1
|
Wang K, Wei H, Yang L, Zhang S, Cheng Y, Li C, Jia P, Zhang Y, Zhang Y, Fan P, Wang N, Lu H, Chen X, Liu Y, Zhang P. Pretreatment with tetramethylpyrazine alleviated the impairment of learning and memory induced by sevoflurane exposure in neonatal rats. Neuroscience 2025; 565:457-467. [PMID: 39542344 DOI: 10.1016/j.neuroscience.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Sevoflurane impairs learning and memory of the developing brain. However, strategies to mitigate these detrimental effects have been scarce. Herein, we investigated whether tetramethylpyrazine pretreatment could alleviate the impairment of learning and memory and its underlying mechanism in sevoflurane-exposed neonatal rats. Postnatal 7-day Sprague-Dawley (SD) rats or primary hippocampal neurons were pretreated with tetramethylpyrazine and then exposed to sevoflurane. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and lactate dehydrogenase (LDH) assays were used to detect neuronal injury. Learning and memory function were evaluated by novel object recognition and Morris water maze tests. Long-term potentiation (LTP) was recorded to evaluate synaptic plasticity electrophysiologically in the hippocampal slices. Golgi-Cox staining or PSD95 immunochemistry was used to detect the morphology of dendritic spines. Western blotting was employed to assess the expressions of cleaved Caspase-3, PSD95, N-methyl-D-aspartate receptor (NMDAR) subunits NMDAR1, NMDAR2A and NMDAR2B in the hippocampus or cultured neurons. It was found that neonatal exposure of sevoflurane impaired learning and memory, increased neuronal apoptosis, altered the morphology of dendritic spines, upregulated the expressions of NMDAR2A and PSD95, and induced LTP deficits. Pretreatment with tetramethylpyrazine not only alleviated impairment of learning and memory, but also improved sevoflurane-induced changes in neuronal damage, dendritic spine morphology, NMDAR2A and PSD95 expressions, as well as LTP. These findings indicated that pretreatment with tetramethylpyrazine alleviated the impairment of learning and memory induced by sevoflurane through improvement of hippocampal synaptic plasticity in neonatal rats.
Collapse
Affiliation(s)
- Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Liufei Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shuyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yiqin Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chen Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pei Fan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
2
|
Zhu J, Chen C, Liu X, He M, Fang Y, Wang L, Jia J, Guo J, Zhao Z, Gao C, He J, Xu C, Xu F, Ma D, Wang J, Zhang Z. Cerebellar Purkinje cell firing promotes conscious recovery from anesthesia state through coordinating neuronal communications with motor cortex. Theranostics 2024; 14:480-495. [PMID: 38169536 PMCID: PMC10758059 DOI: 10.7150/thno.89592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.
Collapse
Affiliation(s)
- Jinpiao Zhu
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chang Chen
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mengying He
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Li Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Junke Jia
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Juan Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyue Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Chenyi Gao
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jingang He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Chengshi Xu
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqing Ma
- Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongze Zhang
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Zou X, Zhang X, Qiang T, Hu X, Zhang L. Melatonin attenuates sevoflurane-induced hippocampal damage and cognitive deficits in neonatal mice by suppressing CypD in parvalbumin neurons. Brain Res Bull 2023; 204:110809. [PMID: 37931809 DOI: 10.1016/j.brainresbull.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Sevoflurane, a commonly administered inhaled anesthetic, is found to induce synaptic and mitochondrial damage in neonatal mice. Mitochondrial membrane potential (MMP) changes, mediated by Cyclophilin D (CypD), are implicated in mitochondrial function. Melatonin, known for its significant neuroprotective properties, was investigated in this study to elucidate its mechanisms in mitigating the cognitive impairment caused by sevoflurane. METHODS The mice were categorized into several groups, including the control, vehicle, sevoflurane, vehicle plus sevoflurane, and melatonin plus sevoflurane groups. From postnatal day 6 to day 8, the mice were administered inhaled sevoflurane or intraperitoneal melatonin. MMP and reactive oxygen species (ROS) were measured using appropriate detection kits. The protein expression levels of PSD95, Synapsin Ⅰ, and CypD in the hippocampus were analyzed through western blotting in acute and prolonged terms. Immunofluorescence staining was used to assess the co-localizations of PSD95 or CypD in parvalbumin (PV) neurons. Cognitive ability was evaluated through novel object recognition, social interaction experiment, and the Morris water maze. RESULTS The findings revealed that repeated exposure to sevoflurane in neonatal mice resulted in cognitive and synaptic impairment. Furthermore, melatonin administration suppressed the ROS and CypD protein expression, enhanced the MMP in mitochondria and synaptic protein expression in PV neurons, and ameliorated cognitive deficits. CONCLUSION Melatonin alleviated sevoflurane-induced cognitive deficits by suppressing CypD and promoting synaptic development in hippocampal PV neurons. These results provide valuable insights into a promising therapeutic approach for preventing neurotoxic injuries caused by general anesthetics.
