1
|
Burgermeister S, Stoykova S, Krebs FS, Zoete V, Mbefo M, Egervari K, Reinhard A, Bisig B, Hewer E. Methylation-Based Characterization of a New IDH2 Mutation in Sinonasal Undifferentiated Carcinoma. Int J Mol Sci 2024; 25:6518. [PMID: 38928223 PMCID: PMC11204065 DOI: 10.3390/ijms25126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations affecting codon 172 of the isocitrate dehydrogenase 2 (IDH2) gene define a subgroup of sinonasal undifferentiated carcinomas (SNUCs) with a relatively favorable prognosis and a globally hypermethylated phenotype. They are also recurrent (along with IDH1 mutations) in gliomas, acute myeloid leukemia, and intrahepatic cholangiocarcinoma. Commonly reported mutations, all associated with aberrant IDH2 enzymatic activity, include R172K, R172S, R172T, R172G, and R172M. We present a case of SNUC with a never-before-described IDH2 mutation, R172A. Our report compares the methylation pattern of our sample to other cases from the Gene Expression Omnibus database. Hierarchical clustering suggests a strong association between our sample and other IDH-mutant SNUCs and a clear distinction between sinonasal normal tissues and tumors. Principal component analysis (PCA), using 100 principal components explaining 94.5% of the variance, showed the position of our sample to be within 1.02 standard deviation of the other IDH-mutant SNUCs. A molecular modeling analysis of the IDH2 R172A versus other R172 variants provides a structural explanation to how they affect the protein active site. Our findings thus suggest that the R172A mutation in IDH2 confers a gain of function similar to other R172 mutations in IDH2, resulting in a similar hypermethylated profile.
Collapse
Affiliation(s)
- Simon Burgermeister
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.S.); (M.M.); (B.B.)
| | - Simona Stoykova
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.S.); (M.M.); (B.B.)
| | - Fanny S. Krebs
- Computer-Aided Molecular Engineering, Department of Oncology UNIL-CHUV, University of Lausanne, 1066 Epalinges, Switzerland; (F.S.K.); (V.Z.)
- Ludwig Institute for Cancer Research, 1066 Epalinges, Switzerland
| | - Vincent Zoete
- Computer-Aided Molecular Engineering, Department of Oncology UNIL-CHUV, University of Lausanne, 1066 Epalinges, Switzerland; (F.S.K.); (V.Z.)
- Ludwig Institute for Cancer Research, 1066 Epalinges, Switzerland
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Martial Mbefo
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.S.); (M.M.); (B.B.)
| | - Kristof Egervari
- Service of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, 1206 Geneva, Switzerland;
| | - Antoine Reinhard
- Department of Otorhinolaryngology-Head and Neck Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.S.); (M.M.); (B.B.)
| | - Ekkehard Hewer
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (S.S.); (M.M.); (B.B.)
| |
Collapse
|
2
|
Sanchon-Sanchez P, Briz O, Macias RIR, Abad M, Sanchez-Martin A, Marin JJG, Lozano E. Evaluation of potential targets to enhance the sensitivity of cholangiocarcinoma cells to anticancer drugs. Biomed Pharmacother 2023; 168:115658. [PMID: 37832404 DOI: 10.1016/j.biopha.2023.115658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly lethal cancer originated in the biliary tree. Available treatments for CCA are scarcely effective, partly due to mechanisms of chemoresistance, such as aberrant activation of Wnt/β-catenin pathway and dysfunctional p53. AIM To evaluate the impact of enhancing the expression of negative regulators of the Wnt/β-catenin pathway (AXIN1, AXIN2, and GSK3B) and the tumor suppressor gene TP53. METHODS Gene expression in paired samples of CCA and adjacent non-tumor liver tissue was determined by RT-qPCR and immunohistochemistry (IHC). Using lentiviral vectors, CCA cells were transduced with genes of interest to assess their impact on the resistome (TLDA), apoptosis (annexin V/propidium iodide), and decreased cell viability (MTT). RESULTS IHC revealed marked nuclear localization of β-catenin, consistent with Wnt/β-catenin pathway activation. In silico analysis with data from TCGA showed heterogeneous down-regulation of AXIN1, AXIN2, and GSK3B in CCA. Enhancing the expression of AXIN1, AXIN2, and GSK3B in CCA cells was not enough to block the activity of this signaling pathway or significantly modify resistance to 5-FU, gemcitabine, and platinated drugs. Consistent with impaired p53 function, CDKN1A was down-regulated in CCA. Forced TP53 expression induced p21 up-regulation and reduced cell proliferation. Moreover, the resistome was modified (FAS, BAX, TYMP, and CES2 up-regulation along with DHFR, RRM1, and BIRC5 down-regulation), which was accompanied by enhanced sensitivity to some antitumor drugs, mainly platinated drugs. CONCLUSION Enhancing TP53 expression, but not that of AXIN1, AXIN2, and GSK3B, in CCA cells may be a useful strategy to sensitize CCA to antitumor drugs.
Collapse
Affiliation(s)
- Paula Sanchon-Sanchez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain
| | - Mar Abad
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Pathology, University of Salamanca, Salamanca, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain.
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Mohamed HRH, Farouk AH, Elbasiouni SH, Nasif KA, Safwat G, Diab A. Genotoxicity and oxidative stress induction by calcium hydroxide, calcium titanate or/and yttrium oxide nanoparticles in mice. Sci Rep 2023; 13:19633. [PMID: 37949924 PMCID: PMC10638389 DOI: 10.1038/s41598-023-46522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Intensive uses of Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles increase their environmental release and human exposure separately or together through contaminated air, water and food. However, too limited data are available on their genotoxicity. Therefore, this study explored the effect of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs administration on the genotoxicityand oxidative stress induction in mice hepatic tissue. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs and Y2O3NPs separately or simultaneously together at a dose level of 50 mg/kg b.w. for two successive weeks (3 days per week). Marked induction of DNA damage noticed after oral administration of Ca(OH)2NPs or CaTiO3NPs alone together with high Ca(OH)2NPs induced reactive oxygen species (ROS) generation and a slight CaTiO3NPs induced ROS production were highly decreased after simultaneous coadministration of administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs up to the negative control level. Oral administration of Y2O3NPs alone also did not cause observable changes in the genomic DNA integrity and the ROS generation level compared to the negative control levels. Similarly, significant elevations in P53 gene expression and high reductions in Kras and HSP-70 genes expression were observed only after administration of Ca(OH)2NPs alone, while, remarkable increases in the Kras and HSP-70 genes expression and non-significant changes in p53 gene expression were noticed after administration of CaTiO3NPs and Y2O3NPs separately or simultaneously together with Ca(OH)2NPs. Conclusion: Ca(OH)2NPs exhibited the highest genotoxic effect through oxidative stress induction and disruption of apoptotic (p53 and Kras) and protective (HSP-70) genes expression. Slight DNA damage was noticed after CaTiO3NPs administration. However, administration of Y2O3NPs alone was non-genotoxic and coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs restored genomic DNA integrity and normal expression of apoptotic p53 and protective HSP-70 genes disrupted by Ca(OH)2NPs and CaTiO3NPs. Thus co-administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs is recommended to counter Ca(OH)2NPs and CaTiO3NPs induced genotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department Faculty of Science, Cairo University, Giza, Egypt.
| | - Ahmed H Farouk
- Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
| | - Salma H Elbasiouni
- Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
| | - Kirolls A Nasif
- Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
| |
Collapse
|
4
|
Mundhe D, Mishra R, Basu S, Dalal S, Kumar S, Teni T. ΔNp63 overexpression promotes oral cancer cell migration through hyperactivated Activin A signaling. Exp Cell Res 2023; 431:113739. [PMID: 37567436 DOI: 10.1016/j.yexcr.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Oral cancer is a common malignant tumor of the oral cavity that affects many countries with a prevalent distribution in the Indian subcontinent, with poor prognosis rate on account of locoregional metastases. Gain-of-function mutations in p53 and overexpression of its related transcription factor, p63 are both widely reported events in oral cancers. However, targeting these alterations remains a far-achieved aim due to lack of knowledge on their downstream signaling pathways. In the present study, we characterize the isoforms of p63 and using knockdown strategy, decipher the functions and oncogenic signaling of p63 in oral cancers. Using Microarray and Chromatin Immunoprecipitation experiments, we decipher a novel transcriptional regulatory axis between p63 and Activin A and establish its functional significance in migration of oral cancer cells. Using an orally bioavailable inhibitor of the Activin A pathway to attenuate oral cancer cell migration and invasion, we further demonstrate the targetability of this signaling axis. Our study highlights the oncogenic role of ΔNp63 - Activin A - SMAD2/3 signaling and provides a basis for targeting this oncogenic pathway in oral cancers.
