1
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Haugum SV, Thorvaldsen P, Vandvik V, Velle LG. Coastal heathland vegetation is surprisingly resistant to experimental drought across successional stages and latitude. OIKOS 2021. [DOI: 10.1111/oik.08098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siri Vatsø Haugum
- Dept of Biological Sciences, Univ. of Bergen Norway
- The Heathland Centre Alver Norway
- Bjerknes Centre for Climate Research Bergen Norway
| | | | - Vigdis Vandvik
- Dept of Biological Sciences, Univ. of Bergen Norway
- Bjerknes Centre for Climate Research Bergen Norway
| | | |
Collapse
|
3
|
Ballare KM, Jha S. Genetic structure across urban and agricultural landscapes reveals evidence of resource specialization and philopatry in the Eastern carpenter bee, Xylocopa virginica L. Evol Appl 2021; 14:136-149. [PMID: 33519961 PMCID: PMC7819568 DOI: 10.1111/eva.13078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023] Open
Abstract
Human activity continues to impact global ecosystems, often by altering the habitat suitability, persistence, and movement of native species. It is thus critical to examine the population genetic structure of key ecosystemservice providers across human-altered landscapes to provide insight into the forces that limit wildlife persistence and movement across multiple spatial scales. While some studies have documented declines of bee pollinators as a result of human-mediated habitat alteration, others suggest that some bee species may benefit from altered land use due to increased food or nesting resource availability; however, detailed population and dispersal studies have been lacking. We investigated the population genetic structure of the Eastern carpenter bee, Xylocopa virginica, across 14 sites spanning more than 450 km, including dense urban areas and intensive agricultural habitat. X. virginica is a large bee which constructs nests in natural and human-associated wooden substrates, and is hypothesized to disperse broadly across urbanizing areas. Using 10 microsatellite loci, we detected significant genetic isolation by geographic distance and significant isolation by land use, where urban and cultivated landscapes were most conducive to gene flow. This is one of the first population genetic analyses to provide evidence of enhanced insect dispersal in human-altered areas as compared to semi-natural landscapes. We found moderate levels of regional-scale population structure across the study system (G'ST = 0.146) and substantial co-ancestry between the sampling regions, where co-ancestry patterns align with major human transportation corridors, suggesting that human-mediated movement may be influencing regional dispersal processes. Additionally, we found a signature of strong site-level philopatry where our analyses revealed significant levels of high genetic relatedness at very fine scales (<1 km), surprising given X. virginica's large body size. These results provide unique genetic evidence that insects can simultaneously exhibit substantial regional dispersal as well as high local nesting fidelity in landscapes dominated by human activity.
Collapse
Affiliation(s)
- Kimberly M. Ballare
- Department of Integrative BiologyBiological LaboratoriesThe University of Texas at AustinAustinTXUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCAUSA
| | - Shalene Jha
- Department of Integrative BiologyBiological LaboratoriesThe University of Texas at AustinAustinTXUSA
| |
Collapse
|
4
|
Effect of Climatic Conditions and Land Cover on Genetic Structure and Diversity of Eunica tatila (Lepidoptera) in the Yucatan Peninsula, Mexico. DIVERSITY 2018. [DOI: 10.3390/d10030079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fragmentation is the third cause of the biodiversity declination. Population genetic studies using Lepidoptera as the model species in the context of loss of habitat are scarce, particularly for tropical areas. We chose a widespread butterfly from Mexico as the model species to explore how changes of habitat characteristics (undisturbed forest, anthropogenic disturbances, and coastal areas), and climatic conditions affect genetic diversity and population structure. The Nymphalidae Eunica tatila is a common species in the Yucatan Peninsula considered to be a bio-indicator of undisturbed tropical forest, with migratory potential and a possible sex-biased dispersal. We genotyped 323 individuals collected in eight undisturbed areas, using four Inter Simple Sequence Repeats primers. Results show a high genetic diversity and no population structure. