1
|
Lizana L, Schwartz YB. The scales, mechanisms, and dynamics of the genome architecture. SCIENCE ADVANCES 2024; 10:eadm8167. [PMID: 38598632 PMCID: PMC11006219 DOI: 10.1126/sciadv.adm8167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Even when split into several chromosomes, DNA molecules that make up our genome are too long to fit into the cell nuclei unless massively folded. Such folding must accommodate the need for timely access to selected parts of the genome by transcription factors, RNA polymerases, and DNA replication machinery. Here, we review our current understanding of the genome folding inside the interphase nuclei. We consider the resulting genome architecture at three scales with a particular focus on the intermediate (meso) scale and summarize the insights gained from recent experimental observations and diverse computational models.
Collapse
Affiliation(s)
- Ludvig Lizana
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | | |
Collapse
|
2
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
3
|
Knoch TA. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. Results Probl Cell Differ 2022; 70:495-549. [PMID: 36348120 DOI: 10.1007/978-3-031-06573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
4
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
5
|
Tilbury K, Han X, Brooks PC, Khalil A. Multiscale anisotropy analysis of second-harmonic generation collagen imaging of mouse skin. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210044R. [PMID: 34159763 PMCID: PMC8217961 DOI: 10.1117/1.jbo.26.6.065002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Morphological collagen signatures are important for tissue function, particularly in the tumor microenvironment. A single algorithmic framework with quantitative, multiscale morphological collagen feature extraction may further the use of collagen signatures in understanding fundamental tumor progression. AIM A modification of the 2D wavelet transform modulus maxima (WTMM) anisotropy method was applied to both digitally simulated collagen fibers and second-harmonic-generation imaged collagen fibers of mouse skin to calculate a multiscale anisotropy factor to detect collagen fiber organization. APPROACH The modified 2D WTMM anisotropy method was initially validated on synthetic calibration images to establish the robustness and sensitivity of the multiscale fiber organization tool. Upon validation, the algorithm was applied to collagen fiber organization in normal wild-type skin, melanoma stimulated skin, and integrin α10KO skin. RESULTS Normal wild-type skin collagen fibers have an increased anisotropy factor at all sizes scales. Interestingly, the multiscale anisotropy differences highlight important dissimilarities between collagen fiber organization in normal wild-type skin, melanoma stimulated, and integrin α10KO skin. At small scales (∼2 to 3 μm), the integrin α10KO skin was vastly different than normal skin (p-value ∼ 10 - 8), whereas the melanoma stimulated skin was vastly different than normal at large scales (∼30 to 40 μm, p-value ∼ 10 - 15). CONCLUSIONS This objective computational collagen fiber organization algorithm is sensitive to collagen fiber organization across multiple scales for effective exploration of collagen morphological alterations associated with melanoma and the lack of α10 integrin binding.
Collapse
Affiliation(s)
- Karissa Tilbury
- University of Maine, Chemical and Biomedical Engineering, Orono, Maine, United States
| | - XiangHua Han
- Maine Medical Center Research Institute, Scarborough, Maine, United States
| | - Peter C. Brooks
- Maine Medical Center Research Institute, Scarborough, Maine, United States
| | - Andre Khalil
- University of Maine, Chemical and Biomedical Engineering, Orono, Maine, United States
- University of Maine, CompuMAINE Lab., Orono, Maine, United States
| |
Collapse
|
6
|
Keenan CR, Mlodzianoski MJ, Coughlan HD, Bediaga NG, Naselli G, Lucas EC, Wang Q, de Graaf CA, Hilton DJ, Harrison LC, Smyth GK, Rogers KL, Boudier T, Allan RS, Johanson TM. Chromosomes distribute randomly to, but not within, human neutrophil nuclear lobes. iScience 2021; 24:102161. [PMID: 33665577 PMCID: PMC7905186 DOI: 10.1016/j.isci.2021.102161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022] Open
Abstract
The proximity pattern and radial distribution of chromosome territories within spherical nuclei are random and non-random, respectively. Whether this distribution pattern is conserved in the partitioned or lobed nuclei of polymorphonuclear cells is unclear. Here we use chromosome paint technology to examine the chromosome territories of all 46 chromosomes in hundreds of single human neutrophils - an abundant and famously polymorphonuclear immune cell. By comparing the distribution of chromosomes to randomly shuffled controls and validating with orthogonal chromosome conformation capture technology, we show for the first time that human chromosomes randomly distribute to neutrophil nuclear lobes, while maintaining a non-random radial distribution within these lobes. Furthermore, we demonstrate that chromosome length correlates with three-dimensional volume not only in neutrophils but other human immune cells. This work demonstrates that chromosomes are largely passive passengers during the neutrophil lobing process but are able to subsequently maintain their macro-level organization within lobes.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J. Mlodzianoski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hannah D. Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Naiara G. Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Erin C. Lucas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qike Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Carolyn A. de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Douglas J. Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kelly L. Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Biology Paris-Seine, Sorbonne Université, Paris, France