Collapse
Affiliation(s)
- Dhanashree Mundhe
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Rupa Mishra
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Srikanta Basu
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Sorab Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, AECS Layout, B-Block, Singasandra, Hosur Road, 851/A, Bengaluru, 560068, Karnataka, India; Department of AIML- Computer Science, School of Engineering, Dayananda Sagar University, Bengaluru, 560068, Karnataka, India
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India.
| |
Collapse
|
5
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Stabilization of CDK6 by ribosomal protein uS7, a target protein of the natural product fucoxanthinol. Commun Biol 2022; 5:564. [PMID: 35681048 PMCID: PMC9184650 DOI: 10.1038/s42003-022-03522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) regulate the cell cycle, which is important for cell proliferation and development. Cyclins bind to and activate CDKs, which then drive the cell cycle. The expression of cyclins periodically changes throughout the cell cycle, while that of CDKs remains constant. To elucidate the mechanisms underlying the constant expression of CDKs, we search for compounds that alter their expression and discover that the natural product fucoxanthinol downregulates CDK2, 4, and 6 expression. We then develop a method to immobilize a compound with a hydroxyl group onto FG beads® and identify human ribosomal protein uS7 (also known as ribosomal protein S5) as the major fucoxanthinol-binding protein using the beads and mass spectrometry. The knockdown of uS7 induces G1 cell cycle arrest with the downregulation of CDK6 in colon cancer cells. CDK6, but not CDK2 or CDK4, is degraded by the depletion of uS7, and we furthermore find that uS7 directly binds to CDK6. Fucoxanthinol decreases uS7 at the protein level in colon cancer cells. By identifying the binding proteins of a natural product, the present study reveals that ribosomal protein uS7 may contribute to the constant expression of CDK6 via a direct interaction. The natural product fucoxanthinol causes G1 arrest through decreasing the levels of ribosomal protein uS7, which directly binds and stabilises cyclin-dependent kinase 6.
Collapse
|
7
|
Man N, Jun Y. Two Mutations in TP53 Promotes Migration, Invasion, and Proliferation of Human Ovarian Cancer A2780 Cells. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420070091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Sa JK, Hwang JR, Cho YJ, Ryu JY, Choi JJ, Jeong SY, Kim J, Kim MS, Paik ES, Lee YY, Choi CH, Kim TJ, Kim BG, Bae DS, Lee Y, Her NG, Shin YJ, Cho HJ, Kim JY, Seo YJ, Koo H, Oh JW, Lee T, Kim HS, Song SY, Bae JS, Park WY, Han HD, Ahn HJ, Sood AK, Rabadan R, Lee JK, Nam DH, Lee JW. Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers. Genome Biol 2019; 20:253. [PMID: 31771620 PMCID: PMC6880425 DOI: 10.1186/s13059-019-1848-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Gynecologic malignancy is one of the leading causes of mortality in female adults worldwide. Comprehensive genomic analysis has revealed a list of molecular aberrations that are essential to tumorigenesis, progression, and metastasis of gynecologic tumors. However, targeting such alterations has frequently led to treatment failures due to underlying genomic complexity and simultaneous activation of various tumor cell survival pathway molecules. A compilation of molecular characterization of tumors with pharmacological drug response is the next step toward clinical application of patient-tailored treatment regimens. Results Toward this goal, we establish a library of 139 gynecologic tumors including epithelial ovarian cancers (EOCs), cervical, endometrial tumors, and uterine sarcomas that are genomically and/or pharmacologically annotated and explore dynamic pharmacogenomic associations against 37 molecularly targeted drugs. We discover lineage-specific drug sensitivities based on subcategorization of gynecologic tumors and identify TP53 mutation as a molecular determinant that elicits therapeutic response to poly (ADP-Ribose) polymerase (PARP) inhibitor. We further identify transcriptome expression of inhibitor of DNA biding 2 (ID2) as a potential predictive biomarker for treatment response to olaparib. Conclusions Together, our results demonstrate the potential utility of rapid drug screening combined with genomic profiling for precision treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Ryoung Hwang
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yoon Ryu
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Young Jeong
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- Department of Obstetrics and Gynecology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Myeong Seon Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - E Sun Paik
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae-Joong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Nam-Gu Her
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja Yeon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yun Jee Seo
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Harim Koo
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jeong-Woo Oh
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Taebum Lee
- Department of Pathology, Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Hyung Jun Ahn
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Anil K Sood
- Department of Gynecologic Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Jin-Ku Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Jeong-Won Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Van den Bossche J, Deben C, De Pauw I, Lambrechts H, Hermans C, Deschoolmeester V, Jacobs J, Specenier P, Pauwels P, Vermorken JB, Peeters M, Lardon F, Wouters A. In vitro study of the Polo-like kinase 1 inhibitor volasertib in non-small-cell lung cancer reveals a role for the tumor suppressor p53. Mol Oncol 2019; 13:1196-1213. [PMID: 30859681 PMCID: PMC6487694 DOI: 10.1002/1878-0261.12477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinase 1 (Plk1), a master regulator of mitosis and the DNA damage response, is considered to be an intriguing target in the research field of mitotic intervention. The observation that Plk1 is overexpressed in multiple human malignancies, including non-small-cell lung cancer (NSCLC), gave rise to the development of several small-molecule inhibitors. Volasertib, presently the most extensively studied Plk1 inhibitor, has been validated to efficiently reduce tumor growth in preclinical settings. Unfortunately, only modest antitumor activity against solid tumors was reported in clinical trials. This discrepancy prompted research into the identification of predictive biomarkers. In this study, we investigated the therapeutic effect of volasertib monotherapy (i.e., cytotoxicity, cell cycle distribution, apoptotic cell death, cellular senescence, and migration) in a panel of NSCLC cell lines differing in p53 status under both normal and reduced oxygen tension (<0.1% O2 ). A strong growth inhibitory effect was observed in p53 wild-type cells (A549 and A549-NTC), with IC50 values significantly lower than those in p53 knockdown/mutant cells (A549-920 and NCI-H1975) (P < 0.001). While mitotic arrest was significantly greater in cells with nonfunctional p53 (P < 0.005), apoptotic cell death (P < 0.026) and cellular senescence (P < 0.021) were predominantly induced in p53 wild-type cells. Overall, the therapeutic effect of volasertib was reduced under hypoxia (P < 0.050). Remarkably, volasertib inhibited cell migration in all cell lines tested (P < 0.040), with the exception of for the NCI-H1975 p53 mutant cell line. In conclusion, our results show an important difference in the therapeutic effect of Plk1 inhibition in NSCLC cells with versus without functional p53. Overall, the p53 wild-type cell lines were more sensitive to volasertib treatment, suggesting that p53 might be a predictive biomarker for Plk1 inhibition in NSCLC. Moreover, our results pave the way for new combination strategies with Plk1 inhibitors to enhance antitumor activity.
Collapse
Affiliation(s)
| | - Christophe Deben
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Ines De Pauw
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Christophe Hermans
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Julie Jacobs
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Pol Specenier
- Department of OncologyAntwerp University HospitalEdegemBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of OncologyAntwerp University HospitalEdegemBelgium
| | - Marc Peeters
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of OncologyAntwerp University HospitalEdegemBelgium
| | - Filip Lardon
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - An Wouters
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| |
Collapse
|
10
|
Olszewski MB, Pruszko M, Snaar-Jagalska E, Zylicz A, Zylicz M. Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness. Int J Oncol 2019; 54:1168-1182. [PMID: 30968154 PMCID: PMC6411346 DOI: 10.3892/ijo.2019.4723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Gain‑of‑function (GOF) mutations in the TP53 gene lead to acquisition of new functions by the mutated tumor suppressor p53 protein. A number of the over‑represented 'hot spot' mutations, including the ones in codons 175, 248 or 273, convey GOF phenotypes. Such phenotypes may include resistance to chemotherapeutics or changes in motility and invasiveness. Whereas the prevalent notion is that the acquisition of the p53 GOF phenotype translates into poorer prognosis for the patient, the analysis of a human somatic p53 mutations dataset demonstrated earlier tumor onset, but decreased frequency and altered location of metastases in patients with the p53‑R248Q allele. Therefore, the GOF activities of p53‑R248Q and p53‑D281G were analyzed in triple negative breast cancer MDA‑MB‑231 and lung adenocarcinoma H1299 cell lines with regard to invasive and metastatic traits. The expression of p53‑D281G increased the motility and invasiveness of the lung cancer cells, but not those of the breast cancer cells. In contrast, the expression of p53‑R248Q decreased the motility and invasiveness of the breast and lung cancer cells in a p53 transactivation‑dependent manner. The intravenous xenotransplantation of MDA‑MB‑231 cells expressing p53‑R248Q into zebrafish embryos resulted in an alteration of the distribution of cancer cells in the body of the fish. In p53‑R248Q‑expressing H1299 cells a decrease in the expression of TCF8/ZEB1 and N‑cadherin was observed, suggesting partial mesenchymal‑to‑epithelial transition. In the two cell lines expressing p53‑R248Q a decrease was noted in the expression of myosin light chain 2, a protein involved in actomyosin‑based motility. To the best of our knowledge, the present study is one of only few reports demonstrating the mutated p53 GOF activity resulting in a decrease of a malignant trait in human cancer.
