1
|
Mao C, Zhang J, Yang C, Mei L, Feng Y, Dai F, Huang Y, Xiao H, Deng B. BCAR1 facilitates the survival of lung adenocarcinoma cells by augmenting the unfolded protein response, autophagy, and the formation of vasculogenic mimicry. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167558. [PMID: 39488300 DOI: 10.1016/j.bbadis.2024.167558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Our objective was to elucidate the pivotal roles of BCAR1 in unfolded protein response (UPR), autophagy and vasculogenic mimicry (VM) formation, processes that essential for the metastasis of lung adenocarcinoma (LUAD) cells. METHODS The morphological assessment of endoplasmic reticulum (ER) status and autolysosomes in H1975 and H1299 LUAD cells following BCAR1 knockout (KO) was conducted using transmission electron microscope. The expression of markers and cellular functions related to the UPR, autophagy, and VM formation were examined in LUAD cells tissues. Additionally, proteomic analysis of LUAD cells was performed via mass spectrometry, and the pertinent signaling pathways were analyzed using bioinformatics tools. RESULTS BCAR1-KO inhibited autophagy and UPR induced triggered starvation in LUAD cells. Cleaved-ATF6a-mediated UPR and subsequent autophagy, enhanced by BCAR1, were confirmed using the UPR stimulator and blocker. High BCAR1 expression, along with elevated UPR and autophagy, predicts poor prognosis in LUAD patients. BCAR1-KO reduced tube formation and VM markers expressions in LUAD cells. Additionally, BCAR1 expression positively correlated with VM formation in BALB/c-nu mice xenografts and LUAD patient tissues. CONCLUSION BCAR1 promotes LUAD metastasis by enhancing cancer cell survival in nutrient-poor environments through ATF6-mediated UPR activation and autophagy. As BCAR1 induces VM formation, metastatic lesions eventually colonize. Thus, BCAR1 is a promising anti-metastasis target.
Collapse
Affiliation(s)
- Chengyi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jingge Zhang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chuan Yang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Longyong Mei
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yonggeng Feng
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fuqiang Dai
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China.
| | - Hualiang Xiao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Bo Deng
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Wang Y, Song J, Zheng S, Wang S. Advancements in understanding the molecular mechanisms and clinical implications of Von Hippel-Lindau syndrome: A comprehensive review. Transl Oncol 2025; 51:102193. [PMID: 39571489 PMCID: PMC11617254 DOI: 10.1016/j.tranon.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024] Open
Abstract
Von Hippel-Lindau Syndrome (VHL) is a rare genetic disorder characterized by tumors in multiple organs, including the kidneys, pancreas, and central nervous system. This comprehensive review discusses the genetic basis and clinical manifestations of VHL, as well as recent advancements in understanding the molecular mechanisms that lead to tumor formation. The authors highlight the role of hypoxia-inducible factors and the ubiquitin-proteasome system in VHL-associated cancer development .The review also discusses the potential clinical implications of these findings, such as the development of targeted therapies for VHL-associated cancers. However, the authors note the challenges associated with developing effective treatments for this complex disease, including limited patient availability for clinical trials due to its rarity .Overall, this review provides valuable insights into our current understanding of VHL and offers important avenues for future research aimed at improving the diagnosis, treatment, and management of VHL patients. By illuminating the molecular underpinnings of VHL-associated cancers, this work may ultimately help to develop more effective treatments and improve outcomes for patients with this challenging disease.
Collapse
Affiliation(s)
- Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Jingzhuo Song
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuxing Zheng
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuhong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
3
|
Jia W, Czabanka M, Broggini T. Cell blebbing novel therapeutic possibilities to counter metastasis. Clin Exp Metastasis 2024; 41:817-828. [PMID: 39222238 PMCID: PMC11607095 DOI: 10.1007/s10585-024-10308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cells constantly reshape there plasma membrane and cytoskeleton during physiological and pathological processes (Hagmann et al. in J Cell Biochem 73:488-499, 1999). Cell blebbing, the formation of bulges or protrusions on the cell membrane, is related to mechanical stress, changes in intracellular pressure, chemical signals, or genetic anomalies. These membrane bulges interfere with the force balance of actin filaments, microtubules, and intermediate filaments, the basic components of the cytoskeleton (Charras in J Microsc 231:466-478, 2008). In the past, these blebs with circular structures were considered apoptotic markers (Blaser et al. in Dev Cell 11:613-627, 2006). Cell blebbing activates phagocytes and promotes the rapid removal of intrinsic compartments. However, recent studies have revealed that blebbing is associated with dynamic cell reorganization and alters the movement of cells in-vivo and in-vitro (Charras and Paluch in Nat Rev Mol Cell Biol 9:730-736, 2008). During tumor progression, blebbing promotes invasion of cancer cells into blood, and lymphatic vessels, facilitating tumor progression and metastasis (Weems et al. in Nature 615:517-525, 2023). Blebbing is a dominant feature of tumor cells generally absent in normal cells. Restricting tumor blebbing reduces anoikis resistance (survival in suspension) (Weems et al. in Nature 615:517-525, 2023). Hence, therapeutic intervention with targeting blebbing could be highly selective for proliferating pro-metastatic tumor cells, providing a novel therapeutic pathway for tumor metastasis with minimal side effects. Here, we review the association between cell blebbing and tumor cells, to uncover new research directions and strategies for metastatic cancer therapy. Finaly, we aim to identify the druggable targets of metastatic cancer in relation to cell blebbing.
