1
|
Li Z, Li X, Seebacher NA, Liu X, Wu W, Yu S, Hornicek FJ, Huang C, Duan Z. CDK12 is a promising therapeutic target for the transcription cycle and DNA damage response in metastatic osteosarcoma. Carcinogenesis 2024; 45:786-798. [PMID: 39082894 DOI: 10.1093/carcin/bgae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 10/11/2024] Open
Abstract
Osteosarcoma (OS) is a bone malignant tumor affecting children, adolescents, and young adults. Currently, osteosarcoma is treated with chemotherapy regimens established over 40 years ago. The investigation of novel therapeutic strategies for the treatment of osteosarcoma remains an important clinical need. Cyclin-dependent kinases (CDKs) have been considered promising molecular targets in cancer therapy. Among these, CDK12 has been shown to play a crucial role in the pathogenesis of malignancies, but its clinical significance and biological mechanisms in osteosarcoma remain unclear. In the present study, we aim to determine the expression and function of CDK12 and evaluate its prognostic and therapeutic value in metastatic osteosarcoma. We found that overexpression of CDK12 was associated with high tumor grade, tumor progression and reduced patient survival. The underlying mechanism revealed that knockdown of CDK12 expression with small interfering RNA or functional inhibition with the CDK12-targeting agent THZ531 effectively exhibited time- and dose-dependent cytotoxicity. Downregulation of CDK12 paused transcription by reducing RNAP II phosphorylation, interfered with DNA damage repair with increased γH2AX, and decreased cell proliferation through the PI3K-AKT pathway. This was accompanied by the promotion of apoptosis, as evidenced by enhanced Bax expression and reduced Bcl-xL expression. Furthermore, the CDK12 selective inhibitor THZ531 also hindered ex vivo 3D spheroid formation, growth of in vitro 2D cell colony, and prevented cell mobility. Our findings highlight the clinical importance of CDK12 as a potentially valuable prognostic biomarker and therapeutic target in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Zihao Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Nicole A Seebacher
- Department of Oncology, University of Oxford OX3 9DU, Oxford, UK
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Xu Liu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Wence Wu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136USA
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136USA
| |
Collapse
|
2
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
3
|
Schott CR, Koehne AL, Sayles LC, Young EP, Luck C, Yu K, Lee AG, Breese MR, Leung SG, Xu H, Shah AT, Liu HY, Spillinger A, Behroozfard IH, Marini KD, Dinh PT, Pons Ventura MV, Vanderboon EN, Hazard FK, Cho SJ, Avedian RS, Mohler DG, Zimel M, Wustrack R, Curtis C, Sirota M, Sweet-Cordero EA. Osteosarcoma PDX-Derived Cell Line Models for Preclinical Drug Evaluation Demonstrate Metastasis Inhibition by Dinaciclib through a Genome-Targeted Approach. Clin Cancer Res 2024; 30:849-864. [PMID: 37703185 PMCID: PMC10870121 DOI: 10.1158/1078-0432.ccr-23-0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/26/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.
Collapse
Affiliation(s)
- Courtney R. Schott
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Amanda L. Koehne
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Leanne C. Sayles
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Elizabeth P. Young
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Cuyler Luck
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California
| | - Katherine Yu
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California
| | - Alex G. Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Marcus R. Breese
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Stanley G. Leung
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Hang Xu
- Departments of Genetics and Medicine, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Avanthi Tayi Shah
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Heng-Yi Liu
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Aviv Spillinger
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Inge H. Behroozfard
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Kieren D. Marini
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Phuong T. Dinh
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - María V. Pons Ventura
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Emma N. Vanderboon
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Florette K. Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Soo-Jin Cho
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Raffi S. Avedian
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - David G. Mohler
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Melissa Zimel
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California
| | - Rosanna Wustrack
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California
| | - Christina Curtis
- Departments of Genetics and Medicine, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Marina Sirota
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California
| | | |
Collapse
|
4
|
Low K, Hills F, Roberts HC, Stordal B. Establishment and Characterization of Single and Triple-Agent Resistant Osteosarcoma Cell Lines. Adv Biol (Weinh) 2023; 7:e2200194. [PMID: 36480329 DOI: 10.1002/adbi.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Two human osteosarcoma cell lines (MG-63 and HOS-143B) are developed into drug-resistant models using a short-term drug exposure and recovery in drug-free media. Cisplatin, doxorubicin, and methotrexate are used as single agents and in triple combination. The highest level of resistance to cisplatin is observed in MG-63/CISR8, doxorubicin in HOS-143B/DOXR8, and methotrexate in HOS-143B/MTXR8. The MG-63/TRIR8 and HOS-143B/TRIR8 triple-resistance models show lower levels of resistance to combination treatment and are not resistant to the drugs individually. Apoptosis assays suggest that the resistance in MG-63/TRIR8 isfrom cisplatin and methotrexate and not doxorubicin. In contrast, the resistance in HOS-143B/TRIR8 is from doxorubicin and methotrexate instead of cisplatin. Upregulation of P-glycoprotein is seen in all resistant models except those developed with single-agent methotrexate. However, P-glycoprotein is not causing resistance in all cell lines as the inhibitor elacridar only reverses the resistance of doxorubicin on MG-63/DOXR8 and HOS-143B/TRIR8. The migration of the MG-63 resistant models is significantly increased, their invasion rate tends to increase, and RT-PCR shows a switch from epithelial to mesenchymal gene signaling. In contrast, a significant decrease in migration is seen in HOS-143B resistant models with their invasion rate tending to decrease and a switch from mesenchymal to epithelial gene signaling.
Collapse
Affiliation(s)
- Kaan Low
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| | - Frank Hills
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| | - Helen C Roberts
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| | - Britta Stordal
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| |
Collapse
|
5
|
Schott CR, Koehne AL, Sayles LC, Young EP, Luck C, Yu K, Lee AG, Breese MR, Leung SG, Xu H, Shah AT, Liu HY, Spillinger A, Behroozfard IH, Marini KD, Dinh PT, Pons Ventura MAV, Vanderboon EN, Hazard FK, Cho SJ, Avedian RS, Mohler DG, Zimel M, Wustrack R, Curtis C, Sirota M, Sweet-Cordero EA. Development and characterization of new patient-derived xenograft (PDX) models of osteosarcoma with distinct metastatic capacities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524562. [PMID: 36711882 PMCID: PMC9882347 DOI: 10.1101/2023.01.19.524562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology, especially for highly aggressive cancers with a propensity for metastatic spread. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, a large panel of models is needed to fully elucidate key aspects of disease biology and to recapitulate clinically-relevant phenotypes. We describe the development and characterization of osteosarcoma patient-derived xenografts (PDXs) and a panel of PDX-derived cell lines. Matched patient samples, PDXs, and PDX-derived cell lines were comprehensively evaluated using whole genome sequencing and RNA sequencing. PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication (WGD) in a subset of cell lines. These cell line models were heterogeneous in their metastatic capacity and their tissue tropism as observed in both intravenous and orthotopic models. As proof-of-concept study, we used one of these models to test the preclinical effectiveness of a CDK inhibitor on the growth of metastatic tumors in an orthotopic amputation model. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden in this model.
Collapse
|
6
|
Tarone L, Mareschi K, Tirtei E, Giacobino D, Camerino M, Buracco P, Morello E, Cavallo F, Riccardo F. Improving Osteosarcoma Treatment: Comparative Oncology in Action. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122099. [PMID: 36556464 PMCID: PMC9783386 DOI: 10.3390/life12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.
Collapse
Affiliation(s)
- Lidia Tarone
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Elisa Tirtei
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| | - Federica Riccardo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| |
Collapse
|
7
|
Hadjimichael AC, Foukas AF, Papadimitriou E, Kaspiris A, Peristiani C, Chaniotakis I, Kotsari M, Pergaris A, Theocharis S, Sarantis P, Christopoulou M, Psyrri A, Mavrogenis AF, Savvidou OD, Papagelopoulos PJ, Armakolas A. Doxycycline inhibits the progression of metastases in early-stage osteosarcoma by downregulating the expression of MMPs, VEGF and ezrin at primary sites. Cancer Treat Res Commun 2022; 32:100617. [PMID: 36027697 DOI: 10.1016/j.ctarc.2022.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most common primary osseous malignant tumour, with high propensity to metastasise in lungs. Pulmonary micro-metastases are present in up to 80% of patients at initial diagnosis and they are associated with significantly worse prognosis. Doxycycline (Dox) is a synthetic tetracycline that has been shown to have anti-cancer properties in vitro and in vivo, and inhibit angiogenesis - effects that may prove beneficial for several types of cancer. The aim of the present work was to study how Dox affects OS cell growth in vitro and in vivo and OS-driven pulmonary metastasis in vivo. METHODS In vitro, the effect of Dox was measured in MG-63 and 143B human OS cell viability, apoptosis, invasion and migration. In vivo, highly metastatic 143B cells were orthotopically implanted into the tibia of SCID mice. The tumour growth and pulmonary metastases between Dox treated and untreated, non-amputated and early amputated xenografts were examined. RESULTS In vitro, Dox decreased viability, inhibited invasion, migration, and induced the apoptosis of OS cells. In vivo, Dox significantly enhanced tumour necrosis at primary OS sites, similarly to its in vitro effect, and downregulated the expression of Ki67, MMP2, MMP9, VEGFA and ezrin. It also decreased circulating VEGFA and MMP9 protein levels, in line with the decreased metastatic burden in Dox-treated mice (non-amputated and early-amputated). CONCLUSIONS Reprofiling of Dox can prevent the evolvement of pulmonary micro-metastases to clinically detectable macro-metastases and suppress the lethal progress of OS by inhibiting the expression of MMPs, VEGFA and ezrin at primary sites.
Collapse
Affiliation(s)
- Argyris C Hadjimichael
- Department of Orthopaedics, St Mary's Hospital, Imperial College Healthcare NHS Trust, Praed Street, W2 1NY, London, UK.
| | - Athanasios F Foukas
- Third Department of Orthopaedic surgery, "KAT" General Hospital of Athens, 2, Nikis Street, 14561, Kifissia, Greece.
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Chrysostomi Peristiani
- Medical School, National and Kapodistrian University of Athens,75, Mikras Asias Street, Goudi, 11527, Athens, Greece.
| | - Ioannis Chaniotakis
- Healthcare Directorate of the Hellenic Air Force General Staff, Athens, 3, P. Kanellopoulou Street, 11525, Athens, Greece.
| | - Maria Kotsari
- Physiology Laboratory, Athens Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Physiology Lab, Bld 16, Goudi, 11527, Athens, Greece..
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Magdalini Christopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital,1 Rimini Street, Chaidari, 12462, Athens, Greece.
| | - Andreas F Mavrogenis
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Olga D Savvidou
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Panayiotis J Papagelopoulos
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Physiology Lab, Bld 16, Goudi, 11527, Athens, Greece..
| |
Collapse
|
8
|
Wood RK, Flory AR, Mann MJ, Talbot LJ, Hendershot LM. Secretory defects in pediatric osteosarcoma result from downregulation of selective COPII coatomer proteins. iScience 2022; 25:104100. [PMID: 35402877 PMCID: PMC8983387 DOI: 10.1016/j.isci.2022.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
Pediatric osteosarcomas (OS) exhibit extensive genomic instability that has complicated the identification of new targeted therapies. We found the vast majority of 108 patient tumor samples and patient-derived xenografts (PDXs), which display an unusually dilated endoplasmic reticulum (ER), have reduced expression of four COPII vesicle components that trigger aberrant accumulation of procollagen-I protein within the ER. CRISPR activation technology was used to increase the expression of two of these, SAR1A and SEC24D, to physiological levels. This was sufficient to resolve the dilated ER morphology, restore collagen-I secretion, and enhance secretion of some extracellular matrix (ECM) proteins. However, orthotopic xenograft growth was not adversely affected by restoration of only SAR1A and SEC24D. Our studies reveal the mechanism responsible for the dilated ER that is a hallmark characteristic of OS and identify a highly conserved molecular signature for this genetically unstable tumor. Possible relationships of this phenotype to tumorigenesis are discussed.