Collapse
Affiliation(s)
- Maciej Boleslaw Olszewski
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland
| |
Collapse
|
11
|
Liu L, Yang L, Chang H, Chen YN, Zhang F, Feng S, Peng J, Ren CC, Zhang XA. CP‑31398 attenuates endometrial cancer cell invasion, metastasis and resistance to apoptosis by downregulating MDM2 expression. Int J Oncol 2019; 54:942-954. [PMID: 30628640 PMCID: PMC6365028 DOI: 10.3892/ijo.2019.4681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies of the female reproductive system, and metastasis is a major cause of mortality. In this study, we aimed to explore the role of CP-31398 in the migration, invasion and apoptosis of EC cells by its regulation of the expression of the murine double minute 2 (MDM2) gene. For this purpose, EC tissues and adjacent normal tissues were collected, and the positive expression rate of MDM2 in these tissues was assessed. Subsequently, the cellular 50% inhibitory concentration (IC50) of CP-31398 was measured. The EC RL95-2 and KLE cell lines had a higher MDM2 expression and were thus selected for use in subsequent experiments. The EC cells were then treated with CP-31398 (2 µg/ml), and were transfected with siRNA against MDM2 or an MDM2 overexpression plasmid in order to examine the effects of CP-31398 and MDM2 on EC cell activities. The expression of p53, p21, Bad, Bax, B-cell lymphoma-2 (Bcl-2), cytochrome c (Cyt-c), caspase-3, Cox-2, matrix metalloproteinase (MMP)-2 and MMP-9 was measured to further confirm the effects of CP-31398 on cell migration, invasion and apoptosis. Our results indicated that MDM2 was highly expressed in EC tissues. Notably, EC cell viability decreased with the increasing concentrations of CP-31398. The EC cells treated with CP-31398 or siRNA against MDM2 exhibited an increased apoptosis and a suppressed migration and invasion, corresponding to an increased expression of p53, p21, Bad, Bax, Cyt-c and caspase-3, as well as to a decreased expression of Bcl-2, Cox-2, MMP-2 and MMP-9. Moreover, treatment with CP-31398 and siRNA against MDM2 further enhanced these effects. Taken together, the findings of this study indicate that the CP-31398-mediated downregulation of MDM2 may suppress EC progression via its inhibitory role in EC cell migration, invasion and resistance to apoptosis. Therefore, treatment with CP-31398 may prove to be possible therapeutic strategy for EC.
Collapse
Affiliation(s)
- Ling Liu
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Yang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Chang
- Laboratory of Tumor Precision Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan-Nan Chen
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Zhang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuo Feng
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Peng
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
12
|
Hao XL, Han F, Zhang N, Chen HQ, Jiang X, Yin L, Liu WB, Wang DD, Chen JP, Cui ZH, Ao L, Cao J, Liu JY. TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell Death Differ 2018; 26:1235-1250. [PMID: 30254375 PMCID: PMC6748156 DOI: 10.1038/s41418-018-0202-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
The protein containing the C2 domain has been well documented for its essential roles in endocytosis, cellular metabolism and cancer. Tac2-N (TC2N) is a tandem C2 domain-containing protein, but its function, including its role in tumorigenesis, remains unknown. Here, we first identified TC2N as a novel oncogene in lung cancer. TC2N was preferentially upregulated in lung cancer tissues compared with adjacent normal lung tissues. High TC2N expression was significantly associated with poor outcome of lung cancer patients. Knockdown of TC2N markedly induces cell apoptosis and cell cycle arrest with repressing proliferation in vitro, and suppresses tumorigenicity in vivo, whereas overexpression of TC2N has the opposite effects both in vitro and in vivo. Using a combination of TCGA database and bioinformatics, we demonstrate that TC2N is involved in regulation of the p53 signaling pathway. Mechanistically, TC2N attenuates p53 signaling pathway through inhibiting Cdk5-induced phosphorylation of p53 via inducing Cdk5 degradation or disrupting the interaction between Cdk5 and p53. Moreover, the blockade of p53 attenuates the function of TC2N knockdown in the regulation of cell proliferation and apoptosis. In addition, downregulated TC2N is involved in the apoptosis of lung cancer cells induced by doxorubicin, leading to p53 pathway activation. Overall, these findings uncover a role for the p53 inactivator TC2N in regulating the proliferation and apoptosis of lung cancer cells. Our present study provides novel insights into the mechanism of tumorigenesis in lung cancer.
Collapse
Affiliation(s)
- Xiang-Lin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhi-Hong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Kang N, Wang Y, Guo S, Ou Y, Wang G, Chen J, Li D, Zhan Q. Mutant TP53 G245C and R273H promote cellular malignancy in esophageal squamous cell carcinoma. BMC Cell Biol 2018; 19:16. [PMID: 30126368 PMCID: PMC6102840 DOI: 10.1186/s12860-018-0167-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND TP53 gene mutations occur in more than 50% of human cancers and the vast majority of these mutations in human cancers are missense mutations, which broadly occur in DNA binding domain (DBD) (Amino acids 102-292) and mainly reside in six "hotspot" residues. TP53 G245C and R273H point mutations are two of the most frequent mutations in tumors and have been verified in several different cancers. In the previous study of the whole genome sequencing (WGS), we found some mutations of TP53 DBD in esophageal squamous cell carcinoma (ESCC) clinical samples. We focused on two high-frequent mutations TP53 p.G245C and TP53 p.R273H and investigated their oncogenic roles in ESCC cell lines, p53-defective cell lines H1299 and HCT116 p53-/-. RESULTS MTS and colony formation assays showed that mutant TP53 G245C and R273H increased cell vitality and proliferation. Flow cytometry results revealed inhibition of ultraviolet radiation (UV)- and ionizing radiation (IR)- induced apoptosis and disruption of TP53-mediated cell cycle arrest after UV, IR and Nocodazole treatment. Transwell assays indicated that mutant TP53 G245C and R273H enhanced cell migration and invasion abilities. Moreover, western blot revealed that they were able to suppress the expression of TP53 downstream genes in the process of apoptosis and cell cycle arrest induced by UV, which suggests that these two mutations can influence apoptosis and growth arrest might be due, at least in part, to down-regulate the expression of P21, GADD45α and PARP. CONCLUSIONS These results indicate that mutant TP53 G245C and R273H can lead to more aggressive phenotypes and enhance cancer cell malignancy, which further uncover TP53 function in carcinogenesis and might be useful in clinical diagnosis and therapy of TP53 mutant cancers.
