1
|
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z, Rodríguez Lorenzo JL, Novotná P, Hudzieczek V. Sexy ways: approaches to studying plant sex chromosomes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5204-5219. [PMID: 38652048 PMCID: PMC11389836 DOI: 10.1093/jxb/erae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Bohuslav Janoušek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - José Luis Rodríguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavla Novotná
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Janousek B, Gogela R, Bacovsky V, Renner SS. The evolution of huge Y chromosomes in Coccinia grandis and its sister, Coccinia schimperi. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210294. [PMID: 35306898 PMCID: PMC8935295 DOI: 10.1098/rstb.2021.0294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Microscopically dimorphic sex chromosomes in plants are rare, reducing our ability to study them. One difficulty has been the paucity of cultivatable species pairs for cytogenetic, genomic and experimental work. Here, we study the newly recognized sisters Coccinia grandis and Coccinia schimperi, both with large Y chromosomes as we here show for Co. schimperi. We built genetic maps for male and female Co. grandis using a full-sibling family, inferred gene sex-linkage, and, with Co. schimperi transcriptome data, tested whether X- and Y-alleles group by species or by sex. Most sex-linked genes for which we could include outgroups grouped the X- and Y-alleles by species, but some 10% instead grouped the two species' X-alleles. There was no relationship between XY synonymous-site divergences in these genes and gene position on the non-recombining part of the X, suggesting recombination arrest shortly before or after species divergence, here dated to about 3.6 Ma. Coccinia grandis and Co. schimperi are the species pair with the most heteromorphic sex chromosomes in vascular plants (the condition in their sister remains unknown), and future work could use them to study mechanisms of Y chromosome enlargement and parallel degeneration, or to test Haldane's rule about lower hybrid fitness in the heterogametic sex. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Bohuslav Janousek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Roman Gogela
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Vaclav Bacovsky
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA
| |
Collapse
|
3
|
Mank JE. Are plant and animal sex chromosomes really all that different? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210218. [PMID: 35306885 PMCID: PMC8935310 DOI: 10.1098/rstb.2021.0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
4
|
Carey SB, Aközbek L, Harkess A. The contributions of Nettie Stevens to the field of sex chromosome biology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210215. [PMID: 35306894 PMCID: PMC8941642 DOI: 10.1098/rstb.2021.0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The early 1900s delivered many foundational discoveries in genetics, including re-discovery of Mendel's research and the chromosomal theory of inheritance. Following these insights, many focused their research on whether the development of separate sexes had a chromosomal basis or if instead it was caused by environmental factors. It is Dr Nettie M. Stevens' Studies in spermatogenesis (1905) that provided the unequivocal evidence that the inheritance of the Y chromosome initiated male development in mealworms. This result established that sex is indeed a Mendelian trait with a genetic basis and that the sex chromosomes play a critical role. In Part II of Studies in spermatogenesis (1906), an XY pair was identified in dozens of additional species, further validating the function of sex chromosomes. Since this formative work, a wealth of studies in animals and plants have examined the genetic basis of sex. The goal of this review is to shine a light again on Stevens’ Studies in spermatogenesis and the lasting impact of this work. We additionally focus on key findings in plant systems over the last century and open questions that are best answered, as in Stevens' work, by synthesizing across many systems. This article is part of the theme issue ‘Sex determination and sex chromosome evolution in land plants’.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Laramie Aközbek
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
5
|
Bhowmick BK, Jha S. A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa. COMPARATIVE CYTOGENETICS 2022; 16:93-125. [PMID: 36761811 PMCID: PMC9849056 DOI: 10.3897/compcytogen.v16.i2.79033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 06/13/2023]
Abstract
The cytogenetic relationships in the species of Cucurbitaceae are becoming immensely important to answer questions pertaining to genome evolution. Here, a simplified and updated data resource on cytogenetics of Cucurbitaceae is presented on the basis of foundational parameters (basic, zygotic and gametic chromosome numbers, ploidy, genome size, karyotype) and molecular cytogenetics. We have revised and collated our own findings on seven agriculturally important Indian cucurbit species in a comparative account with the globally published reports. Chromosome count (of around 19% species) shows nearly three-fold differences while genome size (of nearly 5% species) shows 5.84-fold differences across the species. There is no significant correlation between chromosome numbers and nuclear genome sizes. The possible trend of evolution is discussed here based on molecular cytogenetics data, especially the types and distribution of nucleolus organizer regions (NORs). The review supersedes the scopes of general chromosome databases and invites scopes for continuous updates. The offline resource serves as an exclusive toolkit for research and breeding communities across the globe and also opens scope for future establishment of web-database on Cucurbitaceae cytogenetics.