Collapse
Affiliation(s)
- Rachael K. Wood
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley R. Flory
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lindsay J. Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Qiao Q, Xu L, Li Q, Wang Y, Lu H, Zhao N, Pu Y, Wang L, Guo Y, Guo C. BMPR1α promotes osteolytic lesion of oral squamous cell carcinoma by SHH‐dependent osteoclastogenesis. Cancer Sci 2022; 113:1639-1651. [PMID: 35279920 PMCID: PMC9128187 DOI: 10.1111/cas.15330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor that usually invades the maxilla or mandible. The extent and pattern of mandibular bone invasion caused by OSCC are the most important factors determining the treatment plan and patients' prognosis. Yet, the process of mandibular invasion is not fully understood. The following study explores the molecular mechanism that regulates the mandibular invasion of OSCC by focusing on bone morphogenetic protein receptor 1α (BMPR1α) and Sonic hedgehog (SHH) signals. We found that BMPR1α was positively correlated to bone defect of OSCC patients. Mechanistically, BMPR1α signaling regulated the differentiation and resorption activity of osteoclasts through the interaction of OSCC cells and osteoclast progenitors, and this process was mediated by SHH secreted by tumor cells. The inhibition of SHH protected bone from tumor‐induced osteolytic activity. These results provide a potential new treatment strategy for controlling OSCC from invading the jawbones.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University Shandong 250021 PR China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Han Lu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- Shanghai Stomotological Hospital Fudan University Shanghai 200001 PR China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yinfei Pu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- The Second Outpatient Department Peking University School and Hospital of Stomatology, Beijing, 100081, PR China6 Department of Biomedical Engineering, College of Engineering, Peking University Beijing 100871 PR China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| |
Collapse
|
10
|
Kuriyama S, Tanaka G, Takagane K, Itoh G, Tanaka M. Pigment Epithelium Derived Factor Is Involved in the Late Phase of Osteosarcoma Metastasis by Increasing Extravasation and Cell-Cell Adhesion. Front Oncol 2022; 12:818182. [PMID: 35174090 PMCID: PMC8842676 DOI: 10.3389/fonc.2022.818182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Organ tropism of metastatic cells is not well understood. To determine the key factors involved in the selection of a specific organ upon metastasis, we established metastatic cell lines and analyzed their homing to specific tissues. Toward this, 143B osteosarcoma cells were injected intracardially until the kidney-metastasizing sub-cell line Bkid was established, which significantly differed from the parental 143B cells. The candidate genes responsible for kidney metastasis were validated, and SerpinF1/Pigment epithelium derived factor (PEDF) was identified as the primary target. Bkid cells with PEDF knockdown injected intracardially did not metastasize to the kidneys. In contrast, PEDF overexpressing 143B cells injected into femur metastasized to the lungs and kidneys. PEDF triggered mesenchymal-to-epithelial transition (MET) in vitro as well as in vivo. Based on these results, we hypothesized that the MET might be a potential barrier to extravasation. PEDF overexpression in various osteosarcoma cell lines increased their extravasation to the kidneys and lungs. Moreover, when cultured close to the renal endothelial cell line TKD2, Bkid cells disturbed the TKD2 layer and hindered wound healing via the PEDF-laminin receptor (lamR) axis. Furthermore, novel interactions were observed among PEDF, lamR, lysyl oxidase-like 1 (Loxl1), and SNAI3 (Snail-like transcription factor) during endothelial-to-mesenchymal transition (EndoMT). Collectively, our results show that PEDF induces cancer cell extravasation by increasing the permeability of kidney and lung vasculature acting via lamR and its downstream genes. We also speculate that PEDF promotes extravasation via inhibiting EndoMT, and this warrants investigation in future studies.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Gentaro Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita City, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| |
Collapse
|
11
|
Tattersall L, Shah KM, Lath DL, Singh A, Down JM, De Marchi E, Williamson A, Di Virgilio F, Heymann D, Adinolfi E, Fraser WD, Green D, Lawson MA, Gartland A. The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. J Bone Oncol 2021; 31:100398. [PMID: 35340569 PMCID: PMC8948168 DOI: 10.1016/j.jbo.2021.100398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
P2RX7B expression confers a survival advantage in TE85+P2RX7B and MNNG-HOS+P2RX7B OS cell lines. P2RX7B expression reduced cell adhesion and activation promoted invasion and migration in vitro. MNNG-HOS+P2RX7B tumours in vivo exhibited ectopic bone formation that A740003 reduced. Expression of P2RX7B in primary tumour cells increased the propensity to metastasise to the lungs. A novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4 was downregulated in response to A740003.
Background Osteosarcoma (OS) is the most common type of primary bone cancer affecting children and adolescents. OS has a high propensity to spread meaning the disease is often incurable and fatal. There have been no improvements in survival rates for decades. This highlights an urgent need for the development of novel therapeutic strategies. Here, we report in vitro and in vivo data that demonstrates the role of purinergic signalling, specifically, the B isoform of the purinergic receptor P2RX7 (P2RX7B), in OS progression and metastasis. Methods TE85 and MNNG-HOS OS cells were transfected with P2RX7B. These cell lines were then characterised and assessed for proliferation, cell adhesion, migration and invasion in vitro. We used these cells to perform both paratibial and tail vein injected mouse studies where the primary tumour, bone and lungs were analysed. We used RNA-seq to identify responsive pathways relating to P2RX7B. Results Our data shows that P2RX7B expression confers a survival advantage in TE85 + P2RX7B and MNNG-HOS + P2RX7B human OS cell lines in vitro that is minimised following treatment with A740003, a specific P2RX7 antagonist. P2RX7B expression reduced cell adhesion and P2RX7B activation promoted invasion and migration in vitro, demonstrating a metastatic phenotype. Using an in vivo OS xenograft model, MNNG-HOS + P2RX7B tumours exhibited cancer-associated ectopic bone formation that was abrogated with A740003 treatment. A pro-metastatic phenotype was further demonstrated in vivo as expression of P2RX7B in primary tumour cells increased the propensity of tumour cells to metastasise to the lungs. RNA-seq identified a novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4, downregulated in response to A740003 treatment. Conclusion Our data illustrates a role for P2RX7B in OS tumour growth, progression and metastasis. We show that P2RX7B is a future therapeutic target in human OS.
Collapse
Affiliation(s)
- Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Darren L. Lath
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jennifer M. Down
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - Alex Williamson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Francesco Di Virgilio
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - William D. Fraser
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Michelle A. Lawson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
- Corresponding author.
| |
Collapse
|
12
|
Lu L, Wang Y, Chen J, Li Y, Liang Q, Li F, Zhen C, Xie K. Targeting Mps1 in combination with paclitaxel inhibits osteosarcoma progression by modulating spindle assembly checkpoint and Akt/mTOR signaling. Oncol Lett 2021; 22:797. [PMID: 34584572 PMCID: PMC8461758 DOI: 10.3892/ol.2021.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/29/2021] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents and is characterized by early metastasis and frequent recurrence, which greatly affects patient prognosis and survival rates. However, the treatment of OS, its recurrence and subsequent metastasis is now at a clinical bottleneck. To explore new OS chemotherapeutic targets, investigate new therapeutic strategies and improve patient prognosis and survival rates, the roles of paclitaxel (PTX) and monopolar spindle kinase 1 (Mps1) in OS were investigated using in vivo and in vitro models. Mps1 expression was upregulated in OS samples and associated with patient survival times. Moreover, spindle assembly checkpoint (SAC) activation and upregulation of Akt/mTOR signaling were both positively associated with OS progression. PTX treatment significantly inhibited Mps1 expression, as well as migration of OS cells both in vitro. In addition, the combination of Mps1 knockdown and PTX treatment inhibited OS progression in vivo. Mps1 overexpression inhibited the expression of SAC markers and upregulated Akt and mTOR expression, while Mps1 knockdown had the opposite effect. Cells subjected to combined Mps1 knockdown and PTX treatment exhibited activation of SAC and inhibition of Akt/mTOR signaling compared with Mps1 knockdown or PTX treatment alone. Based on these observations, Mps1 inhibition combined with PTX treatment may represent a potentially effective strategy for the treatment of OS.
Collapse
Affiliation(s)
- Lu Lu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yuhai Wang
- Academy of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 755000, P.R. China
| | - Jian Chen
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Ye Li
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Qingyang Liang
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Feng Li
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Chuanchuan Zhen
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Kegong Xie
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
13
|
Huang L, Zhao L, Zhang J, He F, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, He TC, Tang L. Antiparasitic mebendazole (MBZ) effectively overcomes cisplatin resistance in human ovarian cancer cells by inhibiting multiple cancer-associated signaling pathways. Aging (Albany NY) 2021; 13:17407-17427. [PMID: 34232919 PMCID: PMC8312413 DOI: 10.18632/aging.203232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the third most common cancer and the second most common cause of gynecologic cancer death in women. Its routine clinical management includes surgical resection and systemic therapy with chemotherapeutics. While the first-line systemic therapy requires the combined use of platinum-based agents and paclitaxel, many ovarian cancer patients have recurrence and eventually succumb to chemoresistance. Thus, it is imperative to develop new strategies to overcome recurrence and chemoresistance of ovarian cancer. Repurposing previously-approved drugs is a cost-effective strategy for cancer drug discovery. The antiparasitic drug mebendazole (MBZ) is one of the most promising drugs with repurposing potential. Here, we investigate whether MBZ can overcome cisplatin resistance and sensitize chemoresistant ovarian cancer cells to cisplatin. We first established and characterized two stable and robust cisplatin-resistant (CR) human ovarian cancer lines and demonstrated that MBZ markedly inhibited cell proliferation, suppressed cell wounding healing/migration, and induced apoptosis in both parental and CR cells at low micromole range. Mechanistically, MBZ was revealed to inhibit multiple cancer-related signal pathways including ELK/SRF, NFKB, MYC/MAX, and E2F/DP1 in cisplatin-resistant ovarian cancer cells. We further showed that MBZ synergized with cisplatin to suppress cell proliferation, induce cell apoptosis, and blunt tumor growth in xenograft tumor model of human cisplatin-resistant ovarian cancer cells. Collectively, our findings suggest that MBZ may be repurposed as a synergistic sensitizer of cisplatin in treating chemoresistant human ovarian cancer, which warrants further clinical studies.
Collapse
Affiliation(s)
- Linjuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Medicine/Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Sari AS, Demirçay E, Öztürk A, Terzi A, Karaöz E. The promising effects of BMP2 transfected mesenchymal stem cells on human osteosarcoma. ACTA ACUST UNITED AC 2021; 45:301-313. [PMID: 34377054 PMCID: PMC8313938 DOI: 10.3906/biy-2101-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
Selective targeting of transfected mesenchymal stem cells (MSCs) carrying specific antioncogenes to the tumor was suggested as a treatment option. Bone morphogenetic protein-2 (BMP2) was shown to inhibit the proliferation and aggressiveness of osteosarcoma (OS) cells. Here, we aimed to assess the homing efficiency of intraperitoneally administered hMSCs transfected with
BMP2
to the tumoral site and their effects on OS using an orthotopic xenograft murine model. Orthotopic xenograft murine model of OS in six-week-old female NOD/SCID mice using 143B cells was established. hMSCs transfected with
BMP2
(BMP2+hMSC) were used. In vivo experiments performed on four groups of mice that received no treatment, or intraperitoneally administered BMP2, hMSCs, and BMP2+hMSCs. Histopathological and immunohistochemical studies were used to evaluate the pathological identification and to assess the dimensions and necrotic foci of the tumor, the features of lung metastases, and immunostaining against p27, Ki-67, and caspase-3 antibodies. The osteogenic differentiation markers BMP2, BMP4, COL1A1, OPN, OCN and PF4 evaluated using RT-PCR. The tumor dimensions in the hMSCs group were significantly higher than those of the remaining groups (p < 0.01). The number of metastatic foci in the BMP2+hMSCs group was significantly lower than those of the other groups (p < 0.01). The current results showed that the intraperitoneal route could be efficiently used for targeting hMSCs to the tumoral tissues for effective BMP2 delivery. In this study, the effects of BMP2 transfected hMSCs on human OS and metastasis were promising for achieving osteogenic differentiation and reduced metastatic process.
Collapse
Affiliation(s)
- Ahmet Sinan Sari
- Department of Orthopedics and Traumatology, Faculty of Medicine, Başkent University, Ankara Training and Research Hospital, Ankara Turkey
| | - Emre Demirçay
- Department of Orthopedics and Traumatology, Faculty of Medicine, Başkent University, Istanbul Training and Research Hospital, İstanbul Turkey
| | - Ahmet Öztürk
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli Turkey
| | - Ayşen Terzi
- Department of Pathology, Faculty of Medicine, Başkent University, Ankara Training and Research Hospital, Ankara Turkey
| | - Erdal Karaöz
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli Turkey.,Istinye University, School of Medicine, Department of Histology and Embryology, İstanbul Turkey.,Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, İstanbul Turkey.,Liv Hospital, Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul Turkey
| |
Collapse
|
15
|
Establishment and characterization of a highly metastatic human osteosarcoma cell line from osteosarcoma lung metastases. J Bone Oncol 2021; 29:100378. [PMID: 34221892 PMCID: PMC8243521 DOI: 10.1016/j.jbo.2021.100378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
ZOSL-1 was the first report that isolated directly from lung metastases of OS. ZOSL-1 cells were highly metastatic, and the lung metastasis rate was 100% in vivo. ZOSL-1 cells were high expression in GNAS, SCARB1 and CXCR4 genes.
OS (Osteosarcoma) is the most common malignant tumor in adolescents, and lung metastasis limits its therapeutic outcome. The present study aimed to establish a highly metastatic human OS cell line directly from lung metastases and characterize its biological functions. In this study, epithelioid tumor cells with large nucleo-cytoplasmic ratio and abundant organelles were obtained by the tissue mass adherent and repeated digestion adherent method and named ZOSL-1 cells. ZOSL-1 cells had the potential to proliferate in vitro with a doubling time of 39.28 ± 3.04 h and migrate with or without a matrix. ZOSL-1 cells were tumorigenic in vivo, and had the ability to develop lung metastasis after intratibial injection. ZOSL-1 cells expressed the osteogenic-related genes osteocalcin and osteopontin. In addition, the expression of ZOSL-1 in Fas cell surface death receptor (FAS), CD44 molecule (CD44), GNAS complex locus (GNAS), scavenger receptor class B member 1 (SCARB1), C-X-C motif chemokine receptor 4 (CXCR4), cadherin 11 (CDH11), neurofibromin 2 (NF2) and ezrin (EZR) genes may be related to its transfer efficiency. Taken together, these results indicated the high metastatic capability and important biological functions of ZOSL-1 cells. ZOSL-1 establishment provided a relevant model for the study of osteosarcoma lung metastasis.
Collapse
|
16
|
Talbot LJ, Chabot A, Funk A, Nguyen P, Wagner J, Ross A, Tillman H, Davidoff A, Gottschalk S, DeRenzo C. A Novel Orthotopic Implantation Technique for Osteosarcoma Produces Spontaneous Metastases and Illustrates Dose-Dependent Efficacy of B7-H3-CAR T Cells. Front Immunol 2021; 12:691741. [PMID: 34211478 PMCID: PMC8239305 DOI: 10.3389/fimmu.2021.691741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022] Open
Abstract
The outcome for metastatic pediatric osteosarcoma (OS) remains poor. Thus, there is an urgent need to develop novel therapies, and immunotherapy with CAR T cells has the potential to meet this challenge. However, there is a lack of preclinical models that mimic salient features of human disease including reliable development of metastatic disease post orthotopic OS cell injection. To overcome this roadblock, and also enable real-time imaging of metastatic disease, we took advantage of LM7 OS cells expressing firefly luciferase (LM7.ffLuc). LM7.ffLuc were implanted in a collagen mesh into the tibia of mice, and mice reliably developed orthotopic tumors and lung metastases as judged by bioluminescence imaging and histopathological analysis. Intratibial implantation also enabled surgical removal by lower leg amputation and monitoring for metastases development post-surgery. We then used this model to evaluate the antitumor activity of CAR T cells targeting B7-H3, an antigen that is expressed in a broad range of solid tumors including OS. B7-H3-CAR T cells had potent antitumor activity in a dose-dependent manner and inhibited the development of pulmonary metastases resulting in a significant survival advantage. In contrast T cells expressing an inactive B7-H3-CAR had no antitumor activity. Using unmodified LM7 cells also enabled us to demonstrate that B7-H3-CAR T cells traffic to orthotopic tumor sites. Hence, we have developed an orthotopic, spontaneously metastasizing OS model. This model may improve our ability not only to predict the safety and efficacy of current and next generation CAR T cell therapies but also other treatment modalities for metastatic OS.
Collapse
Affiliation(s)
- Lindsay Jones Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Amy Funk
- Department of Veterinary Medicine, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Phuong Nguyen
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jessica Wagner
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Aaron Ross
- University of Tennessee Health Sciences School of Medicine, Memphis, TN, United States
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Andrew Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Christopher DeRenzo
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Xie G, Liu W, Lian Z, Xie D, Yuan G, Ye J, Lin Z, Wang W, Zeng J, Shen H, Wang X, Feng H, Cong W, Yao G. Spleen tyrosine kinase (SYK) inhibitor PRT062607 protects against ovariectomy-induced bone loss and breast cancer-induced bone destruction. Biochem Pharmacol 2021; 188:114579. [PMID: 33895161 DOI: 10.1016/j.bcp.2021.114579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Osteolytic diseases, including breast cancer-induced osteolysis and postmenopausal osteoporosis, are attributed to excessive bone resorption by osteoclasts. Spleen tyrosine kinase (SYK) is involved in osteoclastogenesis and bone resorption, whose role in breast cancer though remains controversial. Effects of PRT062607 (PRT), a highly specific inhibitor of SYK, on the osteoclast and breast cancer functionalities are yet to be clarified. This study demonstrated the in vitro inhibitory actions of PRT on the osteoclast-specific gene expression, bone resorption, and osteoclastogenesis caused by receptor activator of nuclear factor kappa B ligand (RANKL), as well as its in vitro suppressive effects on the growth, migration and invasion of breast carcinoma cell line MDA-MB-231, which were achieved through PLCγ2 and PI3K-AKT-mTOR pathways. Further, we proved that PRT could prevent post-ovariectomy (OVX) loss of bone and breast cancer-induced bone destruction in vivo, which agreed with the in vitro outcomes. In conclusion, our findings suggest the potential value of PRT in managing osteolytic diseases mediated by osteoclasts.
Collapse
Affiliation(s)
- Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Weidong Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jican Zeng
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Huaxing Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China; School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
18
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Araki Y, Aiba H, Yoshida T, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Nguyen TD, Ishii KA, Nojima T, Takahashi S, Murakami H, Tsuchiya H, Hanayama R. Osteosarcoma-Derived Small Extracellular Vesicles Enhance Tumor Metastasis and Suppress Osteoclastogenesis by miR-146a-5p. Front Oncol 2021; 11:667109. [PMID: 34017686 PMCID: PMC8130824 DOI: 10.3389/fonc.2021.667109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most frequent type of primary bone tumor in children and adolescents, thus care for patients with malignant osteosarcoma is strongly required. The roles of small extracellular vesicles (SEVs) in enhancing metastases have been demonstrated in multiple tumors, but they are still poorly understood in osteosarcoma. Hence, this study investigated the effects of SEVs on progression and the tumor microenvironment in mice and patients. In an orthotopic implantation study, we found that osteosarcoma-derived SEVs had the potential to enhance metastases and angiogenesis. In addition, osteosarcoma-derived SEVs decreased the number of mature osteoclasts in vivo. In vitro osteoclastogenesis studies revealed that the inhibition of osteoclast maturation by osteosarcoma-derived SEVs was mediated by suppressing the NF-κB signal pathway. MicroRNA analysis of SEVs from different malignant human osteosarcomas revealed that miR-146a-5p was involved in the inhibition of osteoclastogenesis. In osteosarcoma patients, lower numbers of osteoclasts in biopsy specimens at the first visits were correlated with higher malignancy. These findings indicated that osteosarcoma-derived SEVs enhance distant metastasis of osteosarcomas by inhibiting osteoclast maturation, which may be a useful prognostic marker. This diagnostic method may enable to predict malignancy at early stage, and help to provide optimal care to patients with risk of high malignancy.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hisaki Aiba
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Yoshida
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tuan D Nguyen
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Integrative Medicine for Longevity, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayuki Nojima
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Yurtsever A, Yoshida T, Badami Behjat A, Araki Y, Hanayama R, Fukuma T. Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy. NANOSCALE 2021; 13:6661-6677. [PMID: 33885545 DOI: 10.1039/d0nr09178b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes have recently gained interest as mediators of cell-to-cell communication and as potential biomarkers for cancer and other diseases. They also have potential as nanocarriers for drug delivery systems. Therefore, detailed structural, molecular, and biomechanical characterization of exosomes is of great importance for developing methods to detect and identify the changes associated with the presence of cancer and other diseases. Here, we employed three-dimensional atomic force microscopy (3D-AFM) to reveal the structural and nanomechanical properties of exosomes at high spatial resolution in physiologically relevant conditions. The substructural details of exosomes released from three different cell types were determined based on 3D-AFM force mapping. The resulting analysis revealed the presence of distinct local domains bulging out from the exosome surfaces, which were associated with the exosomal membrane proteins present on the outer surface. The nanomechanical properties of individual exosomes were determined from the 3D-force maps. We found a considerably high elastic modulus, ranging from 50 to 350 MPa, as compared to that obtained for synthetic liposomes. Moreover, malignancy-dependent changes in the exosome mechanical properties were revealed by comparing metastatic and nonmetastatic tumor cell-derived exosomes. We found a clear difference in their Young's modulus values, suggesting differences in their protein profiles and other exosomal contents. Exosomes derived from a highly aggressive and metastatic k-ras-activated human osteosarcoma (OS) cell line (143B) showed a higher Young's modulus than that derived from a nonaggressive and nonmetastatic k-ras-wildtype human OS cell line (HOS). The increased elastic modulus of the 143B cell-derived exosomes was ascribed to the presence of abundant specific proteins responsible for elastic fiber formation as determined by mass spectroscopy and confirmed by western blotting and ELISA. Therefore, we conclude that exosomes derived from metastatic tumor cells carry an exclusive protein content that differs from their nonmetastatic counterparts, and thus they exhibit different mechanical characteristics. Discrimination between metastatic and nonmetastatic malignant cell-derived exosomes would be of great importance for studying exosome biological functions and using them as diagnostic biomarkers for various tumor types. Our findings further suggest that metastatic tumor cells release exosomes that express increased levels of elastic fiber-associated proteins to preserve their softness.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Patient Derived Xenografts for Genome-Driven Therapy of Osteosarcoma. Cells 2021; 10:cells10020416. [PMID: 33671173 PMCID: PMC7922432 DOI: 10.3390/cells10020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone. It is characterized by a complex genotype, mainly due to the high frequency of chromothripsis, which leads to multiple somatic copy number alterations and structural rearrangements. Any effort to design genome-driven therapies must therefore consider such high inter- and intra-tumor heterogeneity. Therefore, many laboratories and international networks are developing and sharing OS patient-derived xenografts (OS PDX) to broaden the availability of models that reproduce OS complex clinical heterogeneity. OS PDXs, and new cell lines derived from PDXs, faithfully preserve tumor heterogeneity, genetic, and epigenetic features and are thus valuable tools for predicting drug responses. Here, we review recent achievements concerning OS PDXs, summarizing the methods used to obtain ectopic and orthotopic xenografts and to fully characterize these models. The availability of OS PDXs across the many international PDX platforms and their possible use in PDX clinical trials are also described. We recommend the coupling of next-generation sequencing (NGS) data analysis with functional studies in OS PDXs, as well as the setup of OS PDX clinical trials and co-clinical trials, to enhance the predictive power of experimental evidence and to accelerate the clinical translation of effective genome-guided therapies for this aggressive disease.