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
7
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Szczepińska T, Rusek AM, Plewczynski D. Intermingling of chromosome territories. Genes Chromosomes Cancer 2019; 58:500-506. [DOI: 10.1002/gcc.22736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Anna Maria Rusek
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Clinical Molecular Biology DepartmentMedical University of Bialystok Bialystok Poland
| | - Dariusz Plewczynski
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Faculty of Mathematics and Information ScienceWarsaw University of Technology Warsaw Poland
| |
Collapse
|
9
|
Marin Z, Wallace JK, Nadeau J, Khalil A. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms. Methods 2017; 136:60-65. [PMID: 28916149 DOI: 10.1016/j.ymeth.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 01/18/2023] Open
Abstract
We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty.
Collapse
Affiliation(s)
- Zach Marin
- CompuMAINE Laboratory, Department of Mathematics & Statistics, University of Maine, Orono, ME 04469, USA.
| | - J Kent Wallace
- The Motility Group, Division of Aerospace Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA.
| | - Jay Nadeau
- The Motility Group, Division of Aerospace Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Andre Khalil
- CompuMAINE Laboratory, Department of Mathematics & Statistics, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
10
|
Botchkarev VA. The Molecular Revolution in Cutaneous Biology: Chromosomal Territories, Higher-Order Chromatin Remodeling, and the Control of Gene Expression in Keratinocytes. J Invest Dermatol 2017; 137:e93-e99. [PMID: 28411854 DOI: 10.1016/j.jid.2016.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/05/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Three-dimensional organization of transcription in the nucleus and mechanisms controlling the global chromatin folding, including spatial interactions between the genes, noncoding genome elements, and epigenetic and transcription machinery, are essential for establishing lineage-specific gene expression programs during cell differentiation. Spatial chromatin interactions in the nucleus involving gene promoters and distal regulatory elements are currently considered major forces that drive cell differentiation and genome evolution in general, and such interactions are substantially reorganized during many pathological conditions. During terminal differentiation of the epidermal keratinocytes, the nucleus undergoes programmed transformation from highly active status, associated with execution of the genetic program of epidermal barrier formation, to a fully inactive condition and finally becomes a part of the keratinized cells of the cornified epidermal layer. This transition is accompanied by marked remodeling of the three-dimensional nuclear organization and microanatomy, including changes in the spatial arrangement of lineage-specific genes, nuclear bodies, and heterochromatin. This mini-review highlights the important landmarks in the accumulation of our current knowledge on three-dimensional organization of the nucleus, spatial arrangement of the genes, and their distal regulatory elements, and it provides an update on the mechanisms that control higher-order chromatin remodeling in the context of epidermal keratinocyte differentiation in the skin.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
A Pair of Maternal Chromosomes Derived from Meiotic Nondisjunction in Trisomy 21 Affects Nuclear Architecture and Transcriptional Regulation. Sci Rep 2017; 7:764. [PMID: 28396582 PMCID: PMC5429678 DOI: 10.1038/s41598-017-00714-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are organised into complex higher-order structures within the nucleus, and the three-dimensional arrangement of chromosomes is functionally important for global gene regulation. The existence of supernumerary chromosome 21 in Down syndrome may perturb the nuclear architecture at different levels, which is normally optimised to maintain the physiological balance of gene expression. However, it has not been clearly elucidated whether and how aberrant configuration of chromosomes affects gene activities. To investigate the effects of trisomy 21 on nuclear organisation and gene expression, we performed three-dimensional fluorescent imaging analysis of chromosome-edited human induced pluripotent stem cells (iPSCs), which enabled identification of the parental origin of the three copies of chromosome 21. We found that two copies of maternal chromosomes resulting from meiotic nondisjunction had a higher tendency to form an adjacent pair and were located relatively distant from the nuclear membrane, suggesting the conserved interaction between these homologous chromosomes. Transcriptional profiling of parental-origin-specific corrected disomy 21 iPSC lines indicated upregulated expression of the maternal alleles for a group of genes, which was accompanied by a fluctuating expression pattern. These results suggest the unique effects of a pair of maternal chromosomes in trisomy 21, which may contribute to the pathological phenotype.