Collapse
Affiliation(s)
- Biplab Kumar Bhowmick
- Department of Botany, Scottish Church College, 1&3, Urquhart Square, Kolkata-700006, West Bengal, IndiaScottish Church CollegeKolkataIndia
| | - Sumita Jha
- Plant Cytogenetics and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| |
Collapse
|
6
|
The Sister Chromatid Division of the Heteromorphic Sex Chromosomes in Silene Species and Their Transmissibility towards the Mitosis. Int J Mol Sci 2022; 23:ijms23052422. [PMID: 35269563 PMCID: PMC8910698 DOI: 10.3390/ijms23052422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/20/2023] Open
Abstract
Young sex chromosomes possess unique and ongoing dynamics that allow us to understand processes that have an impact on their evolution and divergence. The genus Silene includes species with evolutionarily young sex chromosomes, and two species of section Melandrium, namely Silene latifolia (24, XY) and Silene dioica (24, XY), are well-established models of sex chromosome evolution, Y chromosome degeneration, and sex determination. In both species, the X and Y chromosomes are strongly heteromorphic and differ in the genomic composition compared to the autosomes. It is generally accepted that for proper cell division, the longest chromosomal arm must not exceed half of the average length of the spindle axis at telophase. Yet, it is not clear what are the dynamics between males and females during mitosis and how the cell compensates for the presence of the large Y chromosome in one sex. Using hydroxyurea cell synchronization and 2D/3D microscopy, we determined the position of the sex chromosomes during the mitotic cell cycle and determined the upper limit for the expansion of sex chromosome non-recombining region. Using 3D specimen preparations, we found that the velocity of the large chromosomes is compensated by the distant positioning from the central interpolar axis, confirming previous mathematical modulations.
Collapse
|
7
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
8
|
Renner SS, Müller NA. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. NATURE PLANTS 2021; 7:392-402. [PMID: 33782581 DOI: 10.1038/s41477-021-00884-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/18/2021] [Indexed: 05/17/2023]
Abstract
Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.
Collapse
Affiliation(s)
- Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany.
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
9
|
Martínez C, Jamilena M. To be a male or a female flower, a question of ethylene in cucurbits. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101981. [PMID: 33517096 DOI: 10.1016/j.pbi.2020.101981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Within the Cucurbitaceae family, most of its species develop unisexual female and male flowers, either on the same plant (monoecy) or on different plants (dioecy). As in other plant families, these two sex morphotypes have evolved from hermaphrodite species; however, many evolutionary events have occurred in cucurbits allowing easy conversion from dioecy to monoecy and vice versa. The variability in sex morphotypes is higher in the domesticated species of the family, which together with recent advances in genomics, make cucurbits an ideal model to study the genetic and molecular mechanisms that control sex determination in plants. Conventional studies demonstrated that ethylene was the master regulator of sex determination in cucurbits, although some cultivated species may respond differently to ethylene action. In this article, we survey the new advances in hormonal and genetic control of sex determination in cucurbit species, control which establishes the ethylene biosynthesis and signaling genes as being those that determine the floral meristem towards a male, female or hermaphrodite flower. The interactions between these genes are integrated into a model that explains the occurrence and distribution of unisexal and hermaphrodite flowers within the different sex morphotypes. We underline the significance of this scientific progress with regard to breeding programs for agronomically-important sex-associated traits.
