1
|
Ke CH, Tomiyasu H, Lin YL, Huang WH, Huang HH, Chiang HC, Lin CS. Canine transmissible venereal tumour established in immunodeficient mice reprograms the gene expression profiles associated with a favourable tumour microenvironment to enable cancer malignancy. BMC Vet Res 2022; 18:4. [PMID: 34980125 PMCID: PMC8722346 DOI: 10.1186/s12917-021-03093-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Canine transmissible venereal tumours (CTVTs) can cross the major histocompatibility complex barrier to spread among dogs. In addition to the transmissibility within canids, CTVTs are also known as a suitable model for investigating the tumour–host immunity interaction because dogs live with humans and experience the same environmental risk factors for tumourigenesis. Moreover, outbred dogs are more appropriate than inbred mice models for simulating the diversity of human cancer development. This study built a new model of CTVTs, known as MCTVTs, to further probe the shaping effects of immune stress on tumour development. For xenotransplantation, CTVTs were first injected and developed in immunodeficient mice (NOD.CB17-Prkdcscid/NcrCrl), defined as XCTVTs. The XCTVTs harvested from NOD/SCID mice were then inoculated and grown in beagles and named mouse xenotransplantation of CTVTs (MCTVTs). Results After the inoculation of CTVTs and MCTVTs into immune-competent beagle dogs separately, MCTVTs grew faster and metastasized more frequently than CTVTs did. Gene expression profiles in CTVTs and MCTVTs were analysed by cDNA microarray to reveal that MCTVTs expressed many tumour-promoting genes involved in chronic inflammation, chemotaxis, extracellular space modification, NF-kappa B pathways, and focal adhesion. Furthermore, several well-known tumour-associated biomarkers which could predict tumour progression were overexpressed in MCTVTs. Conclusions This study demonstrated that defective host immunity can result in gene instability and enable transcriptome reprogramming within tumour cells. Fast tumour growth in beagle dogs and overexpression of tumour-associated biomarkers were found in a CTVT strain previously established in immunodeficient mice. In addition, dysregulated interaction of chronic inflammation, chemotaxis, and extracellular space modification were revealed to imply the possibly exacerbating mechanisms in the microenvironments of these tumours. In summary, this study offers a potential method to facilitate tumour progression and provide a niche for discovering tumour-associated biomarkers in cancer research. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03093-4.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd., 10617, Taipei, Taiwan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Hsiao-Hsuan Huang
- Industrial Development Graduate Program of College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, 30068, Taiwan
| | | | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd., 10617, Taipei, Taiwan.
| |
Collapse
|
2
|
Comprehensive Genomic Profiling of Androgen-Receptor-Negative Canine Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071555. [PMID: 30925701 PMCID: PMC6480132 DOI: 10.3390/ijms20071555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Canine carcinomas have been considered natural models for human diseases; however, the genomic profile of canine prostate cancers (PCs) has not been explored. In this study, 14 PC androgen-receptor-negative cases, 4 proliferative inflammatory atrophies (PIA), and 5 normal prostate tissues were investigated by array-based comparative genomic hybridization (aCGH). Copy number alterations (CNAs) were assessed using the Canine Genome CGH Microarray 4 × 44K (Agilent Technologies). Genes covered by recurrent CNAs were submitted to enrichment and cross-validation analysis. In addition, the expression levels of TP53, MDM2 and ZBTB4 were evaluated in an independent set of cases by qPCR. PC cases presented genomic complexity, while PIA samples had a small number of CNAs. Recurrent losses covering well-known tumor suppressor genes, such as ATM, BRCA1, CDH1, MEN1 and TP53, were found in PC. The in silico functional analysis showed several cancer-related genes associated with canonical pathways and interaction networks previously described in human PC. The MDM2, TP53, and ZBTB4 copy number alterations were translated into altered expression levels. A cross-validation analysis using The Cancer Genome Atlas (TCGA) database for human PC uncovered similarities between canine and human PCs. Androgen-receptor-negative canine PC is a complex disease characterized by high genomic instability, showing a set of genes with similar alterations to human cancer.