Collapse
Affiliation(s)
- Nan Kang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
- Department of Pathology, Peking University People’s Hospital, Beijing, 100044 China
| | - Yu Wang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
| | - Shichao Guo
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
| | - Yunwei Ou
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
| | - Jie Chen
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing, 100021 China
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
14
|
Qin JJ, Li X, Hunt C, Wang W, Wang H, Zhang R. Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes Dis 2018; 5:204-219. [PMID: 30320185 PMCID: PMC6176154 DOI: 10.1016/j.gendis.2018.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
The p53 tumor suppressor plays a major role in controlling the initiation and development of cancer by regulating cell cycle arrest, apoptosis, senescence, and DNA repair. The MDM2 oncogene is a major negative regulator of p53 that inhibits the activity of p53 and reduces its protein stability. MDM2, p53, and the p53-MDM2 pathway represent well-documented targets for preventing and/or treating cancer. Natural products, especially those from medicinal and food plants, are a rich source for the discovery and development of novel therapeutic and preventive agents against human cancers. Many natural product-derived MDM2 inhibitors have shown potent efficacy against various human cancers. In contrast to synthetic small-molecule MDM2 inhibitors, the majority of which have been designed to inhibit MDM2-p53 binding and activate p53, many natural product inhibitors directly decrease MDM2 expression and/or MDM2 stability, exerting their anticancer activity in both p53-dependent and p53-independent manners. More recently, several natural products have been reported to target mutant p53 in cancer. Therefore, identification of natural products targeting MDM2, mutant p53, and the p53-MDM2 pathway can provide a promising strategy for the development of novel cancer chemopreventive and chemotherapeutic agents. In this review, we focus our discussion on the recent advances in the discovery and development of anticancer natural products that target the p53-MDM2 pathway, emphasizing several emerging issues, such as the efficacy, mechanism of action, and specificity of these natural products.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Courtney Hunt
- Center for Drug Discovery, University of Houston, Houston, TX, 77204, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
- Center for Drug Discovery, University of Houston, Houston, TX, 77204, USA
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
- Center for Drug Discovery, University of Houston, Houston, TX, 77204, USA
- Corresponding author. Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX, 77204, USA. Fax: +1 713 743 1229.
| |
Collapse
|
15
|
Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun 2018; 9:2024. [PMID: 29789628 PMCID: PMC5964252 DOI: 10.1038/s41467-018-04356-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models. T- and NK-cell lymphomas (TCL) are a group of lymphoid malignancies characterized by poor prognosis, but the absence of appropriate pre-clinical models has hampered the development of effective therapies. Here the authors establish several pre-clinical models and identify vulnerabilities that could be further exploited to treat patients afflicted by these diseases.
Collapse
|
16
|
Natarajan P, Gold NB, Bick AG, McLaughlin H, Kraft P, Rehm HL, Peloso GM, Wilson JG, Correa A, Seidman JG, Seidman CE, Kathiresan S, Green RC. Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Sci Transl Med 2017; 8:364ra151. [PMID: 27831900 DOI: 10.1126/scitranslmed.aag2367] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
In populations that have not been selected for family history of disease, it is unclear how commonly pathogenic variants (PVs) in disease-associated genes for rare Mendelian conditions are found and how often they are associated with clinical features of these conditions. We conducted independent, prospective analyses of participants in two community-based epidemiological studies to test the hypothesis that persons carrying PVs in any of 56 genes that lead to 24 dominantly inherited, actionable conditions are more likely to exhibit the clinical features of the corresponding diseases than those without PVs. Among 462 European American Framingham Heart Study (FHS) and 3223 African-American Jackson Heart Study (JHS) participants who were exome-sequenced, we identified and classified 642 and 4429 unique variants, respectively, in these 56 genes while blinded to clinical data. In the same participants, we ascertained related clinical features from the participants' clinical history of cancer and most recent echocardiograms, electrocardiograms, and lipid measurements, without knowledge of variant classification. PVs were found in 5 FHS (1.1%) and 31 JHS (1.0%) participants. Carriers of PVs were more likely than expected, on the basis of incidence in noncarriers, to have related clinical features in both FHS (80.0% versus 12.4%) and JHS (26.9% versus 5.4%), yielding standardized incidence ratios of 6.4 [95% confidence interval (CI), 1.7 to 16.5; P = 7 × 10-4) in FHS and 4.7 (95% CI, 1.9 to 9.7; P = 3 × 10-4) in JHS. Individuals unselected for family history who carry PVs in 56 genes for actionable conditions have an increased aggregated risk of developing clinical features associated with the corresponding diseases.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Human Genetic Research, Cardiovascular Research Center, and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nina B Gold
- Harvard Medical School, Boston, MA 02115, USA.,Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander G Bick
- Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather McLaughlin
- Harvard Medical School, Boston, MA 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
| | - Peter Kraft
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Heidi L Rehm
- Harvard Medical School, Boston, MA 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
| | - Gina M Peloso
- Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Adolfo Correa
- Departments of Pediatrics and Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jonathan G Seidman
- Harvard Medical School, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E Seidman
- Harvard Medical School, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sekar Kathiresan
- Center for Human Genetic Research, Cardiovascular Research Center, and Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Robert C Green
- Harvard Medical School, Boston, MA 02115, USA. .,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Partners HealthCare Personalized Medicine, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Fadare O, Parkash V. p53 aberrations in low grade endometrioid carcinoma of the endometrium with nodal metastases: possible insights on pathogenesis discerned from immunohistochemistry. Diagn Pathol 2017; 12:81. [PMID: 29137657 PMCID: PMC5686909 DOI: 10.1186/s13000-017-0668-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022] Open
Abstract
Background TP53 mutations are rarely identified in low grade endometrioid carcinoma of the endometrium, and their pathogenic significance in such tumors is evidenced by the fact that TP53 aberrations have been associated with reduced recurrence-free survival in this subset of tumors. However, TP53 aberrations may not always represent a driving molecular event in a given endometrial cancer with a mutation. In this case study, the immunophenotype of a distinctive low grade endometrioid adenocarcinoma with an unusual pattern of lymph node metastases is used to explore the possible roles for underlying TP53-related molecular events in its pathogenesis. Case presentation A low grade endometrioid carcinoma, 9 cm in greatest dimension, with 35% invasion of the myometrial wall thickness, focal lymphovascular invasion, and metastases to 2 of 16 pelvic lymph nodes, was diagnosed in a 52-year-old woman. The endometrial tumor showed a p53-mutation (aberrant)-type immunohistochemical pattern in 40% of the tumor, but the rest of the tumor, as well as the foci of myometrial and lymphovascular invasion, were p53-wild type. Both lymph nodes with metastatic disease showed a distinct biphasic pattern, comprised of both p53-wild type and p53-aberrant areas in tumoral foci that were spatially apposed but not intermixed. Most p53-aberrant areas (at both the lymph nodes and the endometrium) showed a higher mitotic index and increased atypia as compared to the p53-wild type areas; both showed squamous differentiation. The p53-aberrant areas at both locations were also p16-diffusely positive, vimentin-positive, and estrogen/progesterone receptor-positive, whereas the p53-wild type areas showed an identical immunophenotype with the exception of being p16-mosaic positive. All components of the tumor at both the primary and metastatic sites showed loss of MSH2 and MSH6 and retained MLH/PMS2 expression. Conclusions The presence of p53-mutant and wild-type areas in multiple lymph nodes, coupled with the absence of a p53-aberrant immunophenotype in the myometrium-invasive or lymphovascular-invasive portions of the tumor, argues against the possibility that the TP53 mutation in this tumor is a driving event in its pathogenesis, at least regarding the metastatic process. This case illustrates how routine immunohistochemistry can provide important insights into underlying molecular events in cancers, exemplifies an uncommon co-existence of DNA mismatch repair protein deficiency and p53-aberrant immunophenotype in low-grade endometrioid carcinoma, illustrates morphologic differences between p53-aberrant and p53-wild type areas within in the same tumor, and is an exemplar of the emerging theory that lymph node metastases of endometrial cancer may be comprised of different subclones of the primary tumor.
Collapse
Affiliation(s)
- Oluwole Fadare
- Department of Pathology, University of California San Diego Health, 9300 Campus Point Drive, Suite 1-200, MC 7723, La Jolla, CA, 92037, USA.
| | - Vinita Parkash
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Hauck PM, Wolf ER, Olivos DJ, Batuello CN, McElyea KC, McAtarsney CP, Cournoyer RM, Sandusky GE, Mayo LD. Early-Stage Metastasis Requires Mdm2 and Not p53 Gain of Function. Mol Cancer Res 2017; 15:1598-1607. [PMID: 28784612 DOI: 10.1158/1541-7786.mcr-17-0174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023]
Abstract
Metastasis of cancer cells to distant organ systems is a complex process that is initiated with the programming of cells in the primary tumor. The formation of distant metastatic foci is correlated with poor prognosis and limited effective treatment options. We and others have correlated Mouse double minute 2 (Mdm2) with metastasis; however, the mechanisms involved have not been elucidated. Here, it is reported that shRNA-mediated silencing of Mdm2 inhibits epithelial-mesenchymal transition (EMT) and cell migration. In vivo analysis demonstrates that silencing Mdm2 in both post-EMT and basal/triple-negative breast cancers resulted in decreased primary tumor vasculature, circulating tumor cells, and metastatic lung foci. Combined, these results demonstrate the importance of Mdm2 in orchestrating the initial stages of migration and metastasis.Implication: Mdm2 is the major factor in the initiation of metastasis. Mol Cancer Res; 15(11); 1598-607. ©2017 AACR.
