1
|
Łaszczych D, Czernicka A, Łaszczych K. Targeting GABA signaling in type 1 diabetes and its complications- an update on the state of the art. Pharmacol Rep 2025; 77:409-424. [PMID: 39833509 DOI: 10.1007/s43440-025-00697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the progressive destruction of insulin-producing β cells, resulting in lifelong insulin dependence and a range of severe complications. Beyond conventional glycemic control, innovative therapeutic strategies are needed to address the underlying disease mechanisms. Recent research has highlighted gamma-aminobutyric acid (GABA) as a promising therapeutic target for T1D due to its dual role in modulating both β cell survival and immune response within pancreatic islets. GABA signaling supports β cell regeneration, inhibits α cell hyperactivity, and promotes α-to-β cell transdifferentiation, contributing to improved islet function. Moreover, GABA's influence extends to mitigating T1D complications, including nephropathy, neuropathy, and retinopathy, as well as regulating central nervous system pathways involved in glucose metabolism. This review consolidates the latest advances in GABA-related T1D therapies, covering animal preclinical and human clinical studies and examining the therapeutic potential of GABA receptor modulation, combination therapies, and dietary interventions. Emphasis is placed on the translational potential of GABA-based approaches to enhance β cell viability and counteract autoimmune processes in T1D. Our findings underscore the therapeutic promise of GABA signaling modulation as a novel approach for T1D treatment and encourage further investigation into this pathway's role in comprehensive diabetes management.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13, 85-067, Bydgoszcz, Poland.
| | | | - Katarzyna Łaszczych
- Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Jedności 8, Sosnowiec, 41-200, Poland
- Ziko Pharmacy, Plebiscytowa 39, Katowice, Poland
| |
Collapse
|
2
|
Xu S, Gao Z, Jiang L, Li J, Qin Y, Zhang D, Tian P, Wang W, Zhang N, Zhang R, Xu S. High glucose- or AGE-induced oxidative stress inhibits hippocampal neuronal mitophagy through the Keap1-Nrf2-PHB2 pathway in diabetic encephalopathy. Sci Rep 2024; 14:24044. [PMID: 39402106 PMCID: PMC11473637 DOI: 10.1038/s41598-024-70584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic encephalopathy (DE) is a severe complication of diabetes, but its pathogenesis remains unclear. This study aimed to investigate the roles and underlying mechanisms of high glucose (HG)- and advanced glycosylation end product (AGE)-induced oxidative stress (OS) in the cognitive decline in DE. The DE mouse model was established using a high-fat diet and streptozotocin, and its cognitive functions were evaluated using the Morris Water Maze, novel object recognition, and Y-maze test. The results revealed increased reactive oxygen species (ROS) generation, mitophagy inhibition, and decreased prohibitin 2 (PHB2) expression in the hippocampal neurons of DE mice and HG- or AGE-treated HT-22 cells. However, overexpression of PHB2 reduced ROS generation, reversed mitophagy inhibition, and improved mitochondrial function in the HG- or AGE-treated HT-22 cells and ameliorated cognitive decline, improved mitochondrial structural damage, and reversed mitophagy inhibition of hippocampal neurons in DE mice. Further analysis revealed that the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the HG- or AGE-mediated downregulation of PHB2 in HT-22 cells. These results demonstrate that HG- or AGE-induced OS inhibits the mitophagy of hippocampal neurons via the Keap1-Nrf2-PHB2 pathway, thereby contributing to the cognitive decline in DE.
Collapse
Affiliation(s)
- Shan Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Jiazheng Li
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Wanchang Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China.
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China.
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China.
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China.
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China.
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China.
| |
Collapse
|
3
|
Kong Y, Cao L, Xie F, Wang X, Zuo C, Shi K, Rominger A, Huang Q, Xiao J, Jiang D, Guan Y, Ni R. Reduced SV2A and GABA A receptor levels in the brains of type 2 diabetic rats revealed by [ 18F]SDM-8 and [ 18F]flumazenil PET. Biomed Pharmacother 2024; 172:116252. [PMID: 38325265 DOI: 10.1016/j.biopha.2024.116252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-β, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-β), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China; Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuzhe Wang
- Dept. Neurology, Shanghai Sixth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Axel Rominger
- Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland; Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland; Inst. Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Bagheri J, Fallahnezhad S, Alipour N, Babaloo H, Tahmasebi F, Kheradmand H, Sazegar G, Haghir H. Maternal diabetes decreases the expression of GABA Aα1, GABA B1, and mGlu2 receptors in the visual cortex of male rat neonates. Neurosci Lett 2023; 809:137309. [PMID: 37230455 DOI: 10.1016/j.neulet.2023.137309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS This study examines the impact of maternal diabetes on the expression of GABAB1, GABAAα1, and mGlu2 receptors in the primary visual cortex layers of male rat newborns. MAIN METHODS In diabetic group (Dia), diabetes was induced in adult female rats using an intraperitoneal dose of Streptozotocin (STZ) 65 (mg/kg). Diabetes was managed by daily subcutaneous injection of NPH insulin in insulin-treated diabetic group (Ins). Control group (Con) received normal saline intraperitoneally rather than STZ. Male offspring born to each group of female rats were euthanized via CO2 inhalation at P0, P7, and P14 days after delivery and the expression of GABAB1, GABAAα1, and mGlu2 receptors in their primary visual cortex was determined using immunohistochemistry (IHC). KEY FINDINGS The expression of GABAB1, GABAAα1, and mGlu2 receptors increased gradually with age in the male offspring born to Con group while the highest expression was detected in layer IV of the primary visual cortex. In Dia group newborns, the expression of these receptors was significantly reduced in all layers of the primary visual cortex at every three days. Insulin treatment in diabetic mothers restored the expression of these receptors to normal levels in their newborns. SIGNIFICANCE The study indicates that diabetes reduces the expression of GABAB1, GABAAα1, and mGlu2 receptors in the primary visual cortex of male offspring born to diabetic rats at P0, P7, and P14. However, insulin treatment can counteract these effects.
Collapse
Affiliation(s)
- Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamideh Babaloo
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamed Kheradmand
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Sazegar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Kilb W, Kirischuk S. GABA Release from Astrocytes in Health and Disease. Int J Mol Sci 2022; 23:ijms232415859. [PMID: 36555501 PMCID: PMC9784789 DOI: 10.3390/ijms232415859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS) mediating a variety of homeostatic functions, such as spatial K+ buffering or neurotransmitter reuptake. In addition, astrocytes are capable of releasing several biologically active substances, including glutamate and GABA. Astrocyte-mediated GABA release has been a matter of debate because the expression level of the main GABA synthesizing enzyme glutamate decarboxylase is quite low in astrocytes, suggesting that low intracellular GABA concentration ([GABA]i) might be insufficient to support a non-vesicular GABA release. However, recent studies demonstrated that, at least in some regions of the CNS, [GABA]i in astrocytes might reach several millimoles both under physiological and especially pathophysiological conditions, thereby enabling GABA release from astrocytes via GABA-permeable anion channels and/or via GABA transporters operating in reverse mode. In this review, we summarize experimental data supporting both forms of GABA release from astrocytes in health and disease, paying special attention to possible feedback mechanisms that might govern the fine-tuning of astrocytic GABA release and, in turn, the tonic GABAA receptor-mediated inhibition in the CNS.
Collapse
|