Collapse
|
22
|
Yin Chin S, Cheung Poh Y, Kohler AC, Compton JT, Hsu LL, Lau KM, Kim S, Lee BW, Lee FY, Sia SK. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Robot 2021; 2. [PMID: 31289767 DOI: 10.1126/scirobotics.aah6451] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Implantable microdevices often have static components rather than moving parts, and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method which can produce features in biocompatible materials down to tens of microns in scale, with intricate and composite patterns in each layer. By exploiting unique mechanical properties of hydrogels, we developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties, and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over ten days showed high treatment efficacy and low toxicity, at one-tenth of a standard systemic chemotherapy dose. Overall, this platform, called "iMEMS", enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.
Collapse
Affiliation(s)
- Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Yukkee Cheung Poh
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Anne-Céline Kohler
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Jocelyn T Compton
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Lauren L Hsu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Kathryn M Lau
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Benjamin W Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Francis Y Lee
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
23
|
Joko R, Yamada D, Nakamura M, Yoshida A, Takihira S, Takao T, Lu M, Sato K, Ito T, Kunisada T, Nakata E, Ozaki T, Takarada T. PRRX1 promotes malignant properties in human osteosarcoma. Transl Oncol 2020; 14:100960. [PMID: 33395745 PMCID: PMC7726447 DOI: 10.1016/j.tranon.2020.100960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
PRRX1 is a poor-prognosis marker of human osteosarcoma. PRRX1 promotes proliferation, invasion, and drug resistance in human osteosarcoma. Forskolin was identified using RNA expression signatures of PRRX1 knockdown. Forskolin decreased proliferation and migration in human osteosarcoma.
Paired related homeobox 1 (PRRX1) is a marker of limb bud mesenchymal cells, and deficiency of p53 or Rb in Prrx1-positive cells induces osteosarcoma in several mouse models. However, the regulatory roles of PRRX1 in human osteosarcoma have not been defined. In this study, we performed PRRX1 immunostaining on 35 human osteosarcoma specimens to assess the correlation between PRRX1 level and overall survival. In patients with osteosarcoma, the expression level of PRRX1 positively correlated with poor prognosis or the ratio of lung metastasis. Additionally, we found PRRX1 expression on in 143B cells, a human osteosarcoma line with a high metastatic capacity. Downregulation of PRRX1 not only suppressed proliferation and invasion but also increased the sensitivity to cisplatin and doxorubicin. When 143B cells were subcutaneously transplanted into nude mice, PRRX1 knockdown decreased tumor sizes and rates of lung metastasis. Interestingly, forskolin, a chemical compound identified by Connectivity Map analysis using RNA expression signatures during PRRX1 knockdown, decreased tumor proliferation and cell migration to the same degree as PRRX1 knockdown. These results demonstrate that PRRX1 promotes tumor malignancy in human osteosarcoma.
Collapse
Affiliation(s)
- Ryoji Joko
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Aki Yoshida
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ming Lu
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kohei Sato
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tatsuo Ito
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan
| | - Toshiyuki Kunisada
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Eiji Nakata
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
24
|
Is Use of BMP-2 Associated with Tumor Growth and Osteoblastic Differentiation in Murine Models of Osteosarcoma? Clin Orthop Relat Res 2020; 478:2921-2933. [PMID: 33275394 PMCID: PMC7899403 DOI: 10.1097/corr.0000000000001422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The putative benefit of rhBMP-2 is in the setting of limb reconstruction using structural allografts, whether it be allograft-prosthetic composites, osteoarticular allografts, or intercalary segmental grafts. There are also potential advantages in augmenting osseointegration of uncemented endoprosthetics and in reducing infection. Recombinant human BMP-2 might mitigate nonunion in structural allograft augmented osteosarcoma limb salvage surgery; however, its use is limited because of concerns about the prooncogenic effects of the agent. QUESTIONS/PURPOSES (1) To assess if BMP-2 signaling influences osteosarcoma cell line growth. (2) To characterize degree of osteosarcoma cell line osteoblastic differentiation in response to BMP-2. (3) To assess if BMP-2 signaling has a consistent effect on local or systemic tumor burden in various orthotopic murine models of osteosarcoma. METHODS In this study, 143b, SaOS-2 and DLM8-M1 osteosarcoma cell lines were transfected with BMP-2 cDNA controlled by a constitutive promoter (experimental) or an empty vector (control) using a PiggyBac transposon system. Cellular proliferation was assessed using a quantitative MTT colorimetric assay. Osteoblastic differentiation was compared between control and experimental cell lines using quantitative real-time polymerase chain reaction of the osteoblastic markers connective tissue growth factor, Runx-2, Osterix, alkaline phosphatase and osteocalcin. Experimental and control cell lines were injected into the proximal tibia of either NOD-SCID (143b and SaOS-2 xenograft model), or C3H (DLM8-M1 syngeneic model) mice. Local tumor burden was quantitatively assessed using tumor volume caliper measurements and bioluminescence, and qualitatively assessed using post-mortem ex vivo microCT. Lung metastasis was qualitatively assessed by the presence of bioluminescence, and incidence was confirmed using histology. rhBMP-2 soaked absorbable collagen sponges (experimental) and sterile-H2O soaked absorbable collagen sponges (control) were implanted adjacent to 143b proximal tibial cell line injections to compare the effects of exogenous BMP-2 application with endogenous upregulation. RESULTS Constitutive expression of BMP-2 increased the in vitro proliferation of 143b cells (absorbance values 1.2 ± 0.1 versus 0.89 ± 0.1, mean difference 0.36 [95% CI 0.12 to 0.6]; p = 0.01), but had no effect on SaOS-2 and DLM8-M1 cell proliferation. In response to constitutive BMP-2 expression, 143b cells had no differences in osteoblastic differentiation, while DLM8-M1 cells downregulated the early marker connective tissue growth factor (mean ΔCt 0.2 ± 0.1 versus 0.6 ± 0.1; p = 0.002) and upregulated the early-mid range marker Runx-2 (mean ΔCt -0.8 ± 0.1 versus -1.1 ± 0.1; p = 0.002), and SaOS-2 cells upregulated the mid-range marker Osterix (mean ΔCt -2.1 ± 0.6 versus -3.9 ± 0.6; p = 0.002). Constitutive expression of BMP-2 resulted in greater 143b and DLM8-M1 local tumor volume (143b: 307.2 ± 106.8 mm versus 1316 ± 387.4 mm, mean difference 1009 mm [95% CI 674.5 to 1343]; p < 0.001, DLM8-M1 week four: 0 mm versus 326.1 ± 72.8 mm, mean difference 326.1 mm [95% CI 121.2 to 531]; p = 0.009), but modestly reduced local tumor growth in SaOS-2 (9.5 x 10 ± 8.3x10 photons/s versus 9.3 x 10 ± 1.5 x 10 photons/s, mean difference 8.6 x 10 photons/s [95% CI 5.1 x 10 to 1.2 x 10]; p < 0.001). Application of exogenous rhBMP-2 also increased 143b local tumor volume (495 ± 91.9 mm versus 1335 ± 102.7 mm, mean difference 840.3 mm [95% CI 671.7 to 1009]; p < 0.001). Incidence of lung metastases was not different between experimental or control groups for all experimental conditions. CONCLUSIONS As demonstrated by others, ectopic BMP-2 signaling has unpredictable effects on local tumor proliferation in murine models of osteosarcoma and does not consistently result in osteosarcoma cell line differentiation. Further investigations into other methods of safe bone and soft tissue healing augmentation and the use of differentiation therapies is warranted. CLINICAL RELEVANCE Our results indicate that BMP-2 has the potential to stimulate the growth of osteosarcoma cells that are poorly responsive to BMP-2 mediated osteoblastic differentiation. As this differentiation potential is unpredictable in the clinical setting, BMP-2 may promote the growth of microscopic residual tumor burden after resection. Our study provides further support for the recommendation to avoid the use of BMP-2 after limb-salvage surgery in patients with osteosarcoma.
Collapse
|
25
|
Tumor cell MT1-MMP is dispensable for osteosarcoma tumor growth, bone degradation and lung metastasis. Sci Rep 2020; 10:19138. [PMID: 33154487 PMCID: PMC7645741 DOI: 10.1038/s41598-020-75995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.
