1
|
Gálvez-Galván A, Garrido-Ramos MA, Prieto P. Bread wheat satellitome: a complex scenario in a huge genome. PLANT MOLECULAR BIOLOGY 2024; 114:8. [PMID: 38291213 PMCID: PMC10827815 DOI: 10.1007/s11103-023-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
In bread wheat (Triticum aestivum L.), chromosome associations during meiosis are extremely regulated and initiate at the telomeres and subtelomeres, which are enriched in satellite DNA (satDNA). We present the study and characterization of the bread wheat satellitome to shed light on the molecular organization of wheat subtelomeres. Our results revealed that the 2.53% of bread wheat genome is composed by satDNA and subtelomeres are particularly enriched in such DNA sequences. Thirty-four satellite DNA (21 for the first time in this work) have been identified, analyzed and cytogenetically validated. Many of the satDNAs were specifically found at particular subtelomeric chromosome regions revealing the asymmetry in subtelomere organisation among the wheat subgenomes, which might play a role in proper homologous recognition and pairing during meiosis. An integrated physical map of the wheat satellitome was also constructed. To the best of our knowledge, our results show that the combination of both cytogenetics and genome research allowed the first comprehensive analysis of the wheat satellitome, shedding light on the complex wheat genome organization, especially on the polymorphic nature of subtelomeres and their putative implication in chromosome recognition and pairing during meiosis.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain.
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo S/N, 14004, Córdoba, Spain.
| |
Collapse
|
2
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
3
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
4
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
5
|
Aguilar M, Prieto P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. THE PLANT GENOME 2020; 13:e20065. [PMID: 33029942 DOI: 10.1002/tpg2.20065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Bread wheat, Triticum aestivum L., is one of the most important crops in the world. Understanding its genome organization (allohexaploid; AABBDD; 2n = 6x = 42) is essential for geneticists and plant breeders. Particularly, the knowledge of how homologous chromosomes (equivalent chromosomes from the same genome) specifically recognize each other to pair at the beginning of meiosis, the cellular process to generate gametes in sexually reproducing organisms, is fundamental for plant breeding and has a big influence on the fertility of wheat plants. Initial homologous chromosome interactions contribute to specific recognition and pairing between homologues at the onset of meiosis. Understanding the molecular basis of these critical processes can help to develop genetic tools in a breeding context to promote interspecific chromosome associations in hybrids or interspecific genetic crosses to facilitate the transfer of desirable agronomic traits from related species into a crop like wheat. The terminal regions of chromosomes, which include telomeres and subtelomeres, participate in chromosome recognition and pairing. We present a detailed molecular analysis of subtelomeres of wheat chromosome arms 1AS, 4AS, 7AS, 7BS and 7DS. Results showed a high polymorphism in the subtelomeric region among homoeologues (equivalent chromosomes from related genomes) for all the features analyzed, including genes, transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots and targeted sequence motifs for relevant DNA-binding proteins. These polymorphisms might be the molecular basis for the specificity of homologous recognition and pairing in initial chromosome interactions at the beginning of meiosis in wheat.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3a planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, Córdoba, 14080, Spain
| |
Collapse
|
6
|
Prieto P, Naranjo T. Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants. Methods Mol Biol 2020; 2061:141-168. [PMID: 31583658 DOI: 10.1007/978-1-4939-9818-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiosis is the cellular process responsible for producing gametes with half the genetic content of the parent cells. Integral parts of the process in most diploid organisms include the recognition, pairing, synapsis, and recombination of homologous chromosomes, which are prerequisites for balanced segregation of half-bivalents during meiosis I. In polyploids, the presence of more than two sets of chromosomes adds to the basic meiotic program of their diploid progenitors the possibility of interactions between more than two chromosomes and the formation of multivalents, which has implications on chromosome segregations and fertility. The mode of how chromosomes behave in meiosis in competitive situations has been the aim of many studies in polyploid species, some of which are considered here. But polyploids are also of interest in the study of meiosis because some of them tolerate the loss of chromosome segments or complete chromosomes as well as the addition of chromosomes from related species. Deletions allow to assess the effect of specific chromosome segments on meiotic behavior. Introgression lines are excellent materials to monitor the behavior of a given chromosome in the genetic background of the recipient species. We focus on this approach here as based on studies carried out in bread wheat, which is commonly used as a model species for meiosis studies. In addition to highlighting the relevance of the use of materials derived from polyploids in the study of meiosis, cytogenetics tools such as fluorescence in situ hybridization and the immunolabeling of proteins interacting with DNA are also emphasized.