1
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
2
|
The Anticancer Role of Cerium Oxide Nanoparticles by Inducing Antioxidant Activity in Esophageal Cancer and Cancer Stem-Like ESCC Spheres. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3268197. [PMID: 36506910 PMCID: PMC9731761 DOI: 10.1155/2022/3268197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
Introduction Esophagus squamous cell carcinoma (ESCC) has a poor prognosis, a high rate of metastasis, and rapid clinical progression. One hypothesis is that therapeutic failure is due to the presence of cancer stem cells (CSC). Previous studies showed the anticancer effect of cerium oxide nanoparticles (CNP) in different cancer cells. In this study, we aim to evaluate the effect of cerium oxide nanoparticles on cell antioxidants, toxicity, as well as cell oxidant level in esophageal cancer (YM1) and cancer stem cell-like (CSC-LC) cell lines. Method YM1 and CSC-LC spheres were treated with CNP at different concentrations. The cell viability was assessed by using the MTT test. Antioxidant levels (SOD (superoxide dismutase, CAT (catalase), thiol, and TAC (total antioxidant capacity)), antioxidant genes expression (SOD and CAT), ROS (reactive oxygen species), and MDA (malondialdehyde) levels were assessed in both cell lines. Results CSC-LC had significantly elevated SOX4 and OCT4 pluripotent genes. The ROS and MDA levels were significantly reduced in both YM1 and CSC-LC spheres after treatment with CNP. Also, the antioxidant levels and expressions were elevated significantly in both cell lines after CNP treatment. Conclusion These results suggest the potential anticancer effect of CNP by elevating antioxidant levels and expressions, and reducing oxidant levels.
Collapse
|
3
|
Development of an Organ-Directed Exosome-Based siRNA-Carrier Derived from Autologous Serum for Lung Metastases and Testing in the B16/BL6 Spontaneous Lung Metastasis Model. Pharmaceutics 2022; 14:pharmaceutics14040815. [PMID: 35456649 PMCID: PMC9025519 DOI: 10.3390/pharmaceutics14040815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Exosomes are nano-sized extracellular vesicles that are known to carry various messages to distant cells. It was recently reported that cancer-derived exosomes are orientated to metastatic organs. However, there are no reports on drug carrier development using autologous serum-derived exosomes in vivo. The purpose of this study was to deliver therapeutic siRNAs for melanoma lung metastases using autologous serum-derived exosomes. Primary tumors were induced by subcutaneously injecting melanoma cells into the hindlimbs of female C57BL/6 mice. Primary tumors were surgically removed on day 14. On day 21 after tumor removal, lung metastases were evaluated. Exosomes were isolated from serum collected from mice on days 0, 3, 7, 10, and 14 after primary tumor inoculation. After isolating serum exosomes, siRNA-loaded exosomes were prepared. siRNA-loaded exosomes were intravenously injected into the B16/BL6 spontaneous lung metastasis model mice on days 0, 3, 7, and 10 after tumor removal. siRNA-loaded exosomes prepared with autologous serum-derived exosomes significantly decreased the number of metastatic lung colonies. Autologous serum-derived exosomes, which have high organ accumulation, could potentially be used as efficient carriers of therapeutic siRNAs for melanoma patients with lung metastases.