Collapse
|
26
|
Cui J, Dean D, Wei R, Hornicek FJ, Ulmert D, Duan Z. Expression and clinical implications of leucine-rich repeat containing 15 (LRRC15) in osteosarcoma. J Orthop Res 2020; 38:2362-2372. [PMID: 32902907 DOI: 10.1002/jor.24848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Leucine-rich repeat containing 15 (LRRC15) is a member of the leucine-rich repeat superfamily that is overexpressed in various cancers and associated with higher tumor grade and aggression. Despite its known tumorigenicity, its roles within osteosarcoma are unknown, prompting us to evaluate its expression and clinical significance within this rare yet aggressive cancer. Western blots showed differential expression of LRRC15 in the osteosarcoma cell lines MNNG/HOS, KHOS, 143B, MG63, Saos-2, and U2OS. We additionally validated this positive expression, as well as sublocalization to the cell membrane, with immunofluorescence. A tissue microarray constructed from 69 osteosarcoma patient tissues was immunohistochemically stained for LRRC15 expression, stratified, and used for clinicopathological analysis. Publicly available databases on LRRC15 expression, including RNA sequencing data from the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) and the Gene Expression database of Normal and Tumor tissues 2 (GENT2) were also analyzed. We found 63 of the 69 (91.3%) patient tissues exhibited some degree of LRRC15 immunostaining, including no staining (6 of 69, 8.7%), 1+ staining (12 of 69, 17.4%), 2+ staining (25 of 69, 36.2%), and 3+ staining (26 of 69, 37.7%). The patients with osteosarcomas having elevated LRRC15 expression demonstrated comparatively increased metastasis, chemoresistance, and shorter 5-year survival rates. Our analysis of the TARGET-OS and GENT2 databases also showed increased LRRC15 gene expression in osteosarcoma. Taken together, our study supports LRRC15 as a prognostic biomarker and emerging therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ran Wei
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David Ulmert
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
Li X, Dean DC, Cote GM, Zou L, Hornicek FJ, Yu S, Duan Z. Inhibition of ATR-Chk1 signaling blocks DNA double-strand-break repair and induces cytoplasmic vacuolization in metastatic osteosarcoma. Ther Adv Med Oncol 2020; 12:1758835920956900. [PMID: 32973933 PMCID: PMC7493280 DOI: 10.1177/1758835920956900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ataxia-telangiectasia and Rad3 related protein kinase (ATR) is an essential regulator of the DNA damage response in various cancers; however, its expression and roles in osteosarcoma are unclear. We therefore chose to evaluate the significance and mechanism of ATR in metastatic osteosarcoma, as well as its potential to be a therapeutic target. METHODS The osteosarcoma tissue microarrays constructed from 70 patient specimens underwent immunohistochemistry to quantify ATR and activated phospho-ATR (pATR) expression and their correlation with clinical outcomes. ATR sublocalization within the metastatic osteosarcoma cells was confirmed by immunofluorescence assay. Cell proliferation, apoptosis, and migration were evaluated following treatment with ATR siRNA or the selective inhibitor Berzosertib. Antitumor effects were determined with ex vivo three-dimensional (3D) culture models, and the impacts on the DNA damage repair pathways were measured with Western blotting. RESULTS Elevated ATR and activated pATR expression correlated with shorter patient survival and less necrosis following neoadjuvant chemotherapy. Intranuclear sublocalization of ATR and pATR suggested a mechanism related to DNA replication. ATR knockdown with siRNA or inhibition with Berzosertib suppressed cell proliferation in a time- and dose-dependent manner and induced apoptosis. In addition, ATR inhibition decreased Chk1 phosphorylation while increasing γH2AX expression and PARP cleavage, consistent with the interference of DNA damage repair. The ATR inhibitor Berzosertib also produced the characteristic cytoplasmic vacuolization preceding cell death, and suppressed ex vivo 3D spheroid formation and cell motility. CONCLUSION The faithful dependence of cells on ATR signaling for survival and progression makes it an emerging therapeutic target in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, CHINA
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gregory M. Cote
- Department of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
New insights into molecular and cellular mechanisms of zoledronate in human osteosarcoma. Pharmacol Ther 2020; 214:107611. [PMID: 32565177 DOI: 10.1016/j.pharmthera.2020.107611] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignant tumor of the skeleton in teenagers and young adults and continues to confer a generally poor prognosis in patients who do not respond to chemotherapy or who present with metastatic diseases at diagnosis. The nitrogen-containing zoledronate, the third generation bisphosphonate (BP), effectively inhibits osteoclastic bone resorption and is widely utilized in the treatment of metabolic and metastatic bone diseases nowadays. Owing to an acceptable safety profile and tolerability, zoledronate is the only BP currently approved for the prevention and treatment of skeletal relevant events in patients with metastatic bone lesions, especially bone metastases from advanced renal cell carcinoma and prostate cancer, and breast cancer, due to all solid malignancy. Moreover, zoledronate possesses diverse anti-osteosarcoma properties and may have potential to become an adjunctive treatment for high-grade osteosarcoma to enhance survival rates and to obliterate complications of the chemotherapy. Herein we highlighted the pharmacology of BPs and its underlying molecular mechanisms in osteoclasts and various cancer cells. We further provided the available literature on in vitro studies to illustrate the new insights into the intracellular molecular mechanisms of zoledronate in human osteosarcoma cell lines and in vivo animal models that led to the development and regulatory approval of zoledronate in patients with human osteosarcoma. This review also addresses clinical trials to focus on the efficacy of zoledronate on human osteosarcoma.
Collapse
|
29
|
Fritsche-Guenther R, Gloaguen Y, Kirchner M, Mertins P, Tunn PU, Kirwan JA. Progression-Dependent Altered Metabolism in Osteosarcoma Resulting in Different Nutrient Source Dependencies. Cancers (Basel) 2020; 12:cancers12061371. [PMID: 32471029 PMCID: PMC7352851 DOI: 10.3390/cancers12061371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor and OS metastases are mostly found in the lung. The limited understanding of the biology of metastatic processes in OS limits the ability for effective treatment. Alterations to the metabolome and its transformation during metastasis aids the understanding of the mechanism and provides information on treatment and prognosis. The current study intended to identify metabolic alterations during OS progression by using a targeted gas chromatography mass spectrometry approach. Using a female OS cell line model, malignant and metastatic cells increased their energy metabolism compared to benign OS cells. The metastatic cell line showed a faster metabolic flux compared to the malignant cell line, leading to reduced metabolite pools. However, inhibiting both glycolysis and glutaminolysis resulted in a reduced proliferation. In contrast, malignant but non-metastatic OS cells showed a resistance to glycolytic inhibition but a strong dependency on glutamine as an energy source. Our in vivo metabolic approach hinted at a potential sex-dependent metabolic alteration in OS patients with lung metastases (LM), although this will require validation with larger sample sizes. In line with the in vitro results, we found that female LM patients showed a decreased central carbon metabolism compared to metastases from male patients.
Collapse
Affiliation(s)
- Raphaela Fritsche-Guenther
- Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), 13125 Berlin, Germany; (Y.G.); (J.A.K.)
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany; (M.K.); (P.M.)
- Correspondence:
| | - Yoann Gloaguen
- Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), 13125 Berlin, Germany; (Y.G.); (J.A.K.)
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany; (M.K.); (P.M.)
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany; (M.K.); (P.M.)
- Proteomics Platform Berlin Institute of Health (BIH) and Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany; (M.K.); (P.M.)
- Proteomics Platform Berlin Institute of Health (BIH) and Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Per-Ulf Tunn
- Department of Orthopedic Oncology, Helios Clinic Berlin-Buch, 13125 Berlin, Germany;
| | - Jennifer A. Kirwan
- Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), 13125 Berlin, Germany; (Y.G.); (J.A.K.)
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany; (M.K.); (P.M.)
| |
Collapse
|
30
|
Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H, Duan Z. Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol 2020; 12:1758835920922055. [PMID: 32426053 PMCID: PMC7222246 DOI: 10.1177/1758835920922055] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past four decades, outcomes for osteosarcoma patients have plateaued as there have been few emerging therapies showing clinical results. Thus, the identification of novel biomarkers and therapeutic strategies are urgently needed to address these primary obstacles in patient care. Although the Myc-oncogene has known roles in oncogenesis and cancer cell growth, its expression and function in osteosarcoma are largely unknown. Methods Expression of Myc was determined by Western blotting of osteosarcoma cell lines and patient tissues, and by immunohistochemistry of a unique osteosarcoma tissue microarray (TMA) constructed from 70 patient samples with extensive follow-up data. Myc specific siRNA and inhibitor 10058-F4 were applied to examine the effect of Myc inhibition on osteosarcoma cell proliferation. The clonogenicity and migration activity was determined by clonogenic and wound-healing assays. A mimic in vivo assay, three-dimensional (3D) cell culture model, was performed to further validate the effect of Myc inhibition on osteosarcoma cell tumorigenic markers. Results Myc was significantly overexpressed in human osteosarcoma cell lines compared with normal human osteoblasts, and also highly expressed in fresh osteosarcoma tissues. Higher Myc expression correlated significantly with metastasis and poor prognosis. Through the addition of Myc specific siRNA and inhibitor, we significantly reduced Myc protein expression, resulting in decreased osteosarcoma cell proliferation. Inhibition of Myc also suppressed the migration, clonogenicity, and spheroid growth of osteosarcoma cells. Conclusion Our results support Myc as an emerging prognostic biomarker and therapeutic target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Wenlong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dimitrios Spentzos
- Department of Orthopaedic Surgery, Musculoskeletal Oncology Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA Department of Surgery, University of California, San Diego, CA, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Tung FI, Zheng LJ, Hou KT, Chiang CS, Chen MH, Liu TY. One-stop radiotherapeutic targeting of primary and distant osteosarcoma to inhibit cancer progression and metastasis using 2DG-grafted graphene quantum dots. NANOSCALE 2020; 12:8809-8818. [PMID: 32250377 DOI: 10.1039/c9nr10823h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The application of radiotherapy (RT) to treat osteosarcoma (OS) has been limited, but this is starting to change as the ability to target radiation energy to niches improves. Furthermore, lung cancer from highly metastatic OS is a major cause of death, so it is critical to explore new strategies to tackle metastasis. In this study, we designed a nanoscale radiosensitizer by grafting 2-deoxy-d-glucose (2DG) onto graphene quantum dots (GQD) to achieve OS targeting and boost RT efficacy. Combining the use of 2DG-grafted GQDs (2DG-g-GQD) with RT produced a significant increase in oxidative stress response and DNA damage in the 143B OS cell line compared with RT alone. Moreover, 2DG-g-GQDs selectively associated with 143B cells, and demonstrated the inhibition of migration in a scratch assay. We also demonstrated remarkable improvement in their ability to inhibit tumour progression and lung metastasis in an OS xenograft mouse model. Our results show that the use of 2DG-g-GQDs as OS-targeting radiosensitizers improves their therapeutic outcome and exhibits potential for use in low-dose precision RT for OS.
Collapse
Affiliation(s)
- Fu-I Tung
- Department of Orthopaedic Surgery, Taipei City Hospital, Yangming branch, Taipei City 112, Taiwan.
| | | | | | | | | | | |
Collapse
|
32
|
Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells 2020; 9:cells9030774. [PMID: 32235738 PMCID: PMC7140691 DOI: 10.3390/cells9030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.
Collapse
|
33
|
Schott C, Shah AT, Sweet-Cordero EA. Genomic Complexity of Osteosarcoma and Its Implication for Preclinical and Clinical Targeted Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:1-19. [PMID: 32767231 DOI: 10.1007/978-3-030-43085-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a genomically complex disease characterized by few recurrent single-nucleotide mutations or in-frame fusions. In contrast, structural alterations, including copy number changes, chromothripsis, kataegis, loss of heterozygosity (LOH), and other large-scale genomic alterations, are frequent and widespread across the osteosarcoma genome. These observed structural alterations lead to activation of oncogenes and loss of tumor suppressors which together contribute to oncogenesis. To date, few targeted therapies for osteosarcoma have been identified. It is likely that effectiveness of targeted therapies will vary greatly in subsets of tumors with distinct key driver events. Model systems which can recapitulate the genetic heterogeneity of this disease are needed to test this hypothesis. One possible approach is to use patient-derived xenograft (PDX) models characterized with regards to their similarity to the human tumor samples from which they were derived. Here we review evidence pointing to the genomic complexity of osteosarcoma and how this is reflected in available model systems. We also review the current state of preclinical testing for targeted therapies using these models.
Collapse
Affiliation(s)
- Courtney Schott
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Avanthi Tayi Shah
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Zhang K, Dong C, Chen M, Yang T, Wang X, Gao Y, Wang L, Wen Y, Chen G, Wang X, Yu X, Zhang Y, Wang P, Shang M, Han K, Zhou Y. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics 2020; 10:411-425. [PMID: 31903129 PMCID: PMC6929625 DOI: 10.7150/thno.33482] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Extracellular vesicles (EVs) have emerged as novel mediators of cell-to-cell communication that are capable of the stable transfer of therapeutic microRNAs (miRNAs), and thus, EVs hold immense promise as a miRNA delivery system for cancer therapy. Additionally, as miRNA-containing EVs are secreted into circulation, miRNAs contained within plasma EVs may represent ideal biomarkers for diseases. The objective of this study was to characterize a potential tumor suppressor miRNA, miR-101, and explore the potential of miR-101 delivery via EVs for in vivo therapy of metastatic osteosarcoma as well as the potential value of plasma EV-packaged miR-101 (EV-miR-101) level for predicting osteosarcoma metastasis. Methods: The relationship of miR-101 expression and osteosarcoma progression was investigated in osteosarcoma specimens by in situ hybridization (ISH), and the potential inhibitory effect of miR-101 was further investigated using in vivo models. Using prediction software analysis, the mechanism of action of miR-101 in osteosarcoma was explored using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting and dual-luciferase assay. Adipose tissue-derived mesenchymal stromal cells (AD-MSCs) were transduced with lentiviral particles to obtain miR-101-enriched EVs. A Transwell assay and lung metastasis models of osteosarcoma were used to observe the effect of miR-101-enriched EVs on osteosarcoma invasiveness and metastasis. Detection of plasma EV-miR-101 levels was carried out in osteosarcoma patients and healthy controls by qRT-PCR. Results: miR-101 expression was markedly lower in metastatic osteosarcoma specimens compared to non-metastatic specimens. Significantly fewer metastatic lung nodules were formed by Saos-2 cells overexpressing miR-101 and SOSP-9607 cells overexpressing miR-101 injected into mice. With increased miR-101 expression, B cell lymphoma 6 (BCL6) mRNA and protein expression levels were reduced, and miR-101 was found to exert its effects by directly targeting BCL6. AD-MSCs were successfully engineered to secrete miR-101-enriched EVs. Once taken up by osteosarcoma cells, these EVs showed suppressive effects on cell invasion and migration in vitro, and systemic administration of these EVs effectively suppressed metastasis in vivo with no significant side effects. Finally, the EV-miR-101 level was lower in osteosarcoma patients than in healthy controls and even lower in osteosarcoma patients with metastasis than in those without metastasis. Conclusion: Our data support the function of miR-101 as a tumor suppressor in osteosarcoma via downregulation of BCL6. AD-MSC derived miR-101-enriched EVs represent a potential innovative therapy for metastatic osteosarcoma. EV-miR-101 also represents a promising circulating biomarker of osteosarcoma metastasis.