Collapse
|
12
|
Marin Z, Batchelder KA, Toner BC, Guimond L, Gerasimova-Chechkina E, Harrow AR, Arneodo A, Khalil A. Mammographic evidence of microenvironment changes in tumorous breasts. Med Phys 2017; 44:1324-1336. [DOI: 10.1002/mp.12120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zach Marin
- CompuMAINE Laboratory; Department of Mathematics & Statistics; University of Maine; Orono ME 04469 USA
| | - Kendra A. Batchelder
- CompuMAINE Laboratory; Department of Mathematics & Statistics; University of Maine; Orono ME 04469 USA
| | - Brian C. Toner
- CompuMAINE Laboratory; Department of Mathematics & Statistics; University of Maine; Orono ME 04469 USA
| | - Lyne Guimond
- CompuMAINE Laboratory; Department of Mathematics & Statistics; University of Maine; Orono ME 04469 USA
| | | | - Amy R. Harrow
- Spectrum Medical Group; Eastern Maine Medical Center; Bangor ME 04401 USA
| | - Alain Arneodo
- LOMA; Universite de Bordeaux; CNRS; UMR 5798; 33405 Talence France
| | - Andre Khalil
- CompuMAINE Laboratory; Department of Mathematics & Statistics; University of Maine; Orono ME 04469 USA
| |
Collapse
|
13
|
Robaszkiewicz E, Idziak-Helmcke D, Tkacz MA, Chrominski K, Hasterok R. The arrangement of Brachypodium distachyon chromosomes in interphase nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5571-5583. [PMID: 27588463 PMCID: PMC5049400 DOI: 10.1093/jxb/erw325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biological processes, such as DNA replication, transcription, and repair. However, detailed data about the CT arrangement in monocotyledonous plants are scarce. In this study, chromosome painting was used to analyse the distribution and associations of individual chromosomes in the 3-D preserved nuclei of Brachypodium distachyon root cells in order to determine the factors that may have an impact on the homologous CT arrangement. It was shown that the frequency of CT association is linked to the steric constraints imposed by the limited space within the nucleus and may depend on chromosome size and morphology as well as on the nuclear shape. Furthermore, in order to assess whether the distribution of interphase chromosomes is random or is subject to certain patterns, a comparison between the experimental data and the results of a computer simulation (ChroTeMo), which was based on a fully probabilistic distribution of the CTs, was performed. This comparison revealed that homologous chromosome arm CTs associate more often than if they were randomly arranged inside the interphase nucleus.
Collapse
Affiliation(s)
- Ewa Robaszkiewicz
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena A Tkacz
- Institute of Computer Science, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Kornel Chrominski
- Institute of Technology and Mechatronics, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
14
|
Tkacz MA, Chromiński K, Idziak-Helmcke D, Robaszkiewicz E, Hasterok R. Chromosome Territory Modeller and Viewer. PLoS One 2016; 11:e0160303. [PMID: 27505434 PMCID: PMC4978479 DOI: 10.1371/journal.pone.0160303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/18/2016] [Indexed: 12/27/2022] Open
Abstract
This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi–a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license.