Collapse
Affiliation(s)
- Xuezhu Zou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230061, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xiaoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230061, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Tingting Qiang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230061, Anhui Province, China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230061, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Li Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230061, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Xu Y, Wang X, Xu Z, Sun F, Tian Y. Tbx2 knockdown alleviated sevoflurane-induced cognitive disorder and neuron damages in aged rats via suppressing oxidative stress and ferroptosis. Toxicol Sci 2023; 195:257-269. [PMID: 37494465 DOI: 10.1093/toxsci/kfad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Anesthesia with sevoflurane contributes to perioperative neurocognitive disorder (PND), which is characterized by the deficiency in study and memory. T-Box transcription factor 2 (Tbx2), which is involved in the development of hippocampus neurons, was upregulated in the hippocampus of rats exposed to sevoflurane. Our study aimed to explore the role of Tbx2 in sevoflurane-induced cognitive disorder and hippocampus neuron damages. The expression of Tbx2 in hippocampus was upregulated after sevoflurane exposure, which was accompanied by the accumulation of reactive oxygen species and lipid peroxidation, as well as the loss of neurons in hippocampus. In vitro, silencing Tbx2 suppressed oxidative stress and ferroptosis induced by sevoflurane, whereas exogenous overexpression of Tbx2 exacerbated these processes. Importantly, Tbx2 knockdown improved sevoflurane-induced cognitive disorder in aged rats, as evidenced by the increases in behavioral indexes. Mechanistically, the expression of brain-derived neurotrophic factor (BDNF), as well as the downstream nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling, was repressed by Tbx2. Mimicking the activation of BDNF with 7,8-dihydroxyflavone rescued the effects of Tbx2 overexpression on oxidative stress and ferroptosis in vitro, indicating that the BDNF/Nrf2/HO-1 signaling may mediate the role of Tbx2 in sevoflurane-induced cognitive disorder and neuron damages. In summary, Tbx2 may contribute to neuronal damages via enhancing the oxidative stress and ferroptosis caused by sevoflurane. BDNF/Nrf2/HO-1 signaling mediates the role of Tbx2 in sevoflurane-induced cognitive disorder. Knockdown of Tbx2 improves sevoflurane-induced cognitive impairment. Our finding provides a novel insight for PND treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fengwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
5
|
Zhu J, Chen C, Wu J, He M, Li S, Fang Y, Zhou Y, Xu H, Sadigh-Eteghad S, Manyande A, Zheng F, Chen T, Xu F, Ma D, Wang J, Zhang Z. Effects of propofol and sevoflurane on social and anxiety-related behaviours in sleep-deprived rats. Br J Anaesth 2023; 131:531-541. [PMID: 37543435 DOI: 10.1016/j.bja.2023.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Sleep disorders can profoundly affect neurological function. We investigated changes in social and anxiety-related brain functional connectivity induced by sleep deprivation, and the potential therapeutic effects of the general anaesthetics propofol and sevoflurane in rats. METHODS Twelve-week-old male Sprague-Dawley rats were subjected to sleep deprivation for 20 h per day (from 14:00 to 10:00 the next day) for 4 consecutive weeks. They were free from sleep deprivation for the remaining 4 h during which