Collapse
|
4
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
5
|
Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2018; 36:345-376. [PMID: 29431065 DOI: 10.1615/jenvironpatholtoxicoloncol.2017025229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been well established that environmental and occupational exposure to heavy metal causes cancer in several organs. Although the exact mechanism of heavy metal carcinogenesis remains elusive, metal-generated reactive oxygen species (ROS) are essential. ROS can play two roles in metal carcinogenesis; two stages in the process of metal carcinogenesis differ in the amounts of ROS activating a dual redox-mediated mechanism. In the early stage of metal carcinogenesis, ROS acts in an oncogenic role. However, in the late stage of metal carcinogenesis, ROS plays an antioncogenic role. Similarly, NF-E2-related factor 2 (Nrf2) also has two different roles, which makes it a key molecule for separating metal carcinogenesis into two different stages. In the early stage, inducible Nrf2 fights against elevated ROS to decrease cell transformation by its antioxidant protection property. In the late stage, constitutively activated Nrf2 manipulates reduced ROS to perform a comfortable environment for apoptosis resistance through an oncogenic role. Interestingly, a cunning carcinogenic mechanism takes advantage of the dual role of Nrf2 to implement the dual role of ROS through a series of redox adaption mechanisms. In this review, we discuss the paradox in the rationales behind the two opposite ROS roles and focus on their potential pharmacological application. The dual role of ROS represents a 'double-edged sword' with many possible novel ROS-mediated strategies in cancer therapy in metal carcinogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anesthesiology, Beijing Chao Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kortney Schumann
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish S, Arshad M. ROS-modulated therapeutic approaches in cancer treatment. J Cancer Res Clin Oncol 2017. [PMID: 28647857 DOI: 10.1007/s00432-017-2464-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Reactive oxygen species (ROS) are produced in cancer cells as a result of increased metabolic rate, dysfunction of mitochondria, elevated cell signaling, expression of oncogenes and increased peroxisome activities. Certain level of ROS is required by cancer cells, above or below which lead to cytotoxicity in cancer cells. This biochemical aspect can be exploited to develop novel therapeutic agents to preferentially and selectively target cancer cells. METHODS We searched various electronic databases including PubMed, Web of Science, and Google Scholar for peer-reviewed english-language articles. Selected articles ranging from research papers, clinical studies, and review articles on the ROS production in living systems, its role in cancer development and cancer treatment, and the role of microbiota in ROS-dependent cancer therapy were analyzed. RESULTS This review highlights oxidative stress in tumors, underlying mechanisms of different relationships of ROS and cancer cells, different ROS-mediated therapeutic strategies and the emerging role of microbiota in cancer therapy. CONCLUSION Cancer cells exhibit increased ROS stress and disturbed redox homeostasis which lead to ROS adaptations. ROS-dependent anticancer therapies including ROS scavenging anticancer therapy and ROS boosting anticancer therapy have shown promising results in vitro as well as in vivo. In addition, response to cancer therapy is modulated by the human microbiota which plays a critical role in systemic body functions.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan.
| | - Sami Siraj
- Institute of Basic Medical Sciences, Khyber Medical University (KMU), Peshawar, 25000, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan
| |
Collapse
|
7
|
Teke K, Ozkan TA, Cebeci OO, Yilmaz H, Keles ME, Ozkan L, Dillioglugil MO, Yildiz DK, Dillioglugil O. Preventive effect of intravesical ozone supplementation on n-methyl-n-nitrosourea-induced non-muscle invasive bladder cancer in male rats. Exp Anim 2017; 66:191-198. [PMID: 28228618 PMCID: PMC5543239 DOI: 10.1538/expanim.16-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although non-muscle invasive bladder cancer (NMIBC) is widely seen in men, most
laboratory studies of new intravesical therapies to prevent NMIBC have been conducted on
female animals. In addition, ozone (O3) has been shown to be a beneficial agent
as an intravesical application in the treatment of various disorders. In the current
study, we evaluated the immunohistopathological and oxidative-antioxidative effects of
intravesical O3 treatment on
n-methyl-n-nitrosourea (MNU)-induced NMIBC. Male
Wistar-Albino rats (n=51) were divided into four groups: sham (n=6), O3 only
(n=15), MNU only (n=15), and MNU+O3 (n=15). The MNU-only and MNU+O3
groups received MNU, and the O3-only group received saline every other week for
10 weeks. The MNU-only group received 1 ml saline in place of O3 treatment,
whereas the O3-only and MNU+O3 groups were treated with 1 ml 25
µg/ml O3 between the 7th and 12th weeks. Rat bladders were
collected in the 15th week for immunohistopathology and oxidant-antioxidant quantitation.
Oxidant-antioxidant parameters were determined by ELISA. Although all surviving rats in
the MNU-only group had preneoplastic (4/11, 36.4%) or neoplastic changes (7/11, 63.6%), a
completely normal urothelium was observed in 2 rats (2/12, 16.7%) in the
MNU+O3-group (P=0.478). More high-grade lesions were observed
in the MNU-only group (4/11, 36.4%) than in the MNU+O3 group (1/12, 8.3%)
(P=0.120). All oxidant-antioxidant parameters significantly increased
(P<0.05) in the O3-only group compared with the sham
group. However, only antioxidant superoxide dismutase was remarkably higher (178.9%,
P=0.060) in the MNU+O3 group compared with the MNU-only
group. This is the first methodologically and pathologically well-described male rat
orthotopic bladder carcinogenesis model with intravesical MNU and administration of
O3 in NMIBC.