Collapse
Affiliation(s)
- Magdalena A. Tkacz
- Institute of Computer Science, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
- * E-mail:
| | - Kornel Chromiński
- Institute of Technology and Mechatronics, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ewa Robaszkiewicz
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Weise A, Bhatt S, Piaszinski K, Kosyakova N, Fan X, Altendorf-Hofmann A, Tanomtong A, Chaveerach A, de Cioffi MB, de Oliveira E, Walther JU, Liehr T, Chaudhuri JP. Chromosomes in a genome-wise order: evidence for metaphase architecture. Mol Cytogenet 2016; 9:36. [PMID: 27123045 PMCID: PMC4847357 DOI: 10.1186/s13039-016-0243-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND One fundamental finding of the last decade is that, besides the primary DNA sequence information there are several epigenetic "information-layers" like DNA-and histone modifications, chromatin packaging and, last but not least, the position of genes in the nucleus. RESULTS We postulate that the functional genomic architecture is not restricted to the interphase of the cell cycle but can also be observed in the metaphase stage, when chromosomes are most condensed and microscopically visible. If so, it offers the unique opportunity to directly analyze the functional aspects of genomic architecture in different cells, species and diseases. Another aspect not directly accessible by molecular techniques is the genome merged from two different haploid parental genomes represented by the homologous chromosome sets. Our results show that there is not only a well-known and defined nuclear architecture in interphase but also in metaphase leading to a bilateral organization of the two haploid sets of chromosomes. Moreover, evidence is provided for the parental origin of the haploid grouping. CONCLUSIONS From our findings we postulate an additional epigenetic information layer within the genome including the organization of homologous chromosomes and their parental origin which may now substantially change the landscape of genetics.
Collapse
Affiliation(s)
- Anja Weise
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
| | - Samarth Bhatt
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
| | - Katja Piaszinski
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
| | - Nadezda Kosyakova
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
| | - Xiaobo Fan
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
| | - Annelore Altendorf-Hofmann
- />Department of General, Visceral und Vascular Surgery, Jena University Hospital, Kochstr. 2, Jena, 07743 Germany
| | - Alongklod Tanomtong
- />Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd, Khon Kaen, Muang District 40002 Thailand
| | - Arunrat Chaveerach
- />Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd, Khon Kaen, Muang District 40002 Thailand
| | - Marcelo Bello de Cioffi
- />Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Edivaldo de Oliveira
- />Instituto Evandro Chagas, Seção de Meio Ambiente, Laboratório de Cultura de Tecidos e Citogenética, Ananindeua, PA Brazil
| | - Joachim-U. Walther
- />Instituto Evandro Chagas, Seção de Meio Ambiente, Laboratório de Cultura de Tecidos e Citogenética, Ananindeua, PA Brazil
| | - Thomas Liehr
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
| | - Jyoti P. Chaudhuri
- />Institute of Human Genetics, Jena University Hospital, Postfach, 07740, Jena, Germany
- />Kinderklinik, Ludwig Maximillians Universität, 80337 Munich, Germany
| |
Collapse
|
16
|
Maharana S, Iyer KV, Jain N, Nagarajan M, Wang Y, Shivashankar GV. Chromosome intermingling-the physical basis of chromosome organization in differentiated cells. Nucleic Acids Res 2016; 44:5148-60. [PMID: 26939888 PMCID: PMC5603959 DOI: 10.1093/nar/gkw131] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/19/2016] [Indexed: 12/16/2022] Open
Abstract
Chromosome territories (CTs) in higher eukaryotes occupy tissue-specific non-random three-dimensional positions in the interphase nucleus. To understand the mechanisms underlying CT organization, we mapped CT position and transcriptional changes in undifferentiated embryonic stem (ES) cells, during early onset of mouse ES cell differentiation and in terminally differentiated NIH3T3 cells. We found chromosome intermingling volume to be a reliable CT surface property, which can be used to define CT organization. Our results show a correlation between the transcriptional activity of chromosomes and heterologous chromosome intermingling volumes during differentiation. Furthermore, these regions were enriched in active RNA polymerase and other histone modifications in the differentiated states. These findings suggest a correlation between the evolution of transcription program in modifying CT architecture in undifferentiated stem cells. This leads to the formation of functional CT surfaces, which then interact to define the three-dimensional CT organization during differentiation.
Collapse
Affiliation(s)
| | - K Venkatesan Iyer
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Nikhil Jain
- Mechanobiology Institute, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore
| | - Mallika Nagarajan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yejun Wang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
17
|
Fritz A, Barutcu AR, Martin-Buley L, vanWijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. J Cell Biochem 2016; 117:9-19. [PMID: 26192137 PMCID: PMC4715719 DOI: 10.1002/jcb.25280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.