Collapse
|
3
|
Abstract
Dogs are second only to humans in medical surveillance and preventative health care, leading to a recent perception of increased cancer incidence. Scientific priorities in veterinary oncology have thus shifted, with a demand for cancer genetic screens, better diagnostics, and more effective therapies. Most dog breeds came into existence within the last 300 years, and many are derived from small numbers of founders. Each has undergone strong artificial selection, in which dog fanciers selected for many traits, including body size, fur type, color, skull shape, and behavior, to create novel breeds. The adoption of the breed barrier rule-no dog may become a registered member of a breed unless both its dam and its sire are registered members-ensures a relatively closed genetic pool within each breed. As a result, there is strong phenotypic homogeneity within breeds but extraordinary phenotypic variation between breeds. One consequence of this is the high level of breed-associated genetic disease. We and others have taken advantage of this to identify genes for a large number of canine maladies for which mouse models do not exist, particularly with regard to cancer.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacquelyn M Evans
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
4
|
Ujvari B, Papenfuss AT, Belov K. Transmissible cancers in an evolutionary context. Bioessays 2017; 38 Suppl 1:S14-23. [PMID: 27417118 DOI: 10.1002/bies.201670904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.,Faculty of Veterinary Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | - Katherine Belov
- Faculty of Veterinary Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
5
|
Abstract
Devil facial tumor disease (DFTD) is an emergent transmissible cancer exclusive to Tasmanian devils (Sarcophilus harrisii) and threatening the species with extinction in the wild. Research on DFTD began 10 years ago, when nothing was known about the tumor and little about the devils. The depth of knowledge gained since then is impressive, with research having addressed significant aspects of the disease and the devils' responses to it. These include the cause and pathogenesis of DFTD, the immune response of the devils and the immune evasion mechanisms of the tumor, the transmission patterns of DFTD, and the impacts of DFTD on the ecosystem. This review aims to collate this information and put it into the context of conservation strategies designed to mitigate the impacts of DFTD on the devil and the Tasmanian ecosystem.
Collapse
Affiliation(s)
- R J Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - G M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - A Kreiss
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Ostrander EA, Davis BW, Ostrander GK. Transmissible Tumors: Breaking the Cancer Paradigm. Trends Genet 2015; 32:1-15. [PMID: 26686413 DOI: 10.1016/j.tig.2015.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/23/2022]
Abstract
Transmissible tumors are those that have transcended the bounds of their incipient hosts by evolving the ability to infect another individual through direct transfer of cancer cells, thus becoming parasitic cancer clones. Coitus, biting, and scratching are transfer mechanisms for the two primary species studied, the domestic dog (Canis lupus familiaris) and the Tasmanian devil (Sarcophilus harrisii). Canine transmissible venereal tumors (CTVT) are likely thousands of years old, and have successfully travelled from host to host around the world, while the Tasmanian devil facial tumor disease (DFTD) is much younger and geographically localized. The dog tumor is not necessarily lethal, while the devil tumor has driven the population to near extinction. Transmissible tumors are uniform in that they have complex immunologic profiles, which allow them to escape immune detection by their hosts, sometimes for long periods of time. In this review, we explore how transmissible tumors in CTVT, DFTD, and as well as the soft-shell clam and Syrian hamster, can advance studies of tumor biology.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda MD 20892, USA.
| | - Brian W Davis
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda MD 20892, USA
| | - Gary K Ostrander
- Department of Biomedical Science, 600W College Ave, College of Medicine, Florida State University, Tallahassee, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Decker B, Davis BW, Rimbault M, Long AH, Karlins E, Jagannathan V, Reiman R, Parker HG, Drögemüller C, Corneveaux JJ, Chapman ES, Trent JM, Leeb T, Huentelman MJ, Wayne RK, Karyadi DM, Ostrander EA. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor. Genome Res 2015; 25:1646-55. [PMID: 26232412 PMCID: PMC4617961 DOI: 10.1101/gr.190314.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022]
Abstract
Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic mutations that must drive clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Maud Rimbault
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adrienne H Long
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Eric Karlins
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Rebecca Reiman
- The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Heidi G Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cord Drögemüller
- Institute of Genetics, University of Bern, Bern, CH-3001, Switzerland
| | - Jason J Corneveaux
- The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Erica S Chapman
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeffery M Trent
- The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Danielle M Karyadi
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Strakova A, Murchison EP. The cancer which survived: insights from the genome of an 11000 year-old cancer. Curr Opin Genet Dev 2015; 30:49-55. [PMID: 25867244 DOI: 10.1016/j.gde.2015.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
The canine transmissible venereal tumour (CTVT) is a transmissible cancer that is spread between dogs by the allogeneic transfer of living cancer cells during coitus. CTVT affects dogs around the world and is the oldest and most divergent cancer lineage known in nature. CTVT first emerged as a cancer about 11000 years ago from the somatic cells of an individual dog, and has subsequently acquired adaptations for cell transmission between hosts and for survival as an allogeneic graft. Furthermore, it has achieved a genome configuration which is compatible with long-term survival. Here, we discuss and speculate on the evolutionary processes and adaptions which underlie the success of this remarkable lineage.
Collapse
Affiliation(s)
- Andrea Strakova
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
9
|
Murchison EP, Wedge DC, Alexandrov LB, Fu B, Martincorena I, Ning Z, Tubio JMC, Werner EI, Allen J, De Nardi AB, Donelan EM, Marino G, Fassati A, Campbell PJ, Yang F, Burt A, Weiss RA, Stratton MR. Transmissible [corrected] dog cancer genome reveals the origin and history of an ancient cell lineage. Science 2014; 343:437-440. [PMID: 24458646 PMCID: PMC3918581 DOI: 10.1126/science.1247167] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden.