Collapse
Affiliation(s)
- Paula M Hauck
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - Eric R Wolf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David J Olivos
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher N Batuello
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle C McElyea
- Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ciarán P McAtarsney
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - R Michael Cournoyer
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Suppression of iASPP-dependent aggressiveness in cervical cancer through reversal of methylation silencing of microRNA-124. Sci Rep 2016; 6:35480. [PMID: 27765948 PMCID: PMC5073231 DOI: 10.1038/srep35480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Derepression of wild-type p53 by suppressing its negative inhibitor iASPP (Inhibitor of apoptosis-stimulating protein of p53) represents a potential therapeutic option for cervical cancer (CC). Here, we reported a novel functional significance of iASPP upregulation in cervical tumorigenesis: iASPP acts as a key promoter of CC cell proliferation, epithelial-mesenchymal transition, invasion and cancer stemness, by interacting with p53 to suppress p53-mediated transcription of target genes and reducing p53-responsive microRNA-34a levels. Moreover, we demonstrate that miR-124, directly targeting iASPP, reduces expression of iASPP and attenuates CC cell growth and invasiveness. Low miR-124 expression is inversely correlated with increased expression of iASPP mRNA in CC tissues. In a cohort of 40 patients with CC, the low miR-124 expression was correlated with poor 5-year overall survival (P = 0.0002) and shorter disease-free survival 5-year (P = 0006). Treatment with the DNA methyltransferase inhibitor Zebularine increases miR-124 expression and retards CC cell growth and invasion with minimal toxicity to normal cells. Even at a non-toxic concentration, Zebularine was effective in suppressing CC cell invasion and migration. Altogether, the restoration of miR-124 reduces iASPP expression and leads to p53-dependent tumor suppression, suggesting a therapeutic strategy to treat iASPP-associated CC.
Collapse
|
20
|
Xue Z, Wen H, Wang C, Zhai L, Cheng A, Kou X. CPe-III-S Metabolism in Vitro and in Vivo and Molecular Simulation of Its Metabolites Using a p53-R273H Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7095-7103. [PMID: 27584867 DOI: 10.1021/acs.jafc.6b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It was previously found that CPe-III-S, synthesized according to the chickpea peptide CPe-III (RQSHFANAQP), exhibited an antiproliferative effect. The aim of this study was to investigate the antiproliferative mechanism of CPe-III-S. CPe-III-S was treated by pepsin and trypsin in a simulated gastrointestinal digestion environment as well as in an animal experiment. With HPLC-ESI-MS analysis, three peptide fragments of Ser-His, His-Phe, and Ala-Asn-Ala-Gln were identified. Ser-His was the only common product from both in vitro and in vivo environments. The specific bindings between three peptides and p53-R273H were performed by molecular docking, and the molecular dynamic simulation between Ser-His and p53-R273H revealed the stability of the binding complex. The binding free energy of the complex was -12.56 ± 1.03 kcal/mol with a reliable hydrogen bond between the ligand and Thr284 of p53. Ser-His may restore mutant p53-R273H activity or inhibit its binding with a downstream signal. This metabolite is a potential anticancer factor for suppressing cell proliferation.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Haichao Wen
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Cen Wang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Lijuan Zhai
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Aiqing Cheng
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|
21
|
Gadea G, Arsic N, Fernandes K, Diot A, Joruiz SM, Abdallah S, Meuray V, Vinot S, Anguille C, Remenyi J, Khoury MP, Quinlan PR, Purdie CA, Jordan LB, Fuller-Pace FV, de Toledo M, Cren M, Thompson AM, Bourdon JC, Roux P. TP53 drives invasion through expression of its Δ133p53β variant. eLife 2016; 5. [PMID: 27630122 PMCID: PMC5067115 DOI: 10.7554/elife.14734] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022] Open
Abstract
TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53β increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53β is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53β depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53β induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression. DOI:http://dx.doi.org/10.7554/eLife.14734.001 Most cancers are caused by a build-up of mutations that are acquired throughout life. One gene in particular, called TP53, is the most commonly mutated gene in many types of human cancers. This suggests that TP53 mutations play an important role in cancer development. It is widely considered that the TP53 gene normally stops tumors from forming, while mutant forms of the gene somehow promote cancer growth. Evidence from patients with cancer has shown, however, that the relationship between TP53 mutations and cancer is not that simple. Some very aggressive cancers that resist treatment and spread have a normal TP53 gene. Some cancers with a mutated gene do not spread and respond well to cancer treatments. Recent studies have shown that the normal TP53 gene produces many different versions of its protein, and that some of these naturally occurring forms are found more often in tumors that others. However, it was not clear if certain versions of TP53’s proteins contributed to the development of cancer. Now, Gadea, Arsic, Fernandes et al. show that Δ133p53β, one version of the protein produced by the TP53 gene in human cells, helps tumor cells to spread to other organs. Tests of 273 tumors taken from patients with breast cancer revealed that tumors with the Δ133p53β protein were more likely to spread. Patients with these Δ133p53β-containing tumors were also more likely to develop secondary tumors at other sites in the body and to die within five years. Next, a series of experiments showed that removing Δ133p53β from breast cancer cells grown in the laboratory made them less likely to invade, while adding it back had the opposite effect. The same thing happened in colon cancer cells grown in the laboratory. The experiments showed that Δ133p53β causes tumor cells with the normal TP53 gene or a mutated TP53 gene to spread to other organs. Together the new findings help explain why some aggressive cancers develop even with a normal version of the tumor-suppressing TP53 gene. They also help explain why not all cancers with a mutant version of the TP53 gene go on to spread. Future studies will be needed to determine whether drugs that prevent the production of the Δ133p53β protein can help to treat aggressive cancers. DOI:http://dx.doi.org/10.7554/eLife.14734.002
Collapse
Affiliation(s)
- Gilles Gadea
- CRBM, CNRS, Centre de Recherche de Biologie cellulaire de Montpellier, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Nikola Arsic
- CRBM, CNRS, Centre de Recherche de Biologie cellulaire de Montpellier, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Kenneth Fernandes
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Alexandra Diot
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sébastien M Joruiz
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Samer Abdallah
- CRBM, CNRS, Centre de Recherche de Biologie cellulaire de Montpellier, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Valerie Meuray
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Stéphanie Vinot
- CRBM, CNRS, Centre de Recherche de Biologie cellulaire de Montpellier, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Christelle Anguille
- CRBM, CNRS, Centre de Recherche de Biologie cellulaire de Montpellier, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Judit Remenyi
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Marie P Khoury
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Philip R Quinlan
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Colin A Purdie
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Lee B Jordan
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Marion de Toledo
- Université Montpellier, Montpellier, France.,CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Maïlys Cren
- Université Montpellier, Montpellier, France.,IRB, Institut de Recherche en Biothérapie, Montpellier, France
| | - Alastair M Thompson
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom.,Department of Surgical Oncology, MD Anderson Cancer Centre, Houston, United States
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Pierre Roux
- CRBM, CNRS, Centre de Recherche de Biologie cellulaire de Montpellier, Montpellier, France.,Université Montpellier, Montpellier, France
| |
Collapse
|
22
|
Shen Y, Zhang S, Huang X, Chen K, Shen J, Wang Z. Involvement of p53 mutation and mismatch repair proteins dysregulation in NNK-induced malignant transformation of human bronchial epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:920275. [PMID: 25215298 PMCID: PMC4151862 DOI: 10.1155/2014/920275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/27/2023]
Abstract
Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.