Collapse
Affiliation(s)
- Andrew Fritz
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - A. Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Lori Martin-Buley
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - André J. vanWijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sayyed K. Zaidi
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B. Lian
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
18
|
Pliss A, Fritz AJ, Stojkovic B, Ding H, Mukherjee L, Bhattacharya S, Xu J, Berezney R. Non-Random Patterns in the Distribution of NOR-Bearing Chromosome Territories in Human Fibroblasts: A Network Model of Interactions. J Cell Physiol 2015; 230:427-39. [PMID: 25077974 DOI: 10.1002/jcp.24726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
We present a 3-D mapping in WI38 human diploid fibroblast cells of chromosome territories (CT) 13,14,15,21, and 22, which contain the nucleolar organizing regions (NOR) and participate in the formation of nucleoli. The nuclear radial positioning of NOR-CT correlated with the size of chromosomes with smaller CT more interior. A high frequency of pairwise associations between NOR-CT ranging from 52% (CT13-21) to 82% (CT15-21) was detected as well as a triplet arrangement of CT15-21-22 (72%). The associations of homologous CT were significantly lower (24-36%). Moreover, singular contacts between CT13-14 or CT13-22 were found in the majority of cells, while CT13-15 or CT13-21 predominantly exhibited multiple interactions. In cells with multiple nucleoli, one of the nucleoli (termed "dominant") always associated with a higher number of CT. Moreover, certain CT pairs more frequently contributed to the same nucleolus than to others. This nonrandom pattern suggests that a large number of the NOR-chromosomes are poised in close proximity during the postmitotic nucleolar recovery and through their NORs may contribute to the formation of the same nucleolus. A global data mining program termed the chromatic median determined the most probable interchromosomal arrangement of the entire NOR-CT population. This interactive network model was significantly above randomized simulation and was composed of 13 connections among the NOR-CT. We conclude that the NOR-CT form a global interactive network in the cell nucleus that may be a fundamental feature for the regulation of nucleolar and other genomic functions.
Collapse
Affiliation(s)
- Artem Pliss
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Andrew J Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Lopamudra Mukherjee
- Department of Computer Sciences, University at Wisconsin Whitewater, Whitewater, Wisconsin
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
19
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Berezney R. Cell type specific alterations in interchromosomal networks across the cell cycle. PLoS Comput Biol 2014; 10:e1003857. [PMID: 25275626 PMCID: PMC4183423 DOI: 10.1371/journal.pcbi.1003857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The interchromosomal organization of a subset of human chromosomes (#1, 4, 11, 12, 16, 17, and 18) was examined in G1 and S phase of human WI38 lung fibroblast and MCF10A breast epithelial cells. Radial positioning of the chromosome territories (CTs) was independent of gene density, but size dependent. While no changes in radial positioning during the cell cycle were detected, there were stage-specific differences between cell types. Each CT was in close proximity (interaction) with a similar number of other CT except the gene rich CT17 which had significantly more interactions. Furthermore, CT17 was a member of the highest pairwise CT combinations with multiple interactions. Major differences were detected in the pairwise interaction profiles of MCF10A versus WI38 including cell cycle alterations from G1 to S. These alterations in interaction profiles were subdivided into five types: overall increase, overall decrease, switching from 1 to ≥2 interactions, vice versa, or no change. A global data mining program termed the chromatic median determined the most probable overall association network for the entire subset of CT. This probabilistic interchromosomal network was nearly completely different between the two cell lines. It was also strikingly altered across the cell cycle in MCF10A, but only slightly in WI38. We conclude that CT undergo multiple and preferred interactions with other CT in the nucleus and form preferred -albeit probabilistic- interchromosomal networks. This network of interactions is altered across the cell cycle and between cell types. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program across the cell cycle and in different cell types.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina, United States of America
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
20
|
Wavelet-based 3D reconstruction of microcalcification clusters from two mammographic views: new evidence that fractal tumors are malignant and Euclidean tumors are benign. PLoS One 2014; 9:e107580. [PMID: 25222610 PMCID: PMC4164655 DOI: 10.1371/journal.pone.0107580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022] Open
Abstract
The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the “CC-MLO fractal dimension plot”, where a “fractal zone” and “Euclidean zones” (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.