Collapse
Affiliation(s)
- Kerem Teke
- Department of Urology, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| | - Tayyar A Ozkan
- Department of Urology, Derince Training and Research Hospital, İbnisina Mahallesi, SSK Hst., 41900 Derince/Kocaeli, Turkey
| | - Oguz O Cebeci
- Department of Urology, Derince Training and Research Hospital, İbnisina Mahallesi, SSK Hst., 41900 Derince/Kocaeli, Turkey
| | - Hasan Yilmaz
- Department of Urology, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| | - Muhammed E Keles
- Department of Biochemistry, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| | - Levend Ozkan
- Department of Urology, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| | - Meltem O Dillioglugil
- Department of Biochemistry, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| | - Demir K Yildiz
- Department of Pathology, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| | - Ozdal Dillioglugil
- Department of Urology, Kocaeli University School of Medicine, Eski İstanbul Yolu 10. Km., 41380, İzmit/Kocaeli, Turkey
| |
Collapse
|
8
|
Kang JI, Hong JY, Choi JS, Lee SK. Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells. Biomol Ther (Seoul) 2016; 24:320-7. [PMID: 27098859 PMCID: PMC4859796 DOI: 10.4062/biomolther.2015.145] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/02/2015] [Accepted: 12/29/2015] [Indexed: 01/28/2023] Open
Abstract
Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to 25 μM) of CBN induced apoptosis, and high concentration (50 μM) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.
Collapse
Affiliation(s)
- Ji In Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 46241, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015; 359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023]
Abstract
Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.
Collapse
Affiliation(s)
- Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Paolo N Catalano
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Regulating surgical oncotaxis to improve the outcomes in cancer patients. Surg Today 2013; 44:804-11. [PMID: 23736890 DOI: 10.1007/s00595-013-0627-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/30/2013] [Indexed: 01/16/2023]
Abstract
Excessive surgical stress and postoperative complications cause a storm of perioperative cytokine release, which has been shown to enhance tumor metastasis in experimental models. We have named this phenomenon "surgical oncotaxis". The mechanisms that underpin this process are thought to be excessive corticosteroid secretion, coagulopathy in the peripheral vasculature, immune suppression and excessive production of reactive oxygen species. Nuclear factor-kappa B (NFkB) activation plays a key role in these mechanisms. Minimally invasive surgical techniques should be used, and postoperative complications should be avoided whenever possible to lessen the impact of surgical oncotaxis. Furthermore, there may be a role for a small preoperative dose of corticosteroid or the use of free radical scavengers in the perioperative period. Recently, there has been a great deal of interest in omega-3 fatty acid, because it regulates NFkB activation. The use of multimodal treatments that regulate surgical oncotaxis may be as important as chemotherapy for determining the outcome of patients with cancer undergoing surgery.
Collapse
|
11
|
Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res 2013; 119:107-25. [PMID: 23870510 PMCID: PMC3950899 DOI: 10.1016/b978-0-12-407190-2.00003-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is a highly complex tissue composed of neoplastic and stromal cells. Carcinoma-associated fibroblasts (CAFs) are commonly found in the cancer stroma, where they promote tumor growth and enhance vascularity in the microenvironment. Upon exposure to oxidative stress, fibroblasts undergo activation to become myofibroblasts. These cells are highly mobile and contractile and often express numerous mesenchymal markers. CAF activation is irreversible, making them incapable of being removed by nemosis. In breast cancer, almost 80% of stromal fibroblasts acquire an activated phenotype that manifests by secretion of elevated levels of growth factors, cytokines, and metalloproteinases. They also produce hydrogen peroxide, which induces the generation of subsequent sets of activated fibroblasts and tumorigenic alterations in epithelial cells. While under oxidative stress, the tumor stroma releases high energy nutrients that fuel cancer cells and facilitate their growth and survival. This review describes how breast cancer progression is dependent upon oxidative stress activated stroma and proposes potential new therapeutic avenues.