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Calderón MC, Rey MD, Martín A, Prieto P. Homoeologous Chromosomes From Two Hordeum Species Can Recognize and Associate During Meiosis in Wheat in the Presence of the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:585. [PMID: 29765389 PMCID: PMC5938817 DOI: 10.3389/fpls.2018.00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Understanding the system of a basic eukaryotic cellular mechanism like meiosis is of fundamental importance in plant biology. Moreover, it is also of great strategic interest in plant breeding since unzipping the mechanism of chromosome specificity/pairing during meiosis will allow its manipulation to introduce genetic variability from related species into a crop. The success of meiosis in a polyploid like wheat strongly depends on regular pairing of homologous (identical) chromosomes and recombination, processes mainly controlled by the Ph1 locus. This means that pairing and recombination of related chromosomes rarely occur in the presence of this locus, making difficult wheat breeding trough the incorporation of genetic variability from related species. In this work, we show that wild and cultivated barley chromosomes associate in the wheat background even in the presence of the Ph1 locus. We have developed double monosomic wheat lines carrying two chromosomes from two barley species for the same and different homoeology chromosome group, respectively. Genetic in situ hybridization revealed that homoeologous Hordeum chromosomes recognize each other and pair during early meiosis in wheat. However, crossing over does not occur at any time and they remained always as univalents during meiosis metaphase I. Our results suggest that the Ph1 locus does not prevent chromosome recognition and pairing but crossing over between homoeologous. The role of subtelomeres in chromosome recognition is also discussed.
Collapse
Affiliation(s)
- María C. Calderón
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Antonio Martín
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto
| |
Collapse
|
8
|
Abstract
Given the sizes of the three genomes in wheat (A, B, and D) and a limited number of chiasmata formed in meiosis, recombination by crossing-over is a very rare event. It is also restricted to very similar homologues; the pairing homoeologous (Ph) system of wheat prevents differentiated chromosomes from pairing and crossing-over. This chapter presents an overview and describes several systems by which the frequency or density of crossing-over can be increased, both in homologues and homoeologues. It also presents the standard system of E.R. Sears for engineering alien chromosome transfers into wheat.
Collapse
|
9
|
Naranjo T. Contribution of Structural Chromosome Mutants to the Study of Meiosis in Plants. Cytogenet Genome Res 2015; 147:55-69. [PMID: 26658116 DOI: 10.1159/000442219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Dissection of the molecular mechanisms underlying the transition through the complex events of the meiotic process requires the use of gene mutants or RNAi-mediated gene silencing. A considerable number of meiotic mutants have been isolated in plant species such as Arabidopsis thaliana, maize or rice. However, structural chromosome mutants are also important for the identification of the role developed by different chromosome domains in the meiotic process. This review summarizes the contribution of studies carried out in plants using structural chromosome variations. Meiotic events concerning the search of the homologous partner, the control of number and distribution of chiasmata, the mechanism of pairing correction, and chromosome segregation are considered.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
10
|
Naranjo T. Dynamics of rye telomeres in a wheat background during early meiosis. Cytogenet Genome Res 2014; 143:60-8. [PMID: 24969495 DOI: 10.1159/000363524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Migration of the telomere of the short arm of rye chromosome 5R (5RS) during bouquet organization is dependent on the conformation that this chromosome adopts in its intact, submetacentric, or truncated, metacentric, form. In order to establish whether the telomere migration dependence on chromosome conformation is a common feature of all rye chromosomes, the behavior of the telomeres of 2 other rye chromosomes, 1R and 6R, with apparent differences in the arm ratio, has been studied at the bouquet stage and compared with that of 5R. The presence of subtelomeric heterochromatic chromomeres in both arms of 1R and 6R, which were visualized by FISH, revealed the position of the adjacent telomeres in the bouquet. While the end of the long arms of both chromosomes was, with some exceptions, always included in the telomere cluster, the end of the short arms failed to migrate to the telomere pole. Disturbed telomere migration was more often observed in the short arm of the submetacentric chromosome 6R than in the short arm of the almost metacentric chromosome 1R. Thus, the chromosomal conformation effect on telomere mobility is a common feature of all rye chromosomes. Incomplete telomere clustering is followed by failure of synapsis and chiasma formation in chromosomes 5R and 6R. Chromosome arm 1RS, which carries the NOR, completes synapsis earlier than 5RS or 6RS, facilitated by the nucleolar fusion that occurs during early zygotene.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
11
|
Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 2014; 55:313-8. [DOI: 10.1007/s13353-014-0215-z] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|