Collapse
Affiliation(s)
- Weiyi Jia
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
4
|
García-Chamé M, Wadhwani P, Pfeifer J, Schepers U, Niemeyer CM, Domínguez CM. A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami-Cell Interactions. Angew Chem Int Ed Engl 2024; 63:e202318805. [PMID: 38687094 DOI: 10.1002/anie.202318805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Miguel García-Chamé
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 2 (IBG 2), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juliana Pfeifer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carmen M Domínguez
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Tseng YT, Tsai CC, Chen PC, Lin BY, Hsu SCN, Huang SP, Huang B. Mechanical shear flow regulates the malignancy of colorectal cancer cells. Kaohsiung J Med Sci 2024; 40:650-659. [PMID: 38757734 DOI: 10.1002/kjm2.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Colorectal cancer (CRC) is notable for its high mortality and high metastatic characteristics. The shear force generated by bloodstream provides mechanical signals regulating multiple responses of cells, including metastatic cancer cells, dispersing in blood vessels. We, therefore, studied the effect of shear flow on circulating CRC cells in the present study. The CRC cell line SW620 was subjected to shear flow of 12.5 dynes/cm2 for 1 and 2 h separately. Resulting elevated caspase-9 and -3 indicated that shear flow initiated the apoptosis of SW620. Enlarged cell size associated with a higher level of cyclin D1 was coincident with the flow cytometric results indicating that the cell cycle was arrested at the G1 phase. An elevated phosphor-eNOSS1177 increased the production of nitric oxide and led to reactive oxygen species-mediated oxidative stress. Shear flow also regulated epithelial-mesenchymal transition (EMT) by increasing E-cadherin and ZO-1 while decreasing Snail and Twist1. The migration and invasion of sheared SW620 were also substantially decreased. Further investigations showed that mitochondrial membrane potential was significantly decreased, whereas mitochondrial mass and ATP production were not changed. In addition to the shear flow of 12.5 dynes/cm2, the expressions of EMT were compared at lower (6.25 dynes/cm2) and at higher (25 dynes/cm2) shear flow. The results showed that lower shear flow increased mesenchymal characteristics and higher shear flow increased epithelial characteristics. Shear flow reduces the malignancy of CRC in their metastatic dispersal that opens up new ways to improve cancer therapies by applying a mechanical shear flow device.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chung Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ping-Chen Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bo-Yan Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Zhou J, Lan F, Liu M, Wang F, Ning X, Yang H, Sun H. Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis. Front Pharmacol 2024; 15:1350187. [PMID: 38327979 PMCID: PMC10847273 DOI: 10.3389/fphar.2024.1350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Osteosarcoma (OS) is a malignant tumor originating from mesenchymal tissue. Pulmonary metastasis is usually present upon initial diagnosis, and metastasis is the primary factor affecting the poor prognosis of patients with OS. Current research shows that the ability to regulate the cellular microenvironment is essential for preventing the distant metastasis of OS, and anoxic microenvironments are important features of solid tumors. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) expression levels and stability increase. Increased HIF-1α promotes tumor vascular remodeling, epithelial-mesenchymal transformation (EMT), and OS cells invasiveness; this leads to distant metastasis of OS cells. HIF-1α plays an essential role in the mechanisms of OS metastasis. In order to develop precise prognostic indicators and potential therapeutic targets for OS treatment, this review examines the molecular mechanisms of HIF-1α in the distant metastasis of OS cells; the signal transduction pathways mediated by HIF-1α are also discussed.
Collapse
Affiliation(s)
- Jianghu Zhou
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengjun Lan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengyan Wang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
冯 唐, 杨 欣, 王 琦, 刘 肖. [Hepatocellular Carcinoma-Derived Exosomes: Key Players in Intercellular Communication Within the Tumor Microenvironment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:6-12. [PMID: 38322525 PMCID: PMC10839483 DOI: 10.12182/20240160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Due to the insidious onset and rapid progression and a lack of effective treatments, the prognosis of patients with HCC is extremely poor, with the average 5-year survival rate being less than 10%. The tumor microenvironment (TME), the internal environment in which HCC develops, can regulate the oncogenesis, development, invasion, and metastasis of HCC. During the process of cancer progression, HCC cells can regulate the biological behaviors of tumor cells, cancer-associated fibroblasts, cancer-associated immune cells, and other cells in the TME by releasing exosomes containing specific signals, thereby promoting cancer progression. However, the exact molecular mechanisms and the roles of exosomes in the specific cellular regulation of these processes are not fully understood. Herein, we summarized the TME components of HCC, the sources and the biological traits of exosomes in the TME, and the impact of mechanical factors on exosomes. In addition, special attention was given to the discussion of the effects of HCC-exosomes on different types of cells in the microenvironment. There are still many difficulties to be overcome before exosomes can be applied as carriers in clinical cancer treatment. First of all, the homogeneity of exosomes is difficult to ensure. Secondly, exosomes are mainly administered through subcutaneous injection. Although this method is simple and easy to implement, the absorption efficiency is not ideal. Thirdly, exosome extraction methods are limited in number and inefficient, making it difficult to prepare exosomes in large quantities. It is important to ensure that exosomes are used in sufficient quantities to trigger an effective tumor immune response, especially for exosome-mediated tumor immunotherapy. With the improvement in identification, isolation, and purification technology, exosomes are expected to be successfully used in the clinical diagnosis of early-stage HCC and the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- 唐 冯
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 欣蕊 杨
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 琦为 王
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 肖珩 刘
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Bowley TY, Merkley SD, Lagutina IV, Ortiz MC, Lee M, Tawfik B, Marchetti D. Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 2023; 15:5263. [PMID: 37958436 PMCID: PMC10650766 DOI: 10.3390/cancers15215263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are "seeds" of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs.
Collapse
Affiliation(s)
- Tetiana Y. Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Seth D. Merkley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Irina V. Lagutina
- Animal Models Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Mireya C. Ortiz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Margaret Lee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| |
Collapse
|