they received propofol (40 mg kg-1 i.p.) or sevoflurane (2% for 2 h) per day or no treatment. These cohorts were instrumented for EEG/EMG recordings on days 2, 14, and 28. Different cohorts were used for open field and three-chambered social behavioural tests, functional MRI, nuclear magnetic resonance spectroscopy, and positron emission tomography imaging 48 h after 4 weeks of sleep deprivation. RESULTS Propofol protected against sleep deprivation-induced anxiety behaviours with more time (44.7 [8.9] s vs 24.2 [4.1] s for the sleep-deprivation controls; P<0.001) spent in the central area of the open field test and improved social preference index by 30% (all P<0.01). Compared with the sleep-deprived rats, propofol treatment enhanced overall functional connectivity by 74% (P<0.05) and overall glucose metabolism by 30% (P<0.01), and improved glutamate kinetics by 20% (P<0.05). In contrast, these effects were not found after sevoflurane treatment. CONCLUSIONS Unlike sevoflurane, propofol reduced sleep deprivation-induced social and anxiety-related behaviours. Propofol might be superior to sevoflurane for patients with sleep disorders who receive anaesthesia, which should be studied in clinical studies.
Collapse
Affiliation(s)
- Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mengying He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Shuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yan Zhou
- Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Feng Zheng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Li Q, Zhang X, Li S, Li W, Teng Y, Zhou Y, Xiong H. Carnosol alleviates sevoflurane-induced cognitive dysfunction by mediating NF-κB pathway in aged rats. Drug Dev Res 2022; 83:1342-1350. [PMID: 35781309 DOI: 10.1002/ddr.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/11/2022]
Abstract
Postoperative Cognitive Dysfunction (POCD) is a neurological disorder of unconsciousness due to cognitive regression after surgical anesthesia. However, the specific mechanism has not yet been clarified. Sevoflurane (SEV) is one of the most commonly used anesthetics in clinical practice, and how SEV mediates the generation of POCD is unclear. Carnosol, a natural ingredient, has been reported to have various beneficial effects such as anti-inflammatory, immune enhancement, and so forth, but how it ameliorates SEV-mediated neurotoxicity remains unclear. This study aimed to induce a POCD model in aged rats by SEV and to elucidate how Carnosol ameliorated SEV-mediated neurotoxicity. The effects of Carnosol on the expression of inflammatory factors in rat hippocampus mediated by SEV were determined by enzyme-linked immunoassay and polymerase chain reaction experiments; the effects of Carnosol on the expressions of Iba-1 and glial fibrillary acidic protein after SEV-mediated activation of rat microglia were clarified by immunofluorescence and Western blotting (WB); The effects of Carnosol on SEV-mediated neuronal apoptosis were studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and WB; the specific signaling pathways regulated by Carnosol were elucidated by WB. The results showed that Carnosol can improve the cognitive dysfunction and reduce neuroinflammation in aged rats induced by SEV; Carnosol can reduce the activation of microglia and inhibit neuronal apoptosis in aged rats induced by SEV; Carnosol can phosphorylate p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha regulates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Carnosol can attenuate SEV-induced neuroinflammation, prevent microglial activation and inhibit neuronal apoptosis by modulating the NF-κB pathway.
