1
|
Yuan S, Gong Y, Chen R, Du J, Zhang H, Chen T. Chinese herbal formula QHF inhibits hepatocellular carcinoma metastasis via HGF/c-Met signaling pathway. Biomed Pharmacother 2020; 132:110867. [PMID: 33075668 DOI: 10.1016/j.biopha.2020.110867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors, and high recurrence and metastasis are the major obstacles to successful treatment of HCC. Traditional Chinese medicine has little known and unique advantages in the treatment of HCC. Previous studies have confirmed that Chinese herbal formula Qingrejiedu (clears away heat and toxins), Huoxuehuayu (promotes blood flow to remove stasis) and Fuzhengguben (strengthens healthy qi and root) (QHF) has a significant effect on patients with advanced HCC, improves the quality of life and prolongs the survival time of patients significantly. In this study, we investigated the effect of QHF on proliferation, migration and invasion of human high metastatic hepatocellular carcinoma cell line HCCLM3 and its underlying mechanism. The results from our in vitro experiments showed that QHF has the ability to inhibit the proliferation by inducing G2/M phase cell cycle arrest and induce apoptosis. Moreover, QHF can also inhibit migration and invasion of HCCLM3 cells and the expression of the p-c-Met protein in HCCLM3 cells was down-regulated. c-Met is closely related to the metastasis of HCC, then we constructed a stable transfected cell line HepG2-met with high expression of c-Met by transfection. Further study in vivo revealed that c-Met gene will promote the growth of tumors and lung metastases in nude mice, and QHF intervention can reduce tumor lung metastases by inhibiting the HGF/c-Met signaling pathway. In conclusion, our study reveals that QHF can inhibit the proliferation, migration and invasion of HCCLM3, and this effect may be related to inhibiting HGF/c-Met signaling pathway.
Collapse
Affiliation(s)
- Shenjun Yuan
- College of Medical Science, China Three Gorges University, Yichang, 443002, China; Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yuyuan Gong
- College of Medical Science, China Three Gorges University, Yichang, 443002, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Ruobing Chen
- College of Medical Science, China Three Gorges University, Yichang, 443002, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Juan Du
- College of Medical Science, China Three Gorges University, Yichang, 443002, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Hongfeng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Tao Chen
- College of Medical Science, China Three Gorges University, Yichang, 443002, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Jabbarpour Z, Kiani J, Keshtkar S, Saidijam M, Ghahremani MH, Ahmadbeigi N. Effects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell lines. J Cell Biochem 2019; 121:1362-1373. [PMID: 31595570 DOI: 10.1002/jcb.29371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Poor prognosis and low survival are commonly seen in patients with glioblastoma multiforme (GBM). Due to the specific nature of solid tumors such as GBM, delivery of therapeutic agents to the tumor sites is difficult. So, one of the major challenges in the treatment of these tumors is a selection of appropriate method for drug delivery. Mesenchymal stem cells (MSCs) have a unique characteristic in migration toward the tumor tissue. In this regard, the present study examined the antitumor effects of manipulating human placenta-derived mesenchymal stem cells (PDMSCs) with NK4 expression (PDMSC-NK4) on GBM cells. After separation and characterization of PDMSCs, these cells were transduced with NK4 which was known as the antagonist of hepatocyte growth factor (HGF). The results indicated that engineered PDMSCs preferably migrate into GBM cells by transwell coculture system. In addition, the proliferation of the GBM cells significantly reduced after coculture with these cells. In fact, manipulated PDMSCs inhibited growth of tumor cells by induction of apoptosis. Our findings suggested that besides having antitumor effects, PDMSCs can also be applied as an ideal cellular vehicle to target the glioblastoma multiforme.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Keshtkar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad H Ghahremani
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
4
|
Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge. Cancers (Basel) 2015; 7:1785-805. [PMID: 26404380 PMCID: PMC4586794 DOI: 10.3390/cancers7030861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.
Collapse
|
5
|
Zhu Y, Cheng M, Yang Z, Zeng CY, Chen J, Xie Y, Luo SW, Zhang KH, Zhou SF, Lu NH. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts. Drug Des Devel Ther 2014; 8:2449-62. [PMID: 25525335 PMCID: PMC4267519 DOI: 10.2147/dddt.s71466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met) which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP). Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS), MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor tissues after systemic injection. The microvessel density of tumor xenografts was decreased, and tumor cellular apoptosis was significantly induced in the mice treated with MSCs-NK4 compared to control mice. These findings demonstrate that MSC-based NK4 gene therapy can obviously inhibit the growth of gastric cancer xenografts, and MSCs are a better vehicle for NK4 gene therapy than lentiviral vectors. Further studies are warranted to explore the efficacy and safety of the MSC-based NK4 gene therapy in animals and cancer patients.