Collapse
|
35
|
Feng Y, Liao Y, Zhang J, Shen J, Shao Z, Hornicek F, Duan Z. Transcriptional activation of CBFβ by CDK11 p110 is necessary to promote osteosarcoma cell proliferation. Cell Commun Signal 2019; 17:125. [PMID: 31610798 PMCID: PMC6792216 DOI: 10.1186/s12964-019-0440-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Aberrant expression of cyclin-dependent protein kinases (CDK) is a hallmark of cancer. CDK11 plays a crucial role in cancer cell growth and proliferation. However, the molecular mechanisms of CDK11 and CDK11 transcriptionally regulated genes are largely unknown. METHODS In this study, we performed a global transcriptional analysis using gene array technology to investigate the transcriptional role of CDK11 in osteosarcoma. The promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay were used to identify direct transcriptional targets of CDK11. Clinical relevance and function of core-binding factor subunit beta (CBFβ) were further accessed in osteosarcoma. RESULTS We identified a transcriptional role of protein-DNA interaction for CDK11p110, but not CDK11p58, in the regulation of CBFβ expression in osteosarcoma cells. The CBFβ promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay confirmed that CBFβ is a direct transcriptional target of CDK11. High expression of CBFβ is associated with poor outcome in osteosarcoma patients. Expression of CBFβ contributes to the proliferation and metastatic behavior of osteosarcoma cells. CONCLUSIONS These data establish CBFβ as a mediator of CDK11p110 dependent oncogenesis and suggest that targeting the CDK11- CBFβ pathway may be a promising therapeutic strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yong Feng
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022 China
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Yunfei Liao
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022 China
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Jianming Zhang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022 China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| |
Collapse
|
36
|
Xi Y, Qi Z, Ma J, Chen Y. PTEN loss activates a functional AKT/CXCR4 signaling axis to potentiate tumor growth and lung metastasis in human osteosarcoma cells. Clin Exp Metastasis 2019; 37:173-185. [PMID: 31571016 DOI: 10.1007/s10585-019-09998-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Loss of the tumor suppressor PTEN or activation of chemokine receptor CXCR4 has been demonstrated to associate with OS respectively. However, the signaling mechanism underlying PTEN-mediated antitumor effect remains largely unknown, and the crosstalk between PTEN and CXCR4 in OS has not been investigated. Here, we uncover a PTEN/AKT/CXCR4 pathway nexus in highly tumorigenic and metastatic human 143B OS cells. Loss of PTEN activates AKT/CXCR4 signaling axis and regulates a series of tumor cell behaviors. Notably, ERK is inversely regulated by PTEN and its activation occurs downstream of AKT but upstream of CXCR4, suggesting this kinase to be an important mediator between AKT and CXCR4. In vivo studies show that overexpression of PTEN dramatically attenuates bone destruction, and this inhibition is associated with reduced CXCR4 expression in tumors. CXCR4 inhibitor AMD3100 also markedly suppresses tumor growth in the bone. In addition, PTEN overexpression or AMD3100 substantially inhibits tumor expansion in the lung. Our studies highlight a novel PTEN/AKT/CXCR4 signaling nexus in OS tumor growth and lung metastasis, and provide a strong rationale to consider PTEN restoration or CXCR4 blockade for the treatment of aggressive OS in humans.
Collapse
Affiliation(s)
- Yongming Xi
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China.
| | - Zonghua Qi
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Jinfeng Ma
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Yan Chen
- Division in Signaling Biology, Princess Margaret Cancer Center, University Health Network, Rm 13-301, TMDT Bldg, 101 College St., Toronto, Canada.
| |
Collapse
|
37
|
Khan S, Ullah MW, Siddique R, Liu Y, Ullah I, Xue M, Yang G, Hou H. Catechins-Modified Selenium-Doped Hydroxyapatite Nanomaterials for Improved Osteosarcoma Therapy Through Generation of Reactive Oxygen Species. Front Oncol 2019; 9:499. [PMID: 31263675 PMCID: PMC6585473 DOI: 10.3389/fonc.2019.00499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common bone cancer with limited therapeutic options. It can be treated by selenium-doped hydroxyapatite owing to its known antitumor potential. However, a high concentration of Se is toxic toward normal and stem cells whereas its low concentration cannot effectively remove cancer cells. Therefore, the current study was aimed to improve the anticancer activity of Se-HAp nanoparticles through catechins (CC) modification owing to their high cancer therapeutic value. The sequentially developed catechins modified Se-HAp nanocomposites (CC/Se-HAp) were characterized for various physico-chemical properties and antitumor activity. Structural analysis showed the synthesis of small rod-like single phase HAp nanoparticles (60 ± 15 nm), which effectively interacted with Se and catechins and formed agglomerated structures. TEM analysis showed the internalization and degradation of CC/Se-HAp nanomaterials within MNNG/HOS cells through a non-specific endocytosis process. Cell toxicity analysis showed that catechins modification improved the antitumor activity of Se-HAp nanocomposites by inducing apoptosis of human osteosarcoma MNNG/HOS cell lines, through generation of reactive oxygen species (ROS) which in turn activated the caspase-3 pathway, without significantly affecting the growth of human normal bone marrow stem cells (hBMSCs). qPCR and western blot analyses revealed that casp3, p53, and bax genes were significantly upregulated while cox-2 and PTK-2 were slightly downregulated as compared to control in CC/Se-HAp-treated MNNG/HOS cell lines. The current study of combining natural biomaterial (i.e., catechins) with Se and HAp, can prove to be an effective therapeutic approach for bone cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Rabeea Siddique
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die/Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Hou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Lian Z, Han J, Huang L, Wei C, Fan Y, Xu J, Zhou M, Feng H, Liu Q, Chen L, Li Z, Cheng H, Yuan G, Lin X, Song F, Su Y, Wang C, Huang G, Qin A, Song Y, Yao G. Retraction of: A005, a novel inhibitor of phosphatidylinositol 3-kinase/mammalian target of rapamycin, prevents osteosarcoma-induced osteolysis. Carcinogenesis 2019; 40:e1-e13. [PMID: 29635391 DOI: 10.1093/carcin/bgy036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor in children and adolescents. The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is an attractive anticancer target because it plays key roles in the regulation of cell growth, division and differentiation. In this study, we demonstrated high expression of PI3K/mTOR signaling pathway-related genes in patients with osteosarcoma. We thus investigated the effects of A005, a newly synthesized dual PI3K/mTOR inhibitor, on osteosarcoma cells and in a mouse xenograft tumor model. The results confirmed that A005 inhibited the proliferation, migration and invasion of human osteosarcoma cells. In addition, A005 also inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and bone resorption in vitro. Therefore, A005 was further applied to a SaOS-2 osteosarcoma-induced mouse osteolysis model. A005 inhibited tumor growth and prevented osteosarcoma-associated osteolysis via modulation of the PI3K/AKT/mTOR pathway. Overall, our results showed that A005 inhibited osteoclastogenesis and prevented osteosarcoma-induced bone osteolysis by suppressing PI3K/AKT/mTOR signaling. These findings indicated that A005 may be a promising candidate drug for the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinsong Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Medicinal Chemistry, Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Lin Huang
- Department of Spine Surgery, Department of Orthopedics, Research Center of Spinal and Pelvic Tumor, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou City, Guangdong Province, China
| | - Chengming Wei
- Department of Orthopedics, Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Guangxi, China
| | - Yongyong Fan
- Orthopedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Jiake Xu
- Department of Orthopedics, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Mengyu Zhou
- Department of Stomatology, Haicheng Central Hospital, Liaoning, China
| | - Haotian Feng
- Department of Orthopedics, Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Qian Liu
- Department of Orthopedics, Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Lingzi Chen
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaoning Li
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Haichun Cheng
- Department of General Surgery, The Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xixi Lin
- Department of Orthopedics, Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Fangming Song
- Department of Orthopedics, Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Yiji Su
- Department of Rehabilitation, The First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Chao Wang
- Department of Orthopedics, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Guopeng Huang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunlong Song
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
39
|
Butch ER, Mead PE, Amador Diaz V, Tillman H, Stewart E, Mishra JK, Kim J, Bahrami A, Dearling JLJ, Packard AB, Stoddard SV, Vāvere AL, Han Y, Shulkin BL, Snyder SE. Positron Emission Tomography Detects In Vivo Expression of Disialoganglioside GD2 in Mouse Models of Primary and Metastatic Osteosarcoma. Cancer Res 2019; 79:3112-3124. [PMID: 31015228 DOI: 10.1158/0008-5472.can-18-3340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022]
Abstract
The cell membrane glycolipid GD2 is expressed by multiple solid tumors, including 88% of osteosarcomas and 98% of neuroblastomas. However, osteosarcomas are highly heterogeneous, with many tumors exhibiting GD2 expression on <50% of the individual cells, while some tumors are essentially GD2-negative. Anti-GD2 immunotherapy is the current standard of care for high-risk neuroblastoma, but its application to recurrent osteosarcomas, for which no effective therapies exist, has been extremely limited. This is, in part, because the standard assays to measure GD2 expression in these heterogeneous tumors are not quantitative and are subject to tissue availability and sampling bias. To address these limitations, we evaluated a novel, sensitive radiotracer [64Cu]Cu-Bn-NOTA-hu14.18K322A to detect GD2 expression in osteosarcomas (six patient-derived xenografts and one cell line) in vivo using positron emission tomography (PET). Tumor uptake of the radiolabeled, humanized anti-GD2 antibody [64Cu]Cu-Bn-NOTA-hu14.18K322A was 7-fold higher in modestly GD2-expressing osteosarcomas (32% GD2-positive cells) than in a GD2-negative tumor (9.8% vs. 1.3% of the injected dose per cc, respectively). This radiotracer also identified lesions as small as 29 mm3 in a 34% GD2-positive model of metastatic osteosarcoma of the lung. Radiolabeled antibody accumulation in patient-derived xenografts correlated with GD2 expression as measured by flow cytometry (Pearson r = 0.88, P = 0.01), distinguishing moderately GD2-expressing osteosarcomas (32%-69% GD2-positive cells) from high GD2 expressors (>99%, P < 0.05). These results support the utility of GD2 imaging with PET to measure GD2 expression in osteosarcoma and thus maximize the clinical impact of anti-GD2 immunotherapy. SIGNIFICANCE: In situ assessment of all GD2-positive osteosarcoma sites with a novel PET radiotracer could significantly impact anti-GD2 immunotherapy patient selection and enable noninvasive probing of correlations between target expression and therapeutic response.