Collapse
Affiliation(s)
- Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
10
|
Targueta CP, Krylov V, Nondilo TE, Lima J, Lourenço LB. Sex chromosome evolution in frogs-helpful insights from chromosome painting in the genus Engystomops. Heredity (Edinb) 2020; 126:396-409. [PMID: 33184505 DOI: 10.1038/s41437-020-00385-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
The differentiation of sex chromosomes is thought to be interrupted by relatively frequent sex chromosome turnover and/or occasional recombination between sex chromosomes (fountain-of-youth model) in some vertebrate groups as fishes, amphibians, and lizards. As a result, we observe the prevalence of homomorphic sex chromosomes in these groups. Here, we provide evidence for the loss of sex chromosome heteromorphism in the Amazonian frogs of the genus Engystomops, which harbors an intriguing history of sex chromosome evolution. In this species complex composed of two named species, two confirmed unnamed species, and up to three unconfirmed species, highly divergent karyotypes are present, and heteromorphic X and Y chromosomes were previously found in two species. We describe the karyotype of a lineage estimated to be the sister of all remaining Amazonian Engystomops (named Engystomops sp.) and perform chromosome painting techniques using one probe for the Y chromosome and one probe for the non-centromeric heterochromatic bands of the X chromosome of E. freibergi to compare three Engystomops karyotypes. The Y probe detected the Y chromosomes of E. freibergi and E. petersi and one homolog of chromosome pair 11 of Engystomops sp., suggesting their common evolutionary origin. The X probe showed no interspecific hybridization, revealing that X chromosome heterochromatin is strongly divergent among the studied species. In the light of the phylogenetic relationships, our data suggest that sex chromosome heteromorphism may have occurred early in the evolution of the Amazonian Engystomops and have been lost in two unnamed but confirmed candidate species.
Collapse
Affiliation(s)
- Cíntia P Targueta
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, 13083-863, Brazil.,Department of Genetics, Institute of Biology Science, Federal University of Goiás, Goiânia, 74960-000, Brazil
| | - Vladimir Krylov
- Faculty of Science, Department of Cell Biology, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic
| | - Tobias E Nondilo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, 13083-863, Brazil
| | - Jucivaldo Lima
- Institute of Scientific and Technological Research of Amapá-IEPA, Nucleus of Biodiversity (NUBIO); Rodovia Juscelino Kubitschek, s/n, Distrito da Fazendinha, Macapá, Amapá, Brazil
| | - Luciana B Lourenço
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, 13083-863, Brazil.
| |
Collapse
|
11
|
Rodríguez Lorenzo JL, Hubinský M, Vyskot B, Hobza R. Histone post-translational modifications in Silene latifolia X and Y chromosomes suggest a mammal-like dosage compensation system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110528. [PMID: 32900432 DOI: 10.1016/j.plantsci.2020.110528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Silene latifolia is a model organism to study evolutionary young heteromorphic sex chromosome evolution in plants. Previous research indicates a Y-allele gene degeneration and a dosage compensation system already operating. Here, we propose an epigenetic approach based on analysis of several histone post-translational modifications (PTMs) to find the first epigenetic hints of the X:Y sex chromosome system regulation in S. latifolia. Through chromatin immunoprecipitation we interrogated six genes from X and Y alleles. Several histone PTMS linked to DNA methylation and transcriptional repression (H3K27me3, H3K23me, H3K9me2 and H3K9me3) and to transcriptional activation (H3K4me3 and H4K5, 8, 12, 16ac) were used. DNA enrichment (Immunoprecipitated DNA/input DNA) was analyzed and showed three main results: (i) promoters of the Y allele are associated with heterochromatin marks, (ii) promoters of the X allele in males are associated with activation of transcription marks and finally, (iii) promoters of X alleles in females are associated with active and repressive marks. Our finding indicates a transcription activation of X allele and transcription repression of Y allele in males. In females we found a possible differential regulation (up X1, down X2) of each female X allele. These results agree with the mammal-like epigenetic dosage compensation regulation.
Collapse
Affiliation(s)
- José Luis Rodríguez Lorenzo
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Marcel Hubinský
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Roman Hobza
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
12
|
Fruchard C, Badouin H, Latrasse D, Devani RS, Muyle A, Rhoné B, Renner SS, Banerjee AK, Bendahmane A, Marais GAB. Evidence for Dosage Compensation in Coccinia grandis, a Plant with a Highly Heteromorphic XY System. Genes (Basel) 2020; 11:E787. [PMID: 32668777 PMCID: PMC7397054 DOI: 10.3390/genes11070787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and whether dosage compensation evolves as a response, are matters of debate. Here, we focus on Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We identified sex-linked genes using RNA sequences from a cross and a model-based method termed SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13-0.17, and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia, another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in which dosage compensation is described, suggesting it might be common in plants.