Collapse
|
21
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Gaile D, Berezney R. Wide-scale alterations in interchromosomal organization in breast cancer cells: defining a network of interacting chromosomes. Hum Mol Genet 2014; 23:5133-46. [PMID: 24833717 DOI: 10.1093/hmg/ddu237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interchromosomal spatial positionings of a subset of human chromosomes was examined in the human breast cell line MCF10A (10A) and its malignant counterpart MCF10CA1a (CA1a). The nine chromosomes selected (#1, 4, 11, 12, 15, 16, 18, 21 and X) cover a wide range in size and gene density and compose ∼40% of the total human genome. Radial positioning of the chromosome territories (CT) was size dependent with certain of the CT more peripheral in CA1a. Each CT was in close proximity (interaction) with a similar number of other CT except the inactive CTXi. It had lower levels of interchromosomal partners in 10A which increased strikingly in CA1a. Major alterations from 10A to CA1a were detected in the pairwise interaction profiles which were subdivided into five types of altered interaction profiles: overall increase, overall decrease, switching from 1 to ≥2, vice versa or no change. A global data mining program termed the chromatic median calculated the most probable overall association network for the entire subset of CT. This interchromosomal network was drastically altered in CA1a with only 1 of 20 shared connections. We conclude that CT undergo multiple and preferred interactions with other CT in the cell nucleus and form preferred-albeit probabilistic-interchromosomal networks. This network of interactions is highly altered in malignant human breast cells. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program of these malignant cancer cells.
Collapse
Affiliation(s)
| | - Branislav Stojkovic
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Hu Ding
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jinhui Xu
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Daniel Gaile
- Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
22
|
Shete A, Rao P, Pati D, Merchant F. Spatial quantitation of FISH signals in diploid versus aneuploid nuclei. Cytometry A 2013; 85:339-52. [PMID: 24347051 DOI: 10.1002/cyto.a.22426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/27/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
Abstract
Fluorescence in situ hybridization (FISH) is the most widely used molecular technique to visualize chromosomal abnormalities. Here, we describe a novel 3D modeling approach to allow precise shape estimation and localization of FISH signals in the nucleus of human embryonic stem cells (hES) undergoing progressive but defined aneuploidy. The hES cell line WA09 acquires an extra copy of chromosome 12 in culture with increasing passages. Both diploid and aneuploid nuclei were analyzed to quantitate the differences in the localization of centromeric FISH signals for chromosome 12 as it transitions from euploidy to aneuploidy. We employed superquadric modeling primitives coupled with principal component analysis to determine the 3D position of FISH signals within the nucleus. A novel aspect of our modeling approach is that it allows comparison of FISH signals across multiple cells by normalizing the position of the centromeric signals relative to a reference landmark in oriented nuclei. Using this model we present evidence of changes in the relative positioning of centromeres in trisomy-12 cells when compared with diploid cells from the same population. Our analysis also suggests a significant change in the spatial distribution of at least one of the FISH signals in the aneuploid chromosome complements implicating that an overall change in centromere position may occur in trisomy-12 due to the addition of an extra chromosome. These studies underscore the unique utility of our modeling algorithms in quantifying FISH signals in three dimensions.
Collapse
Affiliation(s)
- Amol Shete
- Department of Computer Science, University of Houston, Houston, Texas
| | | | | | | |
Collapse
|
23
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
24
|
Botchkarev VA, Gdula MR, Mardaryev AN, Sharov AA, Fessing MY. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol 2012; 132:2505-21. [PMID: 22763788 PMCID: PMC3650472 DOI: 10.1038/jid.2012.182] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleus is a complex and highly compartmentalized organelle, which organization undergoes major changes during cell differentiation allowing cells to become specialized and fulfill their functions.During terminal differentiation of the epidermal keratinocytes, nucleus undergoes programmed transformation from active status, associated with execution of the genetic programs of cornification and epidermal barrier formation, to fully inactive condition and becomes a part of the keratinized cells of the cornified layer. Tremendous progress achieved within the last two decades in understanding the biology of the nucleus and epigenetic mechanisms controlling gene expression allowed defining several levels in the regulation of cell differentiation-associated gene expression programs, including an accessibility of the gene regulatory regions to DNA-protein interactions, covalent DNA and histone modifications and ATP-dependent chromatin remodeling, as well as higher-order chromatin remodeling and nuclear compartmentalization of the genes and transcription machinery. Here, we integrate our current knowledge of the mechanisms controlling gene expression during terminal keratinocyte differentiation with distinct levels of chromatin organization and remodeling. We also propose the directions to further explore the role of epigenetic mechanisms and their interactions with other regulatory systems in the control of keratinocyte differentiation in normal and diseased skin.