Collapse
Affiliation(s)
- Elizabeth R Butch
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Victor Amador Diaz
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jitendra K Mishra
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jason L J Dearling
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Alan B Packard
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Shana V Stoddard
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amy L Vāvere
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott E Snyder
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
40
|
Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics 2019; 9:2325-2345. [PMID: 31149047 PMCID: PMC6531310 DOI: 10.7150/thno.30030] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
We speculate that exosomes derived from human umbilical cord mesenchymal stromal cells (HUC-MSCs) will accumulate within tumors and have the potential for both tumor location or drug delivery. Methods: To determine proof of concept, HUC-MSC exosomes were labeled with an MRI contrast agent, gadolinium, or a near infrared dye. Exosome accumulation within ectopic osteosarcoma tumor-bearing mice was determined by 14.1 T MRI or bioimaging over 24-48 h after injection. In vitro studies examine the accumulation and physiological effect of exosomes on human and mouse osteosarcoma cell lines by MTT assay, confocal microscopy, and flow cytometry. Results: Systemic HUC-MSC exosomes accumulated continuously in tumor over a 24-48 h post-injection period. In contrast, synthetic lipid nanoparticles accumulate in tumor only for the first 3 h post-injection. Conclusion: These results suggest that HUC-MSCs exosomes accumulate within human or mouse osteosarcoma cells in vitro and in vivo over a 24 to 48 h after infusion.
Collapse
|
41
|
Yuan G, Lian Z, Liu Q, Lin X, Xie D, Song F, Wang X, Shao S, Zhou B, Li C, Li M, Yao G. Phosphatidyl inositol 3-kinase (PI3K)-mTOR inhibitor PKI-402 inhibits breast cancer induced osteolysis. Cancer Lett 2019; 443:135-144. [PMID: 30540926 DOI: 10.1016/j.canlet.2018.11.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023]
Abstract
Bone metastasis causes bone pain and pathological bone fracture in breast cancer patients with a serious complication. Previous studies have demonstrated that a novel phosphatidyl inositol 3-kinase (PI3K)-mTOR inhibitor PKI-402 suppressed the growth of breast cancer cells. However, the role of PKI-402 involved in osteolysis induced by breast cancer remains unclear. In this study, we showed that treatment of PKI-402 led to significant decreases in RANKL-induced osteoclastogenesis and osteoclast-specific gene expression in mouse bone marrow-derived macrophages and reduced proliferation, migration and invasion of MDA-MB-231 breast cancer cells by blocking the PI3K-AKT-mTOR signaling pathway. Importantly, as evidenced by the observation that the administration of PKI-402 inhibited MDA-MB-231-induced osteolysis in vivo, PKI-402 exerted an inhibitory effect on osteoclast formation and bone resorption, critical for cancer cells-induced bone destruction. These results strongly suggest that PKI-402 might have a therapeutic potential to inhibit breast cancer induced osteolysis.
Collapse
Affiliation(s)
- Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Xixi Lin
- Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Fangming Song
- Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Siyuan Shao
- Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Bo Zhou
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, 530021, China; Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Chen Li
- Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Muyan Li
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
42
|
Arlt MJ, Kuzmanov A, Snedeker JG, Fuchs B, Silvan U, Sabile AA. Fascin-1 enhances experimental osteosarcoma tumor formation and metastasis and is related to poor patient outcome. BMC Cancer 2019; 19:83. [PMID: 30654764 PMCID: PMC6337773 DOI: 10.1186/s12885-019-5303-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Background Fascin-1, a prominent actin-bundling protein, is found to be upregulated in several human carcinomas. While it is accepted that Fascin-1 expression correlates with poor clinical outcome and decreased survival in various carcinomas, its role in sarcoma such as osteosarcoma (OS) remains unknown. In the present study, we evaluated the prognostic value and biological relevance of Fascin-1 in OS. Methods The correlation between Fascin-1 expression and the outcome of OS patients was determined by immunohistochemistry analysis of Fascin-1 expression in a tissue microarray of OS tissue specimens collected during primary tumor resection. To examine the effect of Fascin-1, shRNA and overexpression technology to alter Fascin-1 levels in OS cells were used in cellular assays as well as in intratibial xenograft OS models in SCID mice. Results Kaplan-Meier survival analysis of Fascin-1 expression in OS tumor specimens revealed a direct relationship between Fascin-1 expression and poor patient survival. Furthermore, overexpression of Fascin-1 in OS cells significantly increased their migratory capacity as well as the activity of the matrix metalloprotease MMP-9, known to be critical for the execution of metastasis. Finally, using relevant xenograft mouse models, orthotopic intratibial transplantation of two different OS cell lines overexpressing Fascin-1 promoted tumor growth and lung metastasis. Conclusions Collectively, our findings demonstrate for the first time that Fascin-1 has considerable potential as a novel prognostic biomarker in OS, and suggest that targeting of Fascin-1 might be a new anti-metastatic strategy in OS patient treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5303-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias J Arlt
- Department of Orthopedics, Balgrist Hospital, University of Zürich, Institute for Biomechanics, ETH Zürich, 8008, Zürich, Switzerland
| | - Aleksandar Kuzmanov
- Department of Dermatology, University Hospital Zürich, 8952, Schlieren, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist Hospital, University of Zürich, Institute for Biomechanics, ETH Zürich, 8008, Zürich, Switzerland
| | - Bruno Fuchs
- Department of Orthopedics and Traumatology, Winterthur Cantonal Hospital, 8401, Winterthur, Switzerland
| | - Unai Silvan
- Department of Orthopedics, Balgrist Hospital, University of Zürich, Institute for Biomechanics, ETH Zürich, 8008, Zürich, Switzerland
| | - Adam A Sabile
- Department of Orthopedics, Balgrist Hospital, University of Zürich, Institute for Biomechanics, ETH Zürich, 8008, Zürich, Switzerland.
| |
Collapse
|
43
|
Lillo Osuna MA, Garcia-Lopez J, El Ayachi I, Fatima I, Khalid AB, Kumpati J, Slayden AV, Seagroves TN, Miranda-Carboni GA, Krum SA. Activation of Estrogen Receptor Alpha by Decitabine Inhibits Osteosarcoma Growth and Metastasis. Cancer Res 2018; 79:1054-1068. [PMID: 30593524 DOI: 10.1158/0008-5472.can-18-1255] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/16/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023]
Abstract
Osteosarcoma is a malignant tumor in the bone, which originates from normal osteoblasts or osteoblast precursors. Normal osteoblasts express estrogen receptor alpha (ERα); however, osteosarcomas do not express ERα due to promoter DNA methylation. Here we show that treatment of 143B osteosarcoma cells with decitabine (DAC, 5-Aza-2'-deoxycytidine) induces expression of ERα and leads to decreased proliferation and concurrent induction of osteoblast differentiation. DAC exposure reduced protein expression of metastasis-associated markers VIMENTIN, SLUG, ZEB1, and MMP9, with a concurrent decrease in mRNA expression of known stem cell markers SOX2, OCT4, and NANOG. Treatment with 17β-estradiol (E2) synergized with DAC to reduce proliferation. Overexpression of ERα inhibited proliferation and induced osteoblast differentiation, whereas knockout of ERα by CRISPR/Cas9 prevented the effects of DAC. In an orthotopic model of osteosarcoma, DAC inhibited tumor growth and metastasis of 143B cells injected into the tibia of NOD SCID gamma mice. Furthermore, ERα overexpression reduced tumor growth and metastasis, and ERα knockout prevented the effects of DAC in vivo. Together, these experiments provide preclinical evidence that the FDA-approved DNA methylation inhibitor DAC may be repurposed to treat patients with osteosarcoma based on its efficacy to decrease proliferation, to induce osteoblast differentiation, and to reduce metastasis to visceral organs.Significance: These findings describe the effects of DNA methyltransferase inhibition on ERα and its potential role as a tumor suppressor in osteosarcoma.See related commentary by Roberts, p. 1034 See related article by El Ayachi and colleagues; Cancer Res 79(5);982-93.
Collapse
Affiliation(s)
- Maria Angeles Lillo Osuna
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ikbale El Ayachi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Iram Fatima
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jerusha Kumpati
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alexandria V Slayden
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
44
|
Wang X, Wu X, Zhang Z, Ma C, Wu T, Tang S, Zeng Z, Huang S, Gong C, Yuan C, Zhang L, Feng Y, Huang B, Liu W, Zhang B, Shen Y, Luo W, Wang X, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Haydon RC, Luu HH, Peng B, Liu X, He TC. Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci Rep 2018; 8:17914. [PMID: 30559409 PMCID: PMC6297164 DOI: 10.1038/s41598-018-36214-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies with <5% five-year survival rate due to late diagnosis, limited treatment options and chemoresistance. There is thus an urgent unmet clinical need to develop effective anticancer drugs to treat pancreatic cancer. Here, we study the potential of repurposing monensin as an anticancer drug for chemo-resistant pancreatic cancer. Using the two commonly-used chemo-resistant pancreatic cancer cell lines PANC-1 and MiaPaCa-2, we show that monensin suppresses cell proliferation and migration, and cell cycle progression, while solicits apoptosis in pancreatic cancer lines at a low micromole range. Moreover, monensin functions synergistically with gemcitabine or EGFR inhibitor erlotinib in suppressing cell growth and inducing cell death of pancreatic cancer cells. Mechanistically, monensin suppresses numerous cancer-associated pathways, such as E2F/DP1, STAT1/2, NFkB, AP-1, Elk-1/SRF, and represses EGFR expression in pancreatic cancer lines. Furthermore, the in vivo study shows that monensin blunts PDAC xenograft tumor growth by suppressing cell proliferation via targeting EGFR pathway. Therefore, our findings demonstrate that monensin can be repurposed as an effective anti-pancreatic cancer drug even though more investigations are needed to validate its safety and anticancer efficacy in pre-clinical and clinical models.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Hepatobiliary & Pancreatic Surgery, Neurosurgery, and Otolaryngology, Head and Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Hepatobiliary & Pancreatic Surgery, Neurosurgery, and Otolaryngology, Head and Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Hepatobiliary & Pancreatic Surgery, Neurosurgery, and Otolaryngology, Head and Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Hepatobiliary & Pancreatic Surgery, Neurosurgery, and Otolaryngology, Head and Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Gong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Hepatobiliary & Pancreatic Surgery, Neurosurgery, and Otolaryngology, Head and Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang, 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
- Department of Clinical Laboratory Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330031, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, the First and Second Hospitals of Lanzhou University, Lanzhou, 730030, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha, 410011, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, Otolaryngology, Head and Neck Surgery, and Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, the First and Second Hospitals of Lanzhou University, Lanzhou, 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Clinical Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266061, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bing Peng
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xubao Liu
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
| |
Collapse
|
45
|
Shu Y, Wu K, Zeng Z, Huang S, Ji X, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Luu HH, Reid RR, Wolf JM, Lee MJ, He TC. A Simplified System to Express Circularized Inhibitors of miRNA for Stable and Potent Suppression of miRNA Functions. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:556-567. [PMID: 30414569 PMCID: PMC6226557 DOI: 10.1016/j.omtn.2018.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 12/09/2022]
Abstract
MicroRNAs (miRNAs) are an evolutionarily conserved class of small regulatory noncoding RNAs, binding to complementary target mRNAs and resulting in mRNA translational inhibition or degradation, and they play an important role in regulating many aspects of physiologic and pathologic processes in mammalian cells. Thus, efficient manipulations of miRNA functions may be exploited as promising therapeutics for human diseases. Two commonly used strategies to inhibit miRNA functions include direct transfection of chemically synthesized miRNA inhibitors and delivery of a gene vector that instructs intracellular transcription of miRNA inhibitors. While most miRNA inhibitors are based on antisense molecules to bind and sequester miRNAs from their natural targets, it is challenging to achieve effective and stable miRNA inhibition. Here we develop a user-friendly system to express circular inhibitors of miRNA (CimiRs) by exploiting the noncanonical head-to-tail backsplicing mechanism for generating endogenous circular RNA sponges. In our proof-of-principle experiments, we demonstrate that the circular forms of the hsa-miR223-binding site of human β-arrestin1 (ARRB1) 3' UTR sponge RNA (BUTR), the bulged anti-miR223 (cirBulg223) and bulged anti-miR21 (cirBulg21), exhibit more potent suppression of miRNA functions than their linear counterparts. Therefore, the engineered CimiR expression system should be a valuable tool to target miRNAs for basic and translational research.