Collapse
Affiliation(s)
- Qing Li
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Xianjie Zhang
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Siyuan Li
- Department of Anesthesia and Comfort Health Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Wen Li
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Yunpeng Teng
- Department of Anesthesia and Comfort Health Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yukai Zhou
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Hongfei Xiong
- Department of Anesthesia and Comfort Health Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Yang H, Zhao L, Li Q. Echinacoside alleviates sevoflurane-induced cognitive dysfunction by activating FOXO1-mediated autophagy. Int J Dev Neurosci 2022; 82:339-348. [PMID: 35362638 DOI: 10.1002/jdn.10183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/07/2022] Open
Abstract
The current study aimed to examine the effects of echinacoside on cognitive impairment in mice after exposure to sevoflurane. To examine the role of FOXO1, si-FOXO1 and si-con were injected into the hippocampus through the left lateral cerebral ventricles. Sevoflurane-induced mice had serious cognitive dysfunction. However, pretreatment with echinacoside alleviated the cognitive dysfunction, as measured by a shortened escape latency time, and increased platform crossing times, the percentage of distance in the target quadrant and Y-maze spontaneous alternations. In addition, we found that echinacoside elevated FOXO1 expression in the hippocampus, increased the expression of autophagy-related proteins including Beclin 1, ATG5, ATG7 and LC3, and reduced P62 expression. Silencing of FOXO1 aggravated the cognitive deficits and reduced expression of the autophagy-related markers, while the effects of si-FOXO1 on memory were abrogated by echinacoside. Echinacoside attenuated the cognitive impairment in sevoflurane-induced mice through FOXO1-mediated autophagy.
Collapse
Affiliation(s)
- Huifang Yang
- Department of Anesthesia, Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhao
- Department of Anesthesia, Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Li
- Department of Respiration, Hebei Children's Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Fang Y, Chen C, Zhong Q, Wang L, Gui Z, Zhu J, Manyande A, Xu F, Wang J, Zhang Z. Influence of Cerebral Glucose Metabolism by Chronic Pain-Mediated Cognitive Impairment in Adolescent Rats. Mol Neurobiol 2022; 59:3635-3648. [PMID: 35355195 DOI: 10.1007/s12035-022-02816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Chronic pain during adolescence can lead to mental health disorders in adulthood, but the underlying mechanism is still unclear. Furthermore, the homeostasis of cerebral glucose metabolism and neurotransmitter metabolic kinetics are closely associated with cognitive development and pain progression. The present study investigated changes in cognitive function and glucose metabolism in adult rats, which had experienced chronic pain during their adolescence. Here, spared nerve injury (SNI) surgery was conducted in 4-week-old male rats. Mechanical nociceptive reflex thresholds were analyzed, and SNI chronic pain (SNI-CP) animals were screened. Based on animal behavioral tests (open field, three-chambered social, novel object recognition and the Y maze), the SNI-CP animals showed learning and memory impairment and anxiety-like behaviors, compared to SNI no chronic pain (SNI-NCP) animals. The cerebral glucose metabolism in the prefrontal cortex and hippocampus of adult SNI-CP animals was decreased with positron emission tomography/computed tomography. GABA2 and Glu4 levels in the metabolic kinetics study were significantly decreased in the hippocampus, frontal cortex, and temporal cortex, and the expression of GLUT3 and GLUT4 was also significantly downregulated in the prefrontal cortex and hippocampus of adult rats in the SNI-CP group. These findings suggest that the rats which suffered chronic pain during adolescence have lower cerebral glucose metabolism in the cortex and hippocampus, which could be related to cognitive function during the development of the central nervous system.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Chang Chen
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qi Zhong
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Lirong Wang
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Jinpiao Zhu
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Brentford, TW8 9GA, Middlesex, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430071, People's Republic of China.