Collapse
Affiliation(s)
- Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Ming Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Zhen Yang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Chun-Yan Zeng
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Jiang Chen
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Yong Xie
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Shi-Wen Luo
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Kun-He Zhang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| |
Collapse
|
6
|
Mizuno S, Nakamura T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 2013; 14:888-919. [PMID: 23296269 PMCID: PMC3565297 DOI: 10.3390/ijms14010888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor (HGF) was discovered in 1984 as a mitogen of rat hepatocytes in a primary culture system. In the mid-1980s, MET was identified as an oncogenic mutant protein that induces malignant phenotypes in a human cell line. In the early 1990s, wild-type MET was shown to be a functional receptor of HGF. Indeed, HGF exerts multiple functions, such as proliferation, morphogenesis and anti-apoptosis, in various cells via MET tyrosine kinase phosphorylation. During the past 20 years, we have accumulated evidence that HGF is an essential conductor for embryogenesis and tissue regeneration in various types of organs. Furthermore, we found in the mid-1990s that stroma-derived HGF is a major contributor to cancer invasion at least in vitro. Based on this background, we prepared NK4 as an antagonist of HGF: NK4 inhibits HGF-mediated MET tyrosine phosphorylation by competing with HGF for binding to MET. In vivo, NK4 treatments produced the anti-tumor outcomes in mice bearing distinct types of malignant cancers, associated with the loss in MET activation. There are now numerous reports showing that HGF-antagonists and MET-inhibitors are logical for inhibiting tumor growth and metastasis. Additionally, NK4 exerts anti-angiogenic effects, partly through perlecan-dependent cascades. This paper focuses on the chronology and significance of HGF-antagonisms in anti-tumor researches, with an interest in NK4 discovery. Tumor HGF–MET axis is now critical for drug resistance and cancer stem cell maintenance. Thus, oncologists cannot ignore this cascade for the future success of anti-metastatic therapy.
Collapse
Affiliation(s)
- Shinya Mizuno
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2-B7 Yamadaoka, Suita 565-0871, Japan; E-Mail:
| | - Toshikazu Nakamura
- Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-6-6879-4130
| |
Collapse
|
7
|
Matsumura A, Kubota T, Taiyoh H, Fujiwara H, Okamoto K, Ichikawa D, Shiozaki A, Komatsu S, Nakanishi M, Kuriu Y, Murayama Y, Ikoma H, Ochiai T, Kokuba Y, Nakamura T, Matsumoto K, Otsuji E. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. Int J Oncol 2012; 42:535-42. [PMID: 23233163 DOI: 10.3892/ijo.2012.1728] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/09/2012] [Indexed: 11/06/2022] Open
Abstract
In the present study, we assessed the involvement of hepatocyte growth factor (HGF)/c-Met signalling with vascular endothelial cell growth factor (VEGF) and hypoxia inducible factor (HIF)-1α expression in the downstream pathways phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) in CT26 cells, to determine the mechanisms of the potent anti-angiogenic effect of NK4. We established genetically modified CT26 cells to produce NK4 (CT26-NK4). VEGF expression in subcutaneous CT26 tumours in vivo and in culture supernatants in vitro was determined by ELISA. HIF-1α expression in nuclear extracts was evaluated by western blot analysis. VEGF and HIF-1α mRNA levels were examined by real-time reverse transcription-polymerase chain reaction (RT-PCR). The DNA binding activity of HIF-1α was evaluated using an HIF-1α transcription factor assay kit. Our results demonstrated that VEGF expression was reduced in homografts of CT26-NK4 cells, compared to those of the control cells. In vitro, VEGF expression, which was induced by HGF, was inhibited by anti-HGF antibody, NK4 and by kinase inhibitors (PI3K, LY294002; MAPK, PD98059; and STAT3, Stattic). HGF‑induced HIF‑1α transcriptional activity was also inhibited by the kinase inhibitors. Real-time RT-PCR demonstrated that HGF‑induced HIF‑1α mRNA expression was not inhibited by LY294002 and PD98059, but was inhibited by Stattic. These data suggest that the PI3K/Akt, MAPK and STAT3 pathways, downstream of HGF/c‑Met signalling, are involved in the regulation of VEGF expression in CT26 cells. HGF/c‑Met signalling may be a promising target for anti-angiogenic strategies.
Collapse
Affiliation(s)
- Atsushi Matsumura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Teicher BA. Antiangiogenic agents and targets: A perspective. Biochem Pharmacol 2011; 81:6-12. [DOI: 10.1016/j.bcp.2010.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 12/18/2022]
|