Collapse
Affiliation(s)
- Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China.
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Xiaojuan Ji
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China; Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Key Laboratory of Orthopaedic Surgery of Gansu Province, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China; Departments of Orthopaedic Surgery and Obstetrics and Gynecology, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Key Laboratory of Orthopaedic Surgery of Gansu Province, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China; Departments of Orthopaedic Surgery and Obstetrics and Gynecology, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Clinical Laboratory Medicine, Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Roy J, Dibaeinia P, Fan TM, Sinha S, Das A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. J Lipid Res 2018; 60:375-387. [PMID: 30504231 DOI: 10.1194/jlr.m088559] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone cancer in humans. The early detection and subsequent control of metastasis has been challenging in OS. Lipids are important constituents of cells that maintain structural integrity that can be converted into lipid-signaling molecules and are reprogrammed in cancerous states. Here, we investigate the global lipidomic differences in metastatic (143B) and nonmetastatic (HOS) human OS cells as compared with normal fetal osteoblast cells (FOB) using lipidomics. We detect 15 distinct lipid classes in all three cell lines that included over 1,000 lipid species across various classes including phospholipids, sphingolipids and ceramides, glycolipids, and cholesterol. We identify a key class of lipids, diacylglycerols, which are overexpressed in metastatic OS cells as compared with their nonmetastatic or nontumorigenic counterparts. As a proof of concept, we show that blocking diacylglycerol synthesis reduces cellular viability and reduces cell migration in metastatic OS cells. Thus, the differentially regulated lipids identified in this study might aid in biomarker discovery, and the synthesis and metabolism of specific lipids could serve as future targets for therapeutic development.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61802.,Neuroscience Program and Department of Bioengineering, Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802 .,Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802.,Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61802
| |
Collapse
|
47
|
Maloney C, Edelman MC, Kallis MP, Soffer SZ, Symons M, Steinberg BM. Intratibial Injection Causes Direct Pulmonary Seeding of Osteosarcoma Cells and Is Not a Spontaneous Model of Metastasis: A Mouse Osteosarcoma Model. Clin Orthop Relat Res 2018; 476:1514-1522. [PMID: 29601385 PMCID: PMC6437576 DOI: 10.1007/s11999.0000000000000291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/08/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although metastasis is the major cause of mortality in patients with osteosarcoma, little is known about how micrometastases progress to gross metastatic disease. Clinically relevant animal models are necessary to facilitate development of new therapies to target indolent pulmonary metastases. Intratibial injection of human and murine osteosarcoma cell lines have been described as orthotopic models that develop spontaneous pulmonary metastasis over time. However, there is variability in reported injection techniques and metastatic efficiency. QUESTIONS/PURPOSES We aimed to characterize a widely used murine model of metastatic osteosarcoma, determine whether it is appropriate to study spontaneous pulmonary metastasis by establishing a reliable volume for intratibial injection, determine the incidence of primary tumor and metastatic formation, determine the kinetics of pulmonary metastatic seeding and outgrowth, and the contribution of the primary tumor to subsequent development of metastasis. METHODS The metastatic mouse osteosarcoma cell line K7M2 was injected into the tibia of mice. The maximum volume that could be injected without leakage was determined using Evan's blue dye (n = 8 mice). Primary tumor formation and metastatic efficiency were determined by measuring the incidence of primary tumor and metastatic formation 4 weeks after intratibial injection (n = 30). The kinetics of metastatic development were determined by performing serial euthanasia at 1, 2, 3, and 4 weeks after injection (n = 24; five to six mice per group). Number of metastatic foci/histologic lung section and metastatic burden/lung section (average surface area of metastatic lesions divided by the total surface area of the lung) was calculated in a blinded fashion. To test the contribution of the primary tumor to subsequent metastases, amputations were performed 30 minutes, 4 hours, or 24 hours after injection (n = 21; five to six mice per group). Mice were euthanized after 4 weeks and metastatic burden calculated as described previously, comparing mice that had undergone amputation with control, nonamputated mice. Differences between groups were calculated using Kruskal-Wallis and one-way analysis of variance. RESULTS The maximum volume of cell suspension that could be injected without leakage was 10 μL. Intratibial injection of tumor cells led to intramedullary tumor formation in 93% of mice by 4 weeks and resulted in detectable pulmonary metastases in 100% of these mice as early as 1 week post-injection. Metastatic burden increased over time (0.88% ± 0.58, week 1; 6.6% ± 5.3, week 2; 16.1% ± 12.5, week 3; and 40.3% ± 14.83, week 4) with a mean difference from week 1 to week 4 of -39.38 (p < 0.001; 95% confidence interval [CI], -57.39 to -21.37), showing pulmonary metastatic growth over time. In contrast, the mean number of metastatic foci did not increase from week 1 to week 4 (36.4 ± 33.6 versus 49.3 ± 26.3, p = 0.18). Amputation of the injected limb at 30 minutes, 4 hours, and 24 hours after injection did not affect pulmonary metastatic burden at 4 weeks, with amputation as early as 30 minutes post-injection resulting in a metastatic burden equivalent to tumor-bearing controls (48.9% ± 6.1% versus 40.9% ± 15.3%, mean difference 7.96, p = 0.819; 95% CI, -33.9 to 18.0). CONCLUSIONS There is immediate seeding of the metastatic site after intratibial injection of the K7M2 osteosarcoma cell line, independent of a primary tumor. This is therefore not a model of spontaneous metastasis. CLINICAL RELEVANCE This model should not be used to study the early components of the metastatic cascade, but rather used as an experimental model of metastasis. Improved understanding of this commonly used model will allow for proper interpretation of existing data and inform the design of future studies exploring the biology of metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Caroline Maloney
- C. Maloney, M. P. Kallis, M. Symons, B. M. Steinberg, The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA C. Maloney, M. P. Kallis, S. Z. Soffer, M. Symons, B. M. Steinberg, Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA C. Maloney, M. P. Kallis, S. Z. Soffer, Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA M. C. Edelman, Department of Pathology and Laboratory Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | | | | | | | | | | |
Collapse
|
48
|
Micrometastatic Drug Screening Platform Shows Heterogeneous Response to MAP Chemotherapy in Osteosarcoma Cell Lines. Clin Orthop Relat Res 2018; 476:1400-1411. [PMID: 29481344 PMCID: PMC6437591 DOI: 10.1007/s11999.0000000000000059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Approximately 80% of patients with osteosarcoma harbor subclinical pulmonary micrometastases at diagnosis. Conventional chemotherapy includes methotrexate, doxorubicin, and cisplatin (MAP); however, this regimen and thus overall survival (60%-70%) have remained largely unchanged for 30 years. It therefore is necessary to identify novel therapeutics targeting the metastatic progression of osteosarcoma. QUESTIONS/PURPOSES This laboratory study explored application of osteosarcoma spheroids (sarcospheres) for drug screening with the following purposes: (1) to characterize sarcosphere size; (2) to establish accurate measurement of sarcosphere growth; (3) to confirm sarcosphere uniformity; and (4) to apply the platform to evaluate MAP chemotherapy. METHODS Sarcospheres were first characterized to establish accurate measurement of sarcosphere growth and uniform production. The refined platform then was applied to evaluate MAP chemotherapy to validate its use in drug screening. Sarcospheres were generated from highly metastatic human cell lines (143B, MG-63.3, and LM7) by centrifugation to form three-dimensional aggregates modeling micrometastases. Sarcospheres were matured for 24 hours and then incubated with or without drug from Days 0 to 2. Size was assessed by diameter and volume using brightfield microscopy. Growth was measured by volume and resazurin reduction in viable cells. Sarcosphere uniformity was assessed by diameter and resazurin reduction at Day 0 and the Z' factor, a measure of assay suitability for high-throughput screening, was calculated at Day 2. Sarcospheres were treated with individual MAP agents (0 to 1000 μmol/L) to determine concentrations at which 50% of growth from Days 0 to 2 was inhibited (GIC50). Cell lines resistant to MAP in sarcospheres were treated in monolayer for comparison. RESULTS Sarcosphere diameter and growth from Days 0 to 2 were quantitatively dependent on the number of cells seeded and the cell line used. Accurate measurement of growth occurred after resazurin incubation for 6 hours, without EDTA-mediated permeabilization, and was correlated with the number of cells seeded and sarcosphere volume for 143B (Spearman's r: 0.98; p < 0.001), MG-63.3 (0.99; p < 0.001), and LM7 (0.98; p < 0.001). Sarcospheres met established criteria for screening applications as mean Z' factors were greater than 0.5 for all cell lines. Response to MAP therapy was cell line-dependent, because MG-63.3 and LM7 sarcospheres exhibited greater than 2000-fold resistance to methotrexate (GIC50 = 88 ± 36 μmol/L and 174 ± 16 μmol/L, respectively) compared with the 143B cell line (GIC50 = 0.04 ± 0.01 μmol/L; p < 0.001 for MG-63.3 and LM7). MG-63.3 monolayers were more sensitive to methotrexate (GIC50 = 0.01 ± 0.01 μmol/L; p < 0.001) than MG-63.3 sarcospheres, whereas LM7 monolayers remained chemoresistent (GIC50 not reached). CONCLUSIONS This study developed and validated a drug screening platform for progression of osteosarcoma micrometastases. It also highlights heterogeneity among osteosarcoma cell lines. These findings appear to reflect known patient-to-patient heterogeneity and underscore the importance of evaluating multiple tumor models when testing drugs for the treatment of osteosarcoma. CLINICAL RELEVANCE The described approach is a promising starting point for drug screening in osteosarcoma because it is tailored to evaluate micrometastatic disease. A reliable and rapid method to identify novel therapeutics is critical to improve stagnant outcomes for patients with osteosarcoma.
Collapse
|
49
|
Redox-responsive microbeads containing thiolated pectin-doxorubicin conjugate inhibit tumor growth and metastasis: An in vitro and in vivo study. Int J Pharm 2018; 545:1-9. [DOI: 10.1016/j.ijpharm.2018.04.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
|
50
|
Roy J, Watson JE, Hong IS, Fan TM, Das A. Antitumorigenic Properties of Omega-3 Endocannabinoid Epoxides. J Med Chem 2018; 61:5569-5579. [PMID: 29856219 DOI: 10.1021/acs.jmedchem.8b00243] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating studies have linked inflammation to tumor progression. Dietary omega-3 fatty acids, such as docosahexaenoic acid (DHA), have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with antiproliferative activity. Recently, we reported a novel class of anti-inflammatory DHEA-epoxide derivative called epoxydocospentaenoic-ethanolamide (EDP-EA) that contain both ethanolamide and epoxide moieties. Herein, we study the antitumorigenic properties of EDP-EAs in an osteosarcoma (OS) model. First, we show ∼80% increase in EDP-EAs in metastatic versus normal lungs of mice. We found significant differences in the apoptotic and antimigratory potencies of the different EDP-EA regioisomers, which were partially mediated through cannabinoid receptor 1 (CB1). Next, we synthesized derivatives of the most pro-apoptotic regioisomer. These derivatives had reduced hydrolytic susceptibility to fatty acid amide hydrolase (FAAH) and increased CB1-selective binding. Collectively, we report a novel class of EDP-EAs that exhibit antiangiogenic, antitumorigenic, and antimigratory properties in OS.
Collapse
|