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Zongze Zhang
- Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
9
|
Liu T, Song J, Zhou Q, Chu S, Liu Y, Zhao X, Ma Z, Xia T, Gu X. The role of 5-HT 7R in the memory impairment of mice induced by long-term isoflurane anesthesia. Neurobiol Learn Mem 2022; 188:107584. [PMID: 35032676 DOI: 10.1016/j.nlm.2022.107584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
General anesthesia is widely utilized in the clinic for surgical and diagnostic procedures. However, growing evidence suggests that anesthetic exposure may affect cognitive function negatively. Unfortunately, little is known about the underlying mechanisms and efficient prevention and therapeutic strategies for the anesthesia-induced cognitive dysfunction. 5-HT7R, a serotonin receptor family member, is functionally associated with learning and memory. It has recently become a potential therapeutic target in various neurological diseases as its ligands have a wide range of neuropharmacological effects. However, it remains unknown the role of 5-HT7R in the long-term isoflurane anesthesia-induced memory impairment and whether prior activation or blockade of 5-HT7R before anesthesia has modulating effects on this memory impairment. In this study, 5-HT7R selective agonist LP-211 and 5-HT7R selective antagonist SB-269970 were pretreated intraperitoneally to mice before anesthesia; their effects on the cognitive performance of mice were assessed using fear conditioning test and novel object recognition test. Furthermore, the transcriptional level of 5-HT7R in the hippocampus was detected using qRT-PCR, and proteomics was conducted to probe the underlying mechanisms. As a result, long-term exposure to isoflurane anesthesia caused memory impairment and an increase in hippocampal 5-HT7R mRNA expression, which could be attenuated by SB-269970 pretreatment but not LP-211pretreatment. According to the proteomics results, the antiamnestic effect of SB-269970 pretreatment was probably attributed to its action on the gene expression of Slc6a11, Itpka, Arf3, Srcin1, and Epb41l2, and synapse organization in the hippocampus. In conclusion, 5-HT7R is involved in the memory impairment induced by long-term isoflurane anesthesia, and the prior blockade of 5-HT7R with SB-269970 protects the memory impairment. This finding may help to improve the understanding of the long-term isoflurane anesthesia-induced memory impairment and to construct potential preventive and therapeutic strategies for the adverse effects after long-term isoflurane exposure.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jia Song
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Qingyun Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Shuaishuai Chu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yujia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xin Zhao
- Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Xu D, Zhou C, Lin J, Cai W, Lin W. MicroRNA-367-3p suppresses sevoflurane-induced adult rat astrocyte apoptosis by targeting BCL2L11. Exp Ther Med 2021; 23:9. [PMID: 34815761 PMCID: PMC8593860 DOI: 10.3892/etm.2021.10931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to characterize the effect of microRNA (miR)-367-3p on sevoflurane anesthesia and elucidate the underlying mechanism. A total of 36 4-month-old adult Sprague-Dawley rats were divided into six groups. Sevoflurane was inhaled at concentrations of 0, 1, 2, 4, 8 and 16% for a total of 6 h; the hippocampus of the brain was subsequently minced and digested, and astrocytes were isolated. Various methods, including reverse transcription-quantitative (RT-q)PCR, western blotting and TUNEL staining, were used to determine the expression levels of Bax, BCL-2 and BCL-2-like protein 11 (BCL2L11), as well as the level of apoptosis. The rats were treated with 8% sevoflurane and the astrocytes from the rats were transfected with miR-367-3p or anti-miR-367-3p. The present study demonstrated that sevoflurane promoted astrocytes apoptosis. Western blotting revealed that with an increase of sevoflurane concentration, the expression levels of the apoptotic proteins Bax and BCL2L11 were significantly increased, whereas the protein expression levels of BCL-2 were significantly decreased. However, overexpression of miR-367-3p reversed these effects. TUNEL staining revealed that sevoflurane promoted the apoptosis of astrocytes, while apoptosis was reversed by miR-367-3p overexpression. RT-qPCR demonstrated that sevoflurane inhibited the expression of miR-367-3p. Notably, miR-367-3p reduced the expression of BCL2L11, thereby inhibiting the apoptosis of astrocytes originating from the hippocampal area of adult rats induced by sevoflurane. Therefore, miR-367-3p and BCL2L11 may act as effective targets for the study of anesthesia.