Collapse
|
25
|
Homologue pairing in flies and mammals: gene regulation when two are involved. GENETICS RESEARCH INTERNATIONAL 2011; 2012:430587. [PMID: 22567388 PMCID: PMC3335585 DOI: 10.1155/2012/430587] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/17/2011] [Accepted: 09/26/2011] [Indexed: 01/03/2023]
Abstract
Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells. Most others, including mammals, display little homologue pairing outside of the germline. Experimental evidence from both flies and mammals suggests that communication between homologues contributes to normal genome regulation. This paper will contrast the role of pairing in transmitting information between homologues in flies and mammals. In mammals, somatic homologue pairing is tightly regulated, occurring at specific loci and in a developmentally regulated fashion. Inappropriate pairing, or loss of normal pairing, is associated with gene misregulation in some disease states. While homologue pairing in flies is capable of influencing gene expression, the significance of this for normal expression remains unknown. The sex chromosomes pose a particularly interesting situation, as females are able to pair X chromosomes, but males cannot. The contribution of homologue pairing to the biology of the X chromosome will also be discussed.
Collapse
|
26
|
Véron AS, Lemaitre C, Gautier C, Lacroix V, Sagot MF. Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny. BMC Genomics 2011; 12:303. [PMID: 21663614 PMCID: PMC3132170 DOI: 10.1186/1471-2164-12-303] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/10/2011] [Indexed: 12/01/2022] Open
Abstract
Background Folding and intermingling of chromosomes has the potential of bringing close to each other loci that are very distant genomically or even on different chromosomes. On the other hand, genomic rearrangements also play a major role in the reorganisation of loci proximities. Whether the same loci are involved in both mechanisms has been studied in the case of somatic rearrangements, but never from an evolutionary standpoint. Results In this paper, we analysed the correlation between two datasets: (i) whole-genome chromatin contact data obtained in human cells using the Hi-C protocol; and (ii) a set of breakpoint regions resulting from evolutionary rearrangements which occurred since the split of the human and mouse lineages. Surprisingly, we found that two loci distant in the human genome but adjacent in the mouse genome are significantly more often observed in close proximity in the human nucleus than expected. Importantly, we show that this result holds for loci located on the same chromosome regardless of the genomic distance separating them, and the signal is stronger in gene-rich and open-chromatin regions. Conclusions These findings strongly suggest that part of the 3D organisation of chromosomes may be conserved across very large evolutionary distances. To characterise this phenomenon, we propose to use the notion of spatial synteny which generalises the notion of genomic synteny to the 3D case.
Collapse
|
27
|
Cremer T, Zakhartchenko V. Nuclear architecture in developmental biology and cell specialisation. Reprod Fertil Dev 2011; 23:94-106. [DOI: 10.1071/rd10249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes, including DNA methylation patterns, histone modifications and histone variants, as well as chromatin remodelling play a fundamental role in the regulation of pre‐ and postimplantation mammalian development. Recent studies have indicated that nuclear architecture provides an additional level of regulation, which needs to be explored in order to understand how a fertilised egg is able to develop into a full organism. Studies of 3D preserved nuclei of IVF preimplantation embryos from different mammalian species, such as mouse, rabbit and cow, have demonstrated that nuclear architecture undergoes major changes during early development. Both similarities and species‐specific differences were observed. Nuclear transfer experiments demonstrated changes of nuclear phenotypes, which to some extent reflect changes seen in IVF preimplantation embryos albeit with a different timing compared with IVF embryos. The dynamics of nuclear architecture is further substantiated by major changes during postmitotic terminal cell differentiation. Recent breakthroughs of 3D fluorescence microscopy with resolution beyond the conventional Abbe limit in combination with 3D electron microscopy provide the potential to explore the topography of nuclear structure with unprecedented resolution and detail.
Collapse
|
28
|
Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L. Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 2010; 123:4063-75. [DOI: 10.1242/jcs.066498] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.
