and Morris water maze compared with that of vehicle controls. Rotenone-induced cognitive decline was associated with neurodegeneration, synaptic loss, and Ser129-phosphorylation of α-synuclein and microglial activation in the hippocampal and cortical regions of mice. A time course experiment revealed that rotenone-induced microglial activation preceded neurodegeneration. Interestingly, microglial depletion by PLX3397 or inactivation by minocycline significantly reduced neuronal damage and α-synuclein pathology as well as improved cognitive performance in rotenone-injected mice. Mechanistically, PLX3397 and minocycline attenuated rotenone-induced astroglial activation and production of cytotoxic factors in mice. Reduced lipid peroxidation was also observed in mice treated with combined PLX3397 or minocycline and rotenonee compared with rotenone alone group. Finally, microglial depletion or inactivation was found to mitigate rotenone-induced neuronal apoptosis. Conclusions Taken together, our findings suggested that microglial activation contributes to cognitive impairments in a rotenone-induced mouse PD model via neuroinflammation, oxidative stress, and apoptosis, providing novel insight into the immunopathogensis of cognitive deficits in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02065-z.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Lu Jing
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Bingjie Peng
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, USA
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China. .,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
15
|
Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther 2020; 19:215-231. [PMID: 32808580 DOI: 10.1080/14787210.2020.1812384] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sepsis-associated encephalopathy (SAE) and septic encephalitis (SE) are associated with increased mortality, long-term cognitive impairment, and focal neurological deficits. AREAS COVERED The PUBMED database was searched 2016-2020. The clinical manifestation of SAE is delirium, SE additionally is characterized by focal neurological symptoms. SAE is caused by inflammation with endothelial/microglial activation, increase of permeability of the blood-brain-barrier, hypoxia, imbalance of neurotransmitters, glial activation, axonal, and neuronal loss. Septic-embolic (SEE) and septic-metastatic encephalitis (SME) are characterized by focal ischemia (SEE) and small abscesses (SME). The continuum between SAE, SME, and SEE is documented by imaging techniques and autopsies. The backbone of treatment is rapid optimum antibiotic therapy. Experimental approaches focus on modulation of inflammation, stabilization of the blood-brain barrier, and restoration of membrane/mitochondrial function. EXPERT OPINION The most promising diagnostic approaches are new imaging techniques. The most important measure to fight delirium remains establishment of daily structure and adequate sensory stimuli. Dexmedetomidine and melatonin appear to reduce the frequency of delirium, their efficacy in SAE and SE remains to be established. Drugs already licensed for other indications or available as food supplements which may be effective in SAE are statins, L-DOPA/benserazide, β-hydroxybutyrate, palmitoylethanolamide, and tetracyclines or other bactericidal non-lytic antibiotics.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) , Aachen, Germany
| | - Marija Djukic
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Johannes Gossner
- Department of Diagnostic and Interventional Radiology, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Helmut Eiffert
- Amedes MVZ for Laboratory Medicine, Medical Microbiology and Infectiology , Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center , Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| |
Collapse
|