Collapse
Affiliation(s)
- Elizabeth P. Murchison
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | | | - Zemin Ning
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Jan Allen
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), P.O. Box 1464, Nightcliff, NT 0814, Australia
| | - Andrigo Barboza De Nardi
- Department of Clinical and Veterinary Surgery, São Paulo State University – UNESP, Via de Acesso Prof. Paulo Donato Castellane, s/n. CEP: 14884-900, Jaboticabal, São Paulo, Brazil
| | - Edward M. Donelan
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), P.O. Box 1464, Nightcliff, NT 0814, Australia
| | - Gabriele Marino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Ariberto Fassati
- Wohl Virion Centre and MRC Centre for Medical and Molecular Virology, Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks., SL5 7PY, UK
| | - Robin A. Weiss
- Wohl Virion Centre and MRC Centre for Medical and Molecular Virology, Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
10
|
Ganguly B, Das U, Das AK. Canine transmissible venereal tumour: a review. Vet Comp Oncol 2013; 14:1-12. [DOI: 10.1111/vco.12060] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/16/2013] [Accepted: 06/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- B. Ganguly
- Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, College of Veterinary and Animal Sciences; G. B. Pant University of Agriculture and Technology; Pantnagar India
| | - U. Das
- Broad Street Pet Clinics; Kolkata India
| | - A. K. Das
- Department of Surgery and Radiology, College of Veterinary and Animal Sciences; G. B. Pant University of Agriculture and Technology; Pantnagar India
| |
Collapse
|
11
|
Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ, Fu B, Hims M, Ding Z, Ivakhno S, Stewart C, Ng BL, Wong W, Aken B, White S, Alsop A, Becq J, Bignell GR, Cheetham RK, Cheng W, Connor TR, Cox AJ, Feng ZP, Gu Y, Grocock RJ, Harris SR, Khrebtukova I, Kingsbury Z, Kowarsky M, Kreiss A, Luo S, Marshall J, McBride DJ, Murray L, Pearse AM, Raine K, Rasolonjatovo I, Shaw R, Tedder P, Tregidgo C, Vilella AJ, Wedge DC, Woods GM, Gormley N, Humphray S, Schroth G, Smith G, Hall K, Searle SMJ, Carter NP, Papenfuss AT, Futreal PA, Campbell PJ, Yang F, Bentley DR, Evers DJ, Stratton MR. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 2012; 148:780-91. [PMID: 22341448 PMCID: PMC3281993 DOI: 10.1016/j.cell.2011.11.065] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/03/2011] [Accepted: 11/29/2011] [Indexed: 01/23/2023]
Abstract
The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip
Collapse
|
12
|
O'Neill ID. Concise review: transmissible animal tumors as models of the cancer stem-cell process. Stem Cells 2012; 29:1909-14. [PMID: 21956952 DOI: 10.1002/stem.751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tasmanian devil facial tumor disease (DFTD) and canine transmissible venereal tumor (CTVT) are highly unusual cancers capable of being transmitted between animals as an allograft. The concept that these tumors represent a cancer stem-cell process has never been formally evaluated. For each, evidence of self-renewal is found in the natural history of these tumors in the wild, tumor initiation in recipient animals, and serial transplantation studies. Additional data for stem-cell-specific genes and markers in DFTD also exist. Although both tumor types manifest as undifferentiated cancers, immunocytohistochemistry supports a histiocytic phenotype for CTVT and a neural crest origin, possibly a Schwann-cell phenotype, for DFTD. In these data, differential expression of lineage markers is seen which may suggest some capacity for differentiation toward a heterogeneous variety of cell types. It is proposed that DFTD and CTVT may represent and may serve as models of the cancer stem-cell process, but formal investigation is required to clarify this. Appreciation of any such role may act as a stimulus to ongoing research in the pathology of DFTD and CTVT, including further characterization of their origin and phenotype and possible therapeutic approaches. Additionally, they may provide valuable models for future studies of their analogous human cancers, including any putative CSC component.
Collapse
Affiliation(s)
- Iain D O'Neill
- de l'immeuble 3, Centre d'Affaires Poincaré, 3 Rue Poincaré, Nice, France.
| |
Collapse
|
13
|
Abstract
Cancer is generally defined as uncontrollable growth of cells caused by genetic aberrations and/or environmental factors. Yet contagious cancers also occur. The recent emergence of a contagious cancer in Tasmanian devils has reignited interest in transmissible cancers. Two naturally occurring transmissible cancers are known: devil facial tumour disease and canine transmissible venereal tumour. Both cancers evolved once and have then been transmitted from one individual to another as clonal cell lines. The dog cancer is ancient; having evolved more than 6,000 years ago, while the devil disease was first seen in 1996. In this review I will compare and contrast the two diseases focusing on the life histories of the clonal cell lines, their evolutionary trajectories and the mechanisms by which they have achieved immune tolerance. A greater understanding of these contagious cancers will provide unique insights into the role of the immune system in shaping tumour evolution and may uncover novel approaches for treating human cancer.
Collapse
Affiliation(s)
- Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
14
|
Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 2011; 13:213. [PMID: 21867571 PMCID: PMC3236330 DOI: 10.1186/bcr2892] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome.
Collapse
Affiliation(s)
- Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|