Collapse
Affiliation(s)
- Deming Xu
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Changbi Zhou
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Juanyun Lin
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Wenhui Cai
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Wei Lin
- Department of General Surgery, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| |
Collapse
|
11
|
Arora S, Venugopalan A, Dharavath RN, Bishnoi M, Kondepudi KK, Chopra K. Naringenin Ameliorates Chronic Sleep Deprivation-Induced Pain via Sirtuin1 Inhibition. Neurochem Res 2021; 46:1177-1187. [PMID: 33599956 DOI: 10.1007/s11064-021-03254-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
Growing experimental evidences have suggested the reciprocal correlation between sleep deprivation and pain. Inflammation and oxidative stress are among the key pathways underlying this correlation. Therefore, the present study was aimed to assess the effect of antioxidant and anti-inflammatory compound naringenin (NGN) against chronic sleep deprivation (CSD)-induced mechanical and thermal hyperalgesia in female Swiss albino mice. In this study, mice were chronically sleep-deprived for 8 h a day for five days a week with the weekend as a free sleep period and continued for nine weeks using a modified multiple platform method. The pain behavioral tests were conducted at the end of the fourth week to assess the development of hyperalgesia followed by the administration of NGN and a combination of NGN with Sirtinol (SIR, a sirtuin1 inhibitor) till the end of the study. After nine weeks, pain behavioral tests, along with oxidative stress and inflammatory parameters in cortex and striatum, were assessed. Results indicated that CSD-induced hyperalgesia in mice accompanied by increased oxidative stress and inflammatory markers in cortex and striatum of the brain. NGN combatted the hyperalgesic response and also decreased levels of oxidative stress and inflammatory markers. Furthermore, the pharmacological effect of NGN was mitigated with SIR. Thus, the findings of the present study reveal that NGN is acting via sirtuin1 to exert its antinociceptive activity against CSD-induced hyperalgesia.
Collapse
Affiliation(s)
- Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India
| | - Aishwarya Venugopalan
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, 140306, Punjab, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, 140306, Punjab, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
12
|
Qin J, Ma Q, Ma D. Low-dose Sevoflurane Attenuates Cardiopulmonary Bypass (CPB)- induced Postoperative Cognitive Dysfunction (POCD) by Regulating Hippocampus Apoptosis via PI3K/AKT Pathway. Curr Neurovasc Res 2020; 17:232-240. [PMID: 32400333 DOI: 10.2174/1567202617666200513085403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) caused postoperative cognitive dysfunction (POCD) was characterized by hippocampus apoptosis, which seriously limited the therapeutic efficacy and utilization of CPB in clinic. Recent data indicated that sevoflurane anesthesia might alleviate CPB-induced POCD, however, the underlying mechanisms are still unclear. METHODS In the present study, the in vivo CPB-POCD models were established by using aged Sprague-Dawley (SD) male rats and the in vitro hypoxia/reoxygenation (H/R) models were inducted by using the primary hippocampus neuron (PHN) cells. RESULTS The results showed that CPB impaired cognitive functions and induced hippocampus apoptosis in rat models, which were alleviated by pre-treating rats with low-dose sevoflurane. In addition, the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signal pathway was inactivated in the hippocampus tissues of CPB-POCD rats, which were rescued by low-dose sevoflurane treatment. Of note, the PI3K/AKT inhibitor (LY294002) abrogated the protective effects of low-dose sevoflurane on CPB-POCD rats. Consistently, the in vitro results showed that H/R treatment induced cell apoptosis and inhibited cell viability in PHN cells, which were attenuated by low-dose sevoflurane. Similarly, LY294002 abrogated the inhibiting effects of low-dose sevoflurane on H/R-induced PHN cell death. CONCLUSION Taken together, low-dose sevoflurane attenuated CPB-induced POCD by inhibiting hippocampus apoptosis through activating PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Jianhua Qin
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road 91, Urumchi 830001, Xinjiang, China
| | - Qingjun Ma
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road 91, Urumchi 830001, Xinjiang, China
| | - Dongmei Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Zhejiang University, Shangcheng Road N1, Yiwu 322000, Jinhua, Zhejiang, China
| |
Collapse
|