Collapse
Affiliation(s)
- Agnieszka Jezierska-Drutel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carola A. Neumann
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee-Womens-Research Institute, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 2012; 16:1295-322. [PMID: 22117137 PMCID: PMC3324815 DOI: 10.1089/ars.2011.4414] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. RECENT ADVANCES ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. CRITICAL ISSUES These statements suggest both "upside" (cancer-suppressing) and "downside" (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. FUTURE DIRECTIONS the various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE Although oxidative stress is implicated in renal cell carcinoma pathogenesis, to our knowledge changes in oxidative stress parameters in patients who undergo surgery for renal cell carcinoma have not been studied previously. We investigated the status of oxidative stress in patients with renal cell carcinoma. MATERIALS AND METHODS Reactive oxygen species, nitric oxide and glutathione were measured in the blood of 68 patients with renal tumor and in 30 age matched normal controls. Levels were measured again 1 week, and 1 and 2 months postoperatively in patients who underwent surgery for renal cell carcinoma. Levels of superoxide dismutase, catalase and lipid peroxidation were measured in tumor tissue and in normal renal parenchyma in 51 patients with renal tumor. RESULTS Significantly increased reactive oxygen species and nitric oxide, and decreased glutathione were observed in patients with renal cell carcinoma compared to normal subjects and in patients with benign tumors. Superoxide dismutase and lipid peroxidation were increased and catalase was decreased in tumor tissue compared to normal renal tissue. Oxidative stress correlated with renal cell carcinoma grade and stage but decreased after curative resection. Patients with metastatic disease had persistently increased oxidative stress parameters. Antioxidant enzyme levels in benign tumor tissue were significantly higher than in renal cell carcinoma. CONCLUSIONS Patients with renal cell carcinoma have increased oxidative stress, which is effectively alleviated by curative resection. In patients with benign tumors antioxidant defense mechanisms maintain normal redox status.
Collapse
|
14
|
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 2011; 15:2867-908. [PMID: 21457107 DOI: 10.1089/ars.2010.3685] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Cellular redox homeostasis is the first line of defense against diverse stimuli and is crucial for various biological processes. Reactive oxygen species (ROS), byproducts of numerous cellular events, may serve in turn as signaling molecules to regulate cellular processes such as proliferation, differentiation, and apoptosis. However, when overproduced ROS fail to be scavenged by the antioxidant system, they may damage cellular components, giving rise to senescent, degenerative, or fatal lesions in cells. Accordingly, this review not only covers general mechanisms of ROS production under different conditions, but also focuses on various types of ROS-involved diseases, including atherosclerosis, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, and cancer. In addition, potentially therapeutic agents and approaches are reviewed in a relatively comprehensive manner. However, due to the complexity of ROS and their cellular impacts, we believe that the goal to design more effective approaches or agents may require a better understanding of mechanisms of ROS production, particularly their multifaceted impacts in disease at biochemical, molecular, genetic, and epigenetic levels. Thus, it requires additional tools of omics in systems biology to achieve such a goal. Antioxid. Redox Signal. 15, 2867-2908.
Collapse
Affiliation(s)
- Yuxing Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
15
|
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:423-67. [PMID: 22077552 DOI: 10.1146/annurev-pathol-011811-120856] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Caveolins are a family of membrane-bound scaffolding proteins that compartmentalize and negatively regulate signal transduction. Recent studies have implicated a loss of caveolin-1 (Cav-1) expression in the pathogenesis of human cancers. Loss of Cav-1 expression in cancer-associated fibroblasts results in an activated tumor microenvironment, thereby driving early tumor recurrence, metastasis, and poor clinical outcome in breast and prostate cancers. We describe various paracrine signaling mechanism(s) by which the loss of stromal Cav-1 promotes tumor progression, including fibrosis, extracellular matrix remodeling, and the metabolic/catabolic reprogramming of cancer-associated fibroblast, to fuel the growth of adjacent tumor cells. It appears that oxidative stress is the root cause of initiation of the loss of stromal Cav-1 via autophagy, which provides further impetus for the use of antioxidants in anticancer therapy. Finally, we discuss the functional role of Cav-1 in epithelial cancer cells.