Collapse
Affiliation(s)
- Cécile Fruchard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Ravi S. Devani
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA;
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
- Institut de Recherche pour le Développement (IRD), Université Montpellier, DIADE, F-34394 Montpellier, France
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany;
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Gabriel A. B. Marais
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| |
Collapse
|
13
|
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M. A single gene underlies the dynamic evolution of poplar sex determination. NATURE PLANTS 2020; 6:630-637. [PMID: 32483326 DOI: 10.1038/s41477-020-0672-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive1. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR-Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.
Collapse
Affiliation(s)
- Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Carolina Bernhardsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katharina Bräutigam
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vikash Kumar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Birte Pakull
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Maurizio Sabatti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Cristina Vettori
- Institute of Biosciences and BioResources, Division of Florence, National Research Council, Sesto Fiorentino, Italy
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
14
|
Bačovský V, Houben A, Kumke K, Hobza R. The distribution of epigenetic histone marks differs between the X and Y chromosomes in Silene latifolia. PLANTA 2019; 250:487-494. [PMID: 31069521 DOI: 10.1007/s00425-019-03182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/03/2019] [Indexed: 05/18/2023]
Abstract
Contrasting patterns of histone modifications between the X and Y chromosome in Silene latifolia show euchromatic histone mark depletion on the Y chromosome and indicate hyperactivation of one X chromosome in females. Silene latifolia (white campion) is a dioecious plant with heteromorphic sex chromosomes (24, XX in females and 24, XY in males), and a genetically degenerated Y chromosome that is 1.4 times larger than the X chromosome. Although the two sex chromosomes differ in their DNA content, information about epigenetic histone marks and evidence of their function are scarce. We performed immunolabeling experiments using antibodies specific for active and suppressive histone modifications as well as pericentromere-specific histone modifications. We show that the Y chromosome is partially depleted of histone modifications important for transcriptionally active chromatin, and carries these marks only in the pseudo-autosomal region, but that it is not enriched for suppressive and pericentromere histone marks. We also show that two of the active marks are specifically enriched in one of the X chromosomes in females and in the X chromosome in males. Our data support recent findings that genetic imprinting mediates dosage compensation of sex chromosomes in S. latifolia.
Collapse
Affiliation(s)
- Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466, Germany
| | - Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466, Germany
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic.
| |
Collapse
|
15
|
Samoluk SS, Chalup LMI, Chavarro C, Robledo G, Bertioli DJ, Jackson SA, Seijo G. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA. PLANTA 2019; 249:1405-1415. [PMID: 30680457 DOI: 10.1007/s00425-019-03096-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The most conspicuous difference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by differential amplification of different members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for genome and chromosome evolution. Section Arachis is karyotypically diverse and has six different genomes. Arachis glandulifera (D genome) has the most asymmetric karyotype and the highest reproductive isolation compared to the well-known A and B genome species. These features make A. glandulifera an interesting model species for studying the main repetitive components that accompanied the genome and chromosome diversification in the section. Here, we performed a genome-wide analysis of repetitive sequences in A. glandulifera and investigated the chromosome distribution of the identified satellite DNA sequences (satDNAs). LTR retroelements, mainly the Ty3-gypsy families "Fidel/Feral" and "Pipoka/Pipa", were the most represented. Comparative analyses with the A and B genomes showed that many of the previously described transposable elements (TEs) were differently represented in the D genome, and that this variation accompanied changes in DNA content. In addition, four major satDNAs were characterized. Agla_CL8sat was the major component of pericentromeric heterochromatin, while Agla_CL39sat, Agla_CL69sat, and Agla_CL122sat were found in heterochromatic and/or euchromatic regions. Even though Agla_CL8sat belong to a different family than that of the major satDNA (ATR-2) found in the heterochromatin of the A, K, and F genomes, both satDNAs are members of the same superfamily. This finding suggests that closely related satDNAs of an ancestral library were differentially amplified leading to the major changes in the heterochromatin patterns that accompanied the karyotype and genome differentiation in Arachis.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina.