Collapse
Affiliation(s)
- Ying Shen
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou 310053, China
| | - Shuilian Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobin Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kailin Chen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Shen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengyang Wang
- Department of Pulmonology, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| |
Collapse
|
23
|
Li J, Yang L, Gaur S, Zhang K, Wu X, Yuan YC, Li H, Hu S, Weng Y, Yen Y. Mutants TP53 p.R273H and p.R273C but not p.R273G Enhance Cancer Cell Malignancy. Hum Mutat 2014; 35:575-84. [DOI: 10.1002/humu.22528] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/03/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Li
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Lixin Yang
- Departments of Molecular Pharmacology; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Shikha Gaur
- Departments of Molecular Pharmacology; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Keqiang Zhang
- Departments of Molecular Pharmacology; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Xiwei Wu
- Integrated Genomic Core; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Yate-Ching Yuan
- Bioinformatics Core Facility of Department of Molecular Medicine; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Hongzhi Li
- Bioinformatics Core Facility of Department of Molecular Medicine; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Shuya Hu
- Departments of Molecular Pharmacology; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
| | - Yaguang Weng
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Yun Yen
- Departments of Molecular Pharmacology; Beckman Research Institute of the City of Hope National Medical Center; Duarte California
- Taipei Medical University; 250 Wu-Hsing Street Taipei Taiwan
| |
Collapse
|
24
|
Ó hAinmhire E, Quartuccio SM, Cheng W, Ahmed RA, King SM, Burdette JE. Mutation or loss of p53 differentially modifies TGFβ action in ovarian cancer. PLoS One 2014; 9:e89553. [PMID: 24586866 PMCID: PMC3930740 DOI: 10.1371/journal.pone.0089553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological disease affecting women in the US. The Cancer Genome Atlas Network identified p53 mutations in 96% of high-grade serous ovarian carcinomas, demonstrating its critical role. Additionally, the Transforming Growth Factor Beta (TGFβ) pathway is dysfunctional in various malignancies, including ovarian cancer. This study investigated how expression of wild-type, mutant, or the absence of p53 alters ovarian cancer cell response to TGFβ signaling, as well as the response of the ovarian surface epithelium and the fallopian tube epithelium to TGFβ. Only ovarian cancer cells expressing wild-type p53 were growth inhibited by TGFβ, while ovarian cancer cells that were mutant or null p53 were not. TGFβ induced migration in p53 null SKOV3 cells, which was not observed in SKOV3 cells with stable expression of mutant p53 R273H. Knockdown of wild-type p53 in the OVCA 420 ovarian cancer cells enhanced cell migration in response to TGFβ. Increased protein expression of DKK1 and TMEPAI, two pro-invasive genes with enhanced expression in late stage metastatic ovarian cancer, was observed in p53 knockdown and null cells, while cells stably expressing mutant p53 demonstrated lower DKK1 and TMEPAI induction. Expression of mutant p53 or loss of p53 permit continued proliferation of ovarian cancer cell lines in the presence of TGFβ; however, cells expressing mutant p53 exhibit reduced migration and decreased protein levels of DKK1 and TMEPAI.
Collapse
Affiliation(s)
- Eoghainín Ó hAinmhire
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Suzanne M. Quartuccio
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Whay Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Roshan A. Ahmed
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shelby M. King
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Development of metastatic cancer is a complex series of events that includes genesis of tumor-related vascular and lymphatic systems, enhanced cellular motility, and the capacity to invade and survive at distant sites, as well as evasion of host defences. The wild-type p53 protein plays key roles in controlling these facets of tumor progression, and loss of normal p53 function can be sufficient to predispose tumor cells to gain metastatic properties. In contrast, dominant p53 mutants that have gained oncogenic functions can actively drive metastasis through a variety of mechanisms. This chapter aims to highlight these processes.
Collapse
Affiliation(s)
- W A Yeudall
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, 980566, Richmond, VA, 23298, USA,
| |
Collapse
|
26
|
Okal A, Mossalam M, Matissek KJ, Dixon AS, Moos PJ, Lim CS. A chimeric p53 evades mutant p53 transdominant inhibition in cancer cells. Mol Pharm 2013; 10:3922-33. [PMID: 23964676 DOI: 10.1021/mp400379c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because of the dominant negative effect of mutant p53, there has been limited success with wild-type (wt) p53 cancer gene therapy. Therefore, an alternative oligomerization domain for p53 was investigated to enhance the utility of p53 for gene therapy. The tetramerization domain of p53 was substituted with the coiled-coil (CC) domain from Bcr (breakpoint cluster region). Our p53 variant (p53-CC) maintains proper nuclear localization in breast cancer cells detected via fluorescence microscopy and shows a similar expression profile of p53 target genes as wt-p53. Additionally, similar tumor suppressor activities of p53-CC and wt-p53 were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), annexin-V, 7-aminoactinomycin D (7-AAD), and colony-forming assays. Furthermore, p53-CC was found to cause apoptosis in four different cancer cell lines, regardless of endogenous p53 status. Interestingly, the transcriptional activity of p53-CC was higher than wt-p53 in 3 different reporter gene assays. We hypothesized that the higher transcriptional activity of p53-CC over wt-p53 was due to the sequestration of wt-p53 by endogenous mutant p53 found in cancer cells. Co-immunoprecipitation revealed that wt-p53 does indeed interact with endogenous mutant p53 via its tetramerization domain, while p53-CC escapes this interaction. Therefore, we investigated the impact of the presence of a transdominant mutant p53 on tumor suppressor activities of wt-p53 and p53-CC. Overexpression of a potent mutant p53 along with wt-p53 or p53-CC revealed that, unlike wt-p53, p53-CC retains the same level of tumor suppressor activity. Finally, viral transduction of wt-p53 and p53-CC into a breast cancer cell line that harbors a tumor derived transdominant mutant p53 validated that p53-CC indeed evades sequestration and consequent transdominant inhibition by endogenous mutant p53.
Collapse
Affiliation(s)
- Abood Okal
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | | | | | | | |
Collapse
|
27
|
Onodera Y, Nam JM, Sabe H. Intracellular trafficking of integrins in cancer cells. Pharmacol Ther 2013; 140:1-9. [PMID: 23711790 DOI: 10.1016/j.pharmthera.2013.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 02/01/2023]
Abstract
Integrins are heterodimeric cell surface receptors, which principally mediate the interaction between cells and their extracellular microenvironments. Because of their pivotal roles in cancer proliferation, survival, invasion and metastasis, integrins have been recognized as promising targets for cancer treatment. As is the case with other receptors, the localization of integrins on the cell surface has provided opportunities to block their functions by various inhibitory monoclonal antibodies. A number of small molecule agents blocking integrin-ligand binding have also been established, and some such agents are currently on the market or in clinical trials for some diseases including cancer. This review exclusively focuses on another strategy for cancer therapy, which comes from the obligate localization of integrins on the cell surface; targeting the intracellular trafficking of integrins. A number of studies have shown the essential roles of integrin trafficking in hallmarks of cancer, such as activation of oncogenic signaling pathways as well as acquisition of invasiveness. Recent findings have shown that increased integrin recycling activity is associated with some types of gain-of-function mutations of p53, a common feature of diverse types of cancers, which also indicates that targeting integrin recycling could be widely applicable and effective against many cancers. We also discuss possible therapeutic contexts where integrin trafficking can be effectively targeted, and what molecular interfaces may hopefully be druggable.
Collapse
Affiliation(s)
- Yasuhito Onodera
- Department of Molecular Biology Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
28
|
Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system. PLoS One 2012; 7:e45684. [PMID: 23049838 PMCID: PMC3458110 DOI: 10.1371/journal.pone.0045684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 08/24/2012] [Indexed: 12/15/2022] Open
Abstract
Breast cancers with a basal-like gene signature are primarily triple-negative, frequently metastatic, and carry a poor prognosis. Basal-like breast cancers are enriched for markers of breast cancer stem cells as well as markers of epithelial-mesenchymal transition (EMT). While EMT is generally thought to be important in the process of metastasis, in vivo evidence of EMT in human disease remains rare. Here we report a novel model of human triple-negative breast cancer, the DKAT cell line, which was isolated from an aggressive, treatment-resistant triple-negative breast cancer that demonstrated morphological and biochemical evidence suggestive of phenotypic plasticity in the patient. The DKAT cell line displays a basal-like phenotype in vitro when cultured in serum-free media, and undergoes phenotypic changes consistent with EMT/MET in response to serum-containing media, a unique property among the breast cancer cell lines we tested. This EMT is marked by increased expression of the transcription factor Zeb1, and Zeb1 is required for the enhanced migratory ability of DKAT cells in the mesenchymal state. DKAT cells also express progenitor-cell markers, and single DKAT cells are able to generate tumorspheres containing both epithelial and mesenchymal cell types. In vivo, as few as ten DKAT cells are capable of forming xenograft tumors which display a range of epithelial and mesenchymal phenotypes. The DKAT model provides a novel model to study the molecular mechanisms regulating phenotypic plasticity and the aggressive biology of triple-negative breast cancers.