Collapse
Affiliation(s)
- Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Erythroid Differentiation Regulator 1, an Interleukin 18-Regulated Gene, Acts as a Metastasis Suppressor in Melanoma. J Invest Dermatol 2011; 131:2096-104. [DOI: 10.1038/jid.2011.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Witkiewicz AK, Kline J, Queenan M, Brody JR, Tsirigos A, Bilal E, Pavlides S, Ertel A, Sotgia F, Lisanti MP. Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 2011; 10:1794-809. [PMID: 21521946 DOI: 10.4161/cc.10.11.15675] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Breast cancer progression and metastasis are driven by complex and reciprocal interactions, between epithelial cancer cells and their surrounding stromal microenvironment. We have previously shown that a loss of stromal Cav-1 expression is associated with an increased risk of early tumor recurrence, metastasis and decreased overall survival. To identify and characterize the signaling pathways that are activated in Cav-1 negative tumor stroma, we performed gene expression profiling using laser microdissected breast cancer-associated stroma. Tumor stroma was laser capture microdissected from 4 cases showing high stromal Cav-1 expression and 7 cases with loss of stromal Cav-1. Briefly, we identified 238 gene transcripts that were upregulated and 232 gene transcripts that were downregulated in the stroma of tumors showing a loss of Cav-1 expression (p ≤ 0.01 and fold-change ≥ 1.5). Gene set enrichment analysis (GSEA) revealed "stemness," inflammation, DNA damage, aging, oxidative stress, hypoxia, autophagy and mitochondrial dysfunction in the tumor stroma of patients lacking stromal Cav-1. Our findings are consistent with the recently proposed "Reverse Warburg Effect" and the "Autophagic Tumor Stroma Model of Cancer Metabolism." In these two complementary models, cancer cells induce oxidative stress in adjacent stromal cells, which then forces these stromal fibroblasts to undergo autophagy/mitophagy and aerobic glycolysis. This, in turn, produces recycled nutrients (lactate, ketones and glutamine) to feed anabolic cancer cells, which are undergoing oxidative mitochondrial metabolism. Our results are also consistent with previous biomarker studies showing that the increased expression of known autophagy markers (such as ATG16L and the cathepsins) in the tumor stroma is specifically associated with metastatic tumor progression and/or poor clinical outcome.
Collapse
|
18
|
Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 2011; 11:191. [PMID: 21605372 PMCID: PMC3123323 DOI: 10.1186/1471-2407-11-191] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential. METHODS Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined. RESULTS PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm2/cm2 of lung tissue compared with 1.3 mm2/cm2 of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for at least some of its downstream effects. CONCLUSION Targeting catalase within mitochondria of tumor cells and tumor stromal cells suppresses ROS-driven tumor progression and metastasis. Therefore, increasing the antioxidant capacity of the mitochondrial compartment could be a rational therapeutic approach for invasive breast cancer.
Collapse
Affiliation(s)
- Jorming Goh
- Department of Comparative Medicine University of Washington, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
dos Santos Montagner GFF, Sagrillo M, Machado MM, Almeida RC, Mostardeiro CP, Duarte MMMF, da Cruz IBM. Toxicological effects of ultraviolet radiation on lymphocyte cells with different manganese superoxide dismutase Ala16Val polymorphism genotypes. Toxicol In Vitro 2010; 24:1410-6. [PMID: 20417703 DOI: 10.1016/j.tiv.2010.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate whether there is a differential response of lymphocytes from healthy MnSOD genotype subjects to oxidative stress. We used UV radiation as a toxic agent due to its genotoxic effects associated with chromosome aberrations caused by breaks in the DNA strands. Cellular growth rate, cell viability, mitotic index, chromosomal instability and biomarkers of oxidative metabolism were analysed in lymphocyte cells from healthy adults with different Ala16Val MnSOD polymorphisms that produce tree genotypes: AA, VV and AV. We found a differential response to UV exposure in cultures of lymphocyte cells from Ala16Val genotype donors. In general, AA cell cultures presented higher viability and mitotic index and lower TBARS levels than VV and AV cells for both the control and UV exposure groups. However, when we compared the DNA damage among the three genotypes, AA lymphocyte cells presented the highest damage from UV exposure. These data suggest that the Ala16Val polymorphism affects the response of cellular oxidative metabolism in different ways.