| | - Laura M I Chalup
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Germán Robledo
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
16
|
Kroupin P, Kuznetsova V, Romanov D, Kocheshkova A, Karlov G, Dang TX, Khuat TML, Kirov I, Alexandrov O, Polkhovskiy A, Razumova O, Divashuk M. Pipeline for the Rapid Development of Cytogenetic Markers Using Genomic Data of Related Species. Genes (Basel) 2019; 10:E113. [PMID: 30717300 PMCID: PMC6409974 DOI: 10.3390/genes10020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022] Open
Abstract
Repetitive DNA including tandem repeats (TRs) is a significant part of most eukaryotic genomes. TRs include rapidly evolving satellite DNA (satDNA) that can be shared by closely related species, their abundance may be associated with evolutionary divergence, and they have been widely used for chromosome karyotyping using fluorescence in situ hybridization (FISH). The recent progress in the development of whole-genome sequencing and bioinformatics tools enables rapid and cost-effective searches for TRs including satDNA that can be converted into molecular cytogenetic markers. In the case of closely related taxa, the genome sequence of one species (donor) can be used as a base for the development of chromosome markers for related species or genomes (target). Here, we present a pipeline for rapid and high-throughput screening for new satDNA TRs in whole-genome sequencing of the donor genome and the development of chromosome markers based on them that can be applied in the target genome. One of the main peculiarities of the developed pipeline is that preliminary estimation of TR abundance using qPCR and ranking found TRs according to their copy number in the target genome; it facilitates the selection of the most prospective (most abundant) TRs that can be converted into cytogenetic markers. Another feature of our pipeline is the probe preparation for FISH using PCR with primers designed on the aligned TR unit sequences and the genomic DNA of a target species as a template that enables amplification of a whole pool of monomers inherent in the chromosomes of the target species. We demonstrate the efficiency of the developed pipeline by the example of FISH probes developed for A, B, and R subgenome chromosomes of hexaploid triticale (BBAARR) based on a bioinformatics analysis of the D genome of Aegilops tauschii (DD) whole-genome sequence. Our pipeline can be used to develop chromosome markers in closely related species for comparative cytogenetics in evolutionary and breeding studies.
Collapse
Affiliation(s)
- Pavel Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Victoria Kuznetsova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Dmitry Romanov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Alina Kocheshkova
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Thi Xuan Dang
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Thi Mai L Khuat
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Ilya Kirov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Oleg Alexandrov
- Laboratory of Plant Cell Engineering, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Alexander Polkhovskiy
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| | - Olga Razumova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
| | - Mikhail Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia.
| |
Collapse
|
17
|
Veltsos P, Cossard G, Beaudoing E, Beydon G, Savova Bianchi D, Roux C, C González-Martínez S, R Pannell J. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes. Genes (Basel) 2018; 9:E277. [PMID: 29844299 PMCID: PMC6027223 DOI: 10.3390/genes9060277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- Department of Biology, Jordan Hall, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA.
| | - Guillaume Cossard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel Beaudoing
- Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, 1014 Lausanne, Switzerland.
| | - Genséric Beydon
- National Centre for Genomic Resources (CNRGV), 24 Chemin de Borde Rouge-Auzeville-CS52627, 31326 Castanet Tolosan Cedex, France.
| | | | - Camille Roux
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- CNRS, University of Lille, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Santiago C González-Martínez
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- BIOGECO, INRA, University of Bordeaux, 33610 Cestas, France.
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Wei N, Govindarajulu R, Tennessen JA, Liston A, Ashman TL. Genetic Mapping and Phylogenetic Analysis Reveal Intraspecific Variation in Sex Chromosomes of the Virginian Strawberry. J Hered 2018; 108:731-739. [PMID: 29036451 DOI: 10.1093/jhered/esx077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/20/2017] [Indexed: 11/12/2022] Open
Abstract
With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of 2 other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0-5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major quantitative trait locus (QTL) for female fertility overlapped the male sterility region. However, the SDR mapped to yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. ×ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR.
Collapse
Affiliation(s)
- Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Rajanikanth Govindarajulu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.,Department of Biology, West Virginia University, Morgantown, WV 26505
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|