Collapse
|
29
|
Selective G2/M arrest in a p53Val135-transformed cell line induced by lithium is mediated through an intricate network of MAPK and β-catenin signaling pathways. Life Sci 2012; 91:312-21. [DOI: 10.1016/j.lfs.2012.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 06/19/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022]
|
30
|
Lin S, Yu L, Yang J, Liu Z, Karia B, Bishop AJR, Jackson J, Lozano G, Copland JA, Mu X, Sun B, Sun LZ. Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-β (TGF-β). J Biol Chem 2011; 286:44023-44034. [PMID: 22039050 DOI: 10.1074/jbc.m111.265397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biomarkers are lacking for identifying the switch of transforming growth factor-β (TGF-β) from tumor-suppressing to tumor-promoting. Mutated p53 (mp53) has been suggested to switch TGF-β to a tumor promoter. However, we found that mp53 does not always promote the oncogenic role of TGF-β. Here, we show that endogenous mp53 knockdown enhanced cell migration and phosphorylation of ERK in DU145 prostate cancer cells. Furthermore, ectopic expression of mp53 in p53-null PC-3 prostate cancer cells enhanced Smad-dependent signaling but inhibited TGF-β-induced cell migration by down-regulating activated ERK. Reactivation of ERK by the expression of its activator, MEK-1, restored TGF-β-induced cell migration. Because TGF-β is known to activate the MAPK/ERK pathway through direct phosphorylation of the adaptor protein ShcA and MAPK/ERK signaling is pivotal to tumor progression, we investigated whether ShcA contributed to mp53-induced ERK inhibition and the conversion of the role of TGF-β during carcinogenesis. We found that mp53 expression led to a decrease of phosphorylated p52ShcA/ERK levels and an increase of phosphorylated Smad levels in a panel of mp53-expressing cancer cell lines and in mammary glands and tumors from mp53 knock-in mice. By manipulating ShcA levels to regulate ERK and Smad signaling in human untransformed and cancer cell lines, we showed that the role of TGF-β in regulating anchorage-dependent and -independent growth and migration can be shifted between growth suppression and migration promotion. Thus, our results for the first time suggest that mp53 disrupts the role of ShcA in balancing the Smad-dependent and -independent signaling activity of TGF-β and that ShcA/ERK signaling is a major pathway regulating the tumor-promoting activity of TGF-β.
Collapse
Affiliation(s)
- Shu Lin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Lan Yu
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Junhua Yang
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Zhao Liu
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Bijal Karia
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229; Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Alexander J R Bishop
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229; Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas 78229; Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas 78229
| | - James Jackson
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Xiaoxin Mu
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229; Key Laboratory of Living Donor Liver Transplantation, First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210009
| | - Beicheng Sun
- Key Laboratory of Living Donor Liver Transplantation, First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210009
| | - Lu-Zhe Sun
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229; Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas 78229.
| |
Collapse
|
31
|
Monti P, Perfumo C, Bisio A, Ciribilli Y, Menichini P, Russo D, Umbach DM, Resnick MA, Inga A, Fronza G. Dominant-negative features of mutant TP53 in germline carriers have limited impact on cancer outcomes. Mol Cancer Res 2011; 9:271-9. [PMID: 21343334 DOI: 10.1158/1541-7786.mcr-10-0496] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Germline TP53 mutations result in cancer proneness syndromes known as Li-Fraumeni, Li-Fraumeni-like, and nonsyndromic predisposition with or without family history. To explore genotype/phenotype associations, we previously adopted a functional classification of all germline TP53 mutant alleles based on transactivation. Severe deficiency (SD) alleles were associated with more severe cancer proneness syndromes, and a larger number of tumors, compared with partial deficiency (PD) alleles. Because mutant p53 can exert dominant-negative (DN) effects, we addressed the relationship between DN and clinical manifestations. We reasoned that DN effects might be stronger in familial cancer cases associated with germline TP53 mutations, where mutant alleles coexist with the wild-type allele since conception. We examined 104 p53 mutant alleles with single amino acid substitutions described in the IARC germline database for (i) transactivation capability and (ii) capacity to reduce the activity of the wild-type allele (i.e., DN effect) using a quantitative yeast-based assay. The functional classifications of p53 alleles were then related to clinical variables. We confirmed that a classification based on transactivation alone can identify familial cancer cases with more severe clinical features. Classification based on DN effects allowed us to highlight similar associations but did not reveal distinct clinical subclasses of SD alleles, except for a correlation with tumor tissue prevalence. We conclude that in carriers of germline TP53 mutations transactivation-based classification of TP53 alleles appears more important for genotype/phenotype correlations than DN effects and that haplo-insufficiency of the TP53 gene is an important factor in cancer proneness in humans.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), Largo Rosanna Benzi, 10, Genova 16132, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schneider G, Krämer OH. NFκB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta Rev Cancer 2010; 1815:90-103. [PMID: 20951769 DOI: 10.1016/j.bbcan.2010.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/02/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
The transcription factors p53 and NFκB determine cellular fate and are involved in the pathogenesis of most-if not all-cancers. The crosstalk between these transcription factors becomes increasingly appreciated as an important mechanism operative during all stages of tumorigenesis, metastasis, and immunological surveillance. In this review, we summarize molecular mechanisms regulating cross-signaling between p53 and NFκB proteins and how dysregulated interactions between p53 and NFκB family members contribute to oncogenesis. We furthermore analyze how such signaling modules represent targets for the design of novel intervention strategies using established compounds and powerful combination therapies.
Collapse
Affiliation(s)
- Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Ismaninger Str. 22, D-81675 München, Germany
| | | |
Collapse
|
33
|
Abstract
In its wild-type form, p53 is a major tumor suppressor whose function is critical for protection against cancer. Many human tumors carry missense mutations in the TP53 gene, encoding p53. Typically, the affected tumor cells accumulate excessive amounts of the mutant p53 protein. Various lines of evidence indicate that, in addition to abrogating the tumor suppressor functions of wild-type p53, the common types of cancer-associated p53 mutations also endow the mutant protein with new activities that can contribute actively to various stages of tumor progression and to increased resistance to anticancer treatments. Collectively, these activities are referred to as mutant p53 gain-of-function. This article addresses the biological manifestations of mutant p53 gain-of-function, the underlying molecular mechanisms, and their possible clinical implications.
Collapse
Affiliation(s)
- Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| | | |
Collapse
|
34
|
Cho SJ, Chen X. Myosin VI is differentially regulated by DNA damage in p53- and cell type-dependent manners. J Biol Chem 2010; 285:27159-27166. [PMID: 20576604 DOI: 10.1074/jbc.m110.142117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VI is an unconventional motor protein and functions in a variety of intracellular processes such as cell migration, vesicular trafficking, and homeostasis of the Golgi complex. Previously, we found that myosin VI is up-regulated in RKO, LS174T, and H1299 cells by DNA damage in a p53-dependent manner and mediates the pro-survival function of p53. Here, we showed that the levels of myosin VI protein were markedly inhibited in MCF7 and LNCaP cells by topoisomerase I-II inhibitors. However, the levels of myosin VI transcript were decreased only by topoisomerase I inhibitors. We also found that the levels of myosin VI protein were markedly inhibited in MCF7 cells by wild-type p53 but not tumor-derived mutant p53. Surprisingly, we found that the level of myosin VI transcript was slightly increased instead of decreased in MCF7 cells by p53, suggesting that a mechanism other than transcriptional repression is involved. Additionally, we found that on the myosin VI promoter, the level of acetylated histone H3 was markedly decreased, whereas that of p53 and acetylated histone H4 was slightly increased in MCF7 cells upon treatment with topoisomerase I-II inhibitors. Finally, we showed that overexpression of myosin VI enhances, whereas knockdown of myosin VI decreases, DNA damage-induced stabilization of p53, and consequently, knockdown of myosin VI de-sensitizes MCF7 cells to DNA damage-induced apoptosis. Taken together, as a mediator of the p53 pro-survival pathway and a marker of malignancy in some tumors, differential regulation of myosin VI in various tumor cells by topoisomerase inhibitors dictates whether knockdown of myosin VI inhibits, rather than enhances, the susceptibility of tumor cells to some therapeutic agents, which might be explored for designing a proper therapeutic strategy.