Collapse
|
20
|
Joosse A, De Vries E, van Eijck CH, Eggermont AMM, Nijsten T, Coebergh JWW. Reactive oxygen species and melanoma: an explanation for gender differences in survival? Pigment Cell Melanoma Res 2010; 23:352-64. [PMID: 20218981 DOI: 10.1111/j.1755-148x.2010.00694.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epidemiological research consistently shows a female advantage in melanoma survival. So far, no definite candidate for the explanation of this phenomenon has emerged. We propose that gender differences in oxidative stress caused by radical oxygen species (ROS) underlie these survival differences. It is known that males express lower amounts of anti-oxidant enzymes, resulting in more oxidative stress than females. The primary melanoma environment is characterized by high ROS levels, from exogenous sources as well as ROS production within melanoma cells themselves. ROS are known to be able to promote metastasis through a wide variety of mechanisms. We hypothesize that the higher levels of ROS in men enhance selection of ROS-resistance in melanoma cells. Subsequently, ROS can stimulate the metastatic potential of melanoma cells. In addition, due to the lower anti-oxidant defenses in men, ROS produced by melanoma cells cause more damage to healthy tissues surrounding the tumor, further stimulating metastasis. Therefore, ROS may explain the observed differences between males and females in melanoma survival.
Collapse
Affiliation(s)
- Arjen Joosse
- Department of Public Health, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Bica CG, da Silva LLDM, Toscani NV, Zettler CG, Gottlieb MGDV, Alexandre COP, Graudenz MS, Mânica da Cruz IB. Polymorphism (ALA16VAL) correlates with regional lymph node status in breast cancer. ACTA ACUST UNITED AC 2010; 196:153-8. [PMID: 20082851 DOI: 10.1016/j.cancergencyto.2009.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/08/2009] [Accepted: 09/20/2009] [Indexed: 02/02/2023]
Abstract
We studied the possible association between Ala16Val manganese-dependent superoxide dismutase (MnSOD) gene genotypes and breast cancer lymph node status because previous investigations suggested an association between the AA genotype and breast cancer. We included 281 women (188 controls and 93 cases of invasive breast cancer with axillary lymph node metastasis (LN+) and without lymph node metastasis (LN-). DNA was extracted from paraffin-embedded tumor tissue or peripheral blood leukocytes, and MnSOD polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism techniques. In addition, the immunohistochemical profile (p53, Ki-67 and estrogen/progesterone receptors) was also compared between invasive breast cancer groups and different MnSOD genotypes. The frequency of the VV genotype was higher in the LN+ group than in the control and LN- groups (chi(2)=5.081, P=0.02). Subjects with LN+ breast cancer (LN+ group) showed a higher incidence of VV genotype carriers associated with positive Ki-67 marker. Subjects with LN+ breast cancer (LN+ group) showed a higher incidence of VV genotype carriers associated with negative p53 marker. Despite the fact that the AA genotype is well established as being associated with an increased risk of breast cancer, the VV genotype may be associated with a higher metastatic potential, suggesting that MnSOD imbalance is the condition associated with carcinogenesis.
Collapse
Affiliation(s)
- Claudia Giuliano Bica
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências Médicas de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev 2009; 61:319-26. [PMID: 19385054 DOI: 10.1016/j.addr.2009.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) have been suggested to be involved in a variety of human diseases. Catalase, an enzyme degrading hydrogen peroxide, can be used as a therapeutic agent for such diseases, but its successful application will depend on the distribution of the enzyme to the sites where ROS are generated. Chemical modification techniques have been used to control the tissue distribution of catalase, and delivery to hepatocytes (galactosylation), liver nonparenchymal cells (mannosylation or succinylation), kidney (cationization) and the blood pool (PEGylation) has been achieved. The effectiveness of catalase delivery has been demonstrated in animal models for hepatic ischemia/reperfusion injury, chemical-induced tissue injuries and tumor metastasis to the liver, lung and peritoneal organs. Significant inhibition was observed in the ROS-mediated oxidative tissue damages and ROS-mediated upregulation of expression of genes responsible for recruitment of inflammatory cells and for metastatic growth of tumor cells. Because oxygen plays a fundamental key role in our life and oxidative stress is implicated in a wide variety of human diseases, catalase delivery could have wide application in the near future.
Collapse
|