Collapse
Affiliation(s)
- Claire Heride
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Michelle Ricoul
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Kien Kiêu
- UR 341 Mathématiques et Informatique Appliquées, INRA, 78 350 Jouy-en-Josas, France
| | - Johann von Hase
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Vincent Guillemot
- Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Commissariat à l'Energie Atomique, 91 057 Evry, France
| | - Christoph Cremer
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Karine Dubrana
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
29
|
Grant J, Verrill C, Coustham V, Arneodo A, Palladino F, Monier K, Khalil A. Perinuclear distribution of heterochromatin in developing C. elegans embryos. Chromosome Res 2010; 18:873-85. [PMID: 21116703 DOI: 10.1007/s10577-010-9175-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Specific nuclear domains are nonrandomly positioned within the nuclear space, and this preferential positioning has been shown to play an important role in genome activity and stability. Well-known examples include the organization of repetitive DNA in telomere clusters or in the chromocenter of Drosophila and mammalian cells, which may provide a means to control the availability of general repressors, such as the heterochromatin protein 1 (HP1). We have specifically characterized the intranuclear positioning of in vivo fluorescence of the Caenorhabditis elegans HP1 homologue HPL-2 as a marker for heterochromatin domains in developing embryos. For this purpose, the wavelet transform modulus maxima (WTMM) segmentation method was generalized and adapted to segment the small embryonic cell nuclei in three dimensions. The implementation of a radial distribution algorithm revealed a preferential perinuclear positioning of HPL-2 fluorescence in wild-type embryos compared with the diffuse and homogeneous nuclear fluorescence observed in the lin-13 mutants. For all other genotypes analyzed, the quantitative analysis highlighted various degrees of preferential HPL-2 positioning at the nuclear periphery, which directly correlates with the number of HPL-2 foci previously counted on 2D projections. Using a probabilistic 3D cell nuclear model, we found that any two nuclei having the same number of foci, but with a different 3D probabilistic positioning scheme, can have significantly different counts in the 2D maximum projection, thus showing the deceptive limitations of using techniques of 2D maximum projection foci counts. By this approach, a strong perinuclear positioning of HPL-2 foci was brought into light upon inactivation of conserved chromatin-associated proteins, including the HAT cofactor TRAPP.
Collapse
Affiliation(s)
- Jeremy Grant
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them.
Collapse
Affiliation(s)
- Thomas Cremer
- Biozentrum, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
31
|
Abstract
Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Khalil A, Aponte C, Zhang R, Davisson T, Dickey I, Engelman D, Hawkins M, Mason M. Image analysis of soft-tissue in-growth and attachment into highly porous alumina ceramic foam metals. Med Eng Phys 2009; 31:775-83. [PMID: 19297233 DOI: 10.1016/j.medengphy.2009.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
The detailed quantitative characterization of soft-tissue in-growth into highly porous artificial implants is critical to understanding the biophysical processes that will lead to the best structural scaffolding construct. Previous studies have performed mechanical peel tests and mostly qualitative histological analyses of soft-tissue. The goal of this paper is to report the results obtained from applying two image analysis algorithms to quantify the morphological structure found in histological images of stained soft-tissue in-growth into alumina ceramic foam metal implants using a canine model. Three different pore sizes were used and three different post-operative time points were considered. Using the 2D Wavelet Transform Modulus Maxima method and 2D Fourier Transform analysis, a strong anisotropic signature (directional preference) is detected in early (4-week) histological samples. The direction of preference is towards the center of the implants. The strength of the anisotropy at later time points (8 and 16 weeks) becomes gradually weaker. Our interpretation is that after a short period of time, the main tissue growth activity has been concentrated on filling the artificial implant by growing towards its center. The weaker anisotropic signature found at later time points is interpreted as the tissue growth activity strengthening its structure by growing in more random directions.
Collapse
Affiliation(s)
- A Khalil
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Babu MM, Janga SC, de Santiago I, Pombo A. Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 2008; 18:571-82. [PMID: 19007886 DOI: 10.1016/j.gde.2008.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 12/11/2022]
Abstract
Recent advances in molecular techniques and high-resolution imaging are beginning to provide exciting insights into the higher order chromatin organization within the cell nucleus and its influence on eukaryotic gene regulation. This improved understanding of gene regulation also raises fundamental questions about how spatial features might have constrained the organization of genes on eukaryotic chromosomes and how mutations that affect these processes might contribute to disease conditions. In this review, we discuss recent studies that highlight the role of spatial components in gene regulation and their impact on genome evolution. We then address implications for human diseases and outline new directions for future research.
Collapse
Affiliation(s)
- M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | |
Collapse
|