Collapse
Affiliation(s)
- Seong Jun Cho
- Comparative Cancer Center, Department of Surgical and Radiological Sciences, University of California, Davis, California 95616
| | - Xinbin Chen
- Comparative Cancer Center, Department of Surgical and Radiological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
35
|
Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2:a000919. [PMID: 20516128 DOI: 10.1101/cshperspect.a000919] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Even 30 years after its discovery, the tumor suppressor protein p53 is still somewhat of an enigma. p53's intimate and multifaceted role in the cell cycle is mirrored in its equally complex structural biology that is being unraveled only slowly. Here, we discuss key structural aspects of p53 function and its inactivation by oncogenic mutations. Concerted action of folded and intrinsically disordered domains of the highly dynamic p53 protein provides binding promiscuity and specificity, allowing p53 to process a myriad of cellular signals to maintain the integrity of the human genome. Importantly, progress in elucidating the structural biology of p53 and its partner proteins has opened various avenues for structure-guided rescue of p53 function in tumors. These emerging anticancer strategies include targeting mutant-specific lesions on the surface of destabilized cancer mutants with small molecules and selective inhibition of p53's degradative pathways.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Centre for Protein Engineering, Hills Road, Cambridge, United Kingdom.
| | | |
Collapse
|
36
|
Dong P, Xu Z, Jia N, Li D, Feng Y. Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway. Mol Cancer 2009; 8:103. [PMID: 19917135 PMCID: PMC2779797 DOI: 10.1186/1476-4598-8-103] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/16/2009] [Indexed: 12/31/2022] Open
Abstract
Background p53 is the most commonly mutated tumor suppressor gene in human cancers. In addition to the loss of tumor suppression function and exertion of dominant-negative effects over the remaining wild-type protein, several p53 mutants can gain novel oncogenic functions (gain-of-function, GOF) that actively regulate cancer development and progression. In human endometrial cancer, p53 mutation is more often associated with aggressive nonendometrioid cancer. However, it was unknown if p53 mutants contributed to endometrial cancer progression through the GOF properties. Methods To clarify the relationship between expression of p53 GOF mutation (p53-R175H) and invasive potential of human endometrial cancer KLE cells, we tested the consequences of up-regulation and down-regulation of p53-R175H in KLE cells by inducing p53-R175H expression vector or suppressing the p53 gene with short hairpin RNA. Results We found that forced over-expression of p53-R175H significantly promoted cell migration and invasion, and induced activation of the epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Conversely, suppression of p53-R175H with short hairpin RNA significantly inhibited cell migration and invasion, and resulted in attenuation of EGFR/PI3K/AKT pathway. Conclusion These findings show for the first time that elevated expression of p53-R175H mutant may exert gain-of-function activity to activate the EGFR/PI3K/AKT pathway and thus may contribute to the invasive phenotype in endometrial cancer.
Collapse
Affiliation(s)
- Peixin Dong
- Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The tumor suppressor p53 is in equilibrium at cellular concentrations between dimers and tetramers. Oncogenic mutant p53 (mut) exerts a dominant-negative effect on co-expression of p53 wild-type (wt) and mut alleles in cancer cells. It is believed that wt and mut form hetero-tetramers of attenuated activity, via their tetramerization domains. Using electrospray mass spectrometry on isotopically labeled samples, we measured directly the composition and rates of formation of p53 complexes in the presence and absence of response element DNA. The dissociation of tetramers was unexpectedly very slow (t(1/2) = 40 min) at 37 degrees C, matched by slow association of dimers, which is approximately four times longer than the half-life of spontaneous denaturation of wt p53. On mixing wt tetramers with the oncogenic contact mutant R273H of low DNA affinity, we observed the same slow formation of only wt(4), wt(2)mut(2), and mut(4), in the ratio 1:2:1, on a cellular time scale. On mixing wt and mut with response element DNAs P21 and BAX, we observed only the complexes wt(4)xDNA, wt(2)mut(2)xDNA, and mut(4)xDNA, with relative dissociation constants 1:4:71 and 1:13:85, respectively, accounting for the dominant-negative effect by weakened affinity. p53 dimers assemble rapidly to tetramers on binding to response element DNA, initiated by the p53 DNA binding domains. The slow oligomerization of free p53, competing with spontaneous denaturation, has implications for the possible regulation of p53 by binding proteins and DNA that affect tetramerization kinetics as well as equilibria.
Collapse
|
38
|
Tu SP, Chi AL, Ai W, Takaishi S, Dubeykovskaya Z, Quante M, Fox JG, Wang TC. p53 inhibition of AP1-dependent TFF2 expression induces apoptosis and inhibits cell migration in gastric cancer cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G385-96. [PMID: 19541923 PMCID: PMC2724087 DOI: 10.1152/ajpgi.90620.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overexpression of trefoil factor 2 (TFF2) is associated with increased cell migration, resistance to apoptosis, and possibly increased gastric cancer invasion. Dysregulation of p53 is frequently observed in preneoplastic conditions of the stomach. Here, we investigated the effect of p53 on the expression and function of TFF2 in gastric cancer cell lines. Gene expression was determined by reverse transcription-polymerase chain reaction, and promoter activity was assessed by dual luciferase reporter assays. Apoptosis was detected by flow cytometry, and cell migration was evaluated by the Boyden chamber assay. Exogenous expression of p53 dose dependently inhibited endogenous TFF2 mRNA, protein, and promoter activity and resulted in induction of cell apoptosis and inhibition of cell migration. Downregulation of TFF2 by small interfering RNA sensitized gastric cancer cells to drug-induced p53-dependent apoptosis. Addition of human TFF2 peptide reversed p53-dependent apoptosis and inhibition of cell migration. The p53-responsive element was mapped to an AP-1-like cis-element at -182 bp upstream of the TFF2 transcription start site. Mutation of this AP-1-like element abrogated p53-mediated inhibition of TFF2 promoter activity. Gel shift and chromatin immunoprecipitation assays demonstrated that c-Jun and c-Fos bind to this AP-1-like element. Ectopic expression of c-Jun/c-Fos or p300 or treatment of cells with phorbol 12-myristate 13-acetate (PMA) stimulated endogenous TFF2 mRNA expression and promoter activity, and p53 inhibited the effects of AP-1 and PMA on TFF2. p53 induces cell apoptosis and inhibits cell migration in part by downregulating TFF2 expression through an AP-1-like site, suggesting that TFF2 may be an important downstream target of p53.
Collapse
Affiliation(s)
- Shui Ping Tu
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alfred L. Chi
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Walden Ai
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shigeo Takaishi
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zina Dubeykovskaya
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Quante
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G. Fox
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Timothy C. Wang
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
39
|
Lavra L, Ulivieri A, Rinaldo C, Dominici R, Volante M, Luciani E, Bartolazzi A, Frasca F, Soddu S, Sciacchitano S. Gal-3 is stimulated by gain-of-function p53 mutations and modulates chemoresistance in anaplastic thyroid carcinomas. J Pathol 2009; 218:66-75. [PMID: 19199318 DOI: 10.1002/path.2510] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Galectin-3 (Gal-3) is an anti-apoptotic molecule of the beta-galactoside-binding lectin family. Gal-3 is down-regulated by wt-p53 and this repression is required for p53-induced apoptosis. Since poorly differentiated thyroid carcinomas (PDTCs) and anaplastic thyroid carcinomas (ATCs) frequently harbour p53 mutations, we asked whether Gal-3 expression and activity could be influenced by such mutations in these tumours. We found a positive correlation between Gal-3 expression and p53 mutation in human thyroids and in thyroid carcinoma cell lines (TCCLs) harbouring different p53 mutations. Gal-3 was over-expressed in most ATCs and TCCLs, especially those with the most frequently detected p53 mutation (p53(R273H)). Over-expression of p53(R273H) in two p53-null cells (SAOS-2 and SW-1736) as well as in two wt-p53-carrying TCCLs (TPC-1 and K1), stimulated Gal-3 expression, while interference with p53(R273H) endogenous expression in ARO cells down-regulated Gal-3 expression. Conversely, over-expression of wt-p53 in ARO cells restored the inhibitory effect on Gal-3 expression. ARO cells are highly resistant to apoptosis and express both p53 and Gal-3, which are increased upon cisplatin treatment. Interference with Gal-3 expression in these cells stimulated their chemosensitivity. In conclusion, gain-of-function p53 mutant acquires the de novo ability to stimulate Gal-3 expression and to increase chemoresistance in ATCs.
Collapse
Affiliation(s)
- Luca Lavra
- S. Pietro Fatebenefratelli Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia 2008; 10:450-61. [PMID: 18472962 DOI: 10.1593/neo.08120] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/11/2008] [Accepted: 02/15/2008] [Indexed: 12/11/2022] Open
Abstract
Aberrations of p53 occur in most, if not all, human cancers. In breast cancer, p53 mutation is the most common genetic defect related to a single gene. Immortalized human mammary epithelial cells resemble the earliest forms of aberrant breast tissue growth but do not express many malignancy-associated phenotypes. We created a model of human mammary epithelial tumorigenesis by infecting hTERT-HME1 immortalized human mammary epithelial cells expressing wild-type p53 with four different mutant p53 constructs to determine the role of p53 mutation on the evolution of tumor phenotypes. We demonstrate that different mutant/wild-type p53 heterozygous models generate loss of function, dominant negative activity, and a spectrum of gain of function activities that induce varying degrees of invasive potential. We suggest that this model can be used to elucidate changes that occur in early stages of human mammary epithelial tumorigenesis. These changes may constitute novel biomarkers or reveal novel treatment modalities that could inhibit progression from primary to metastatic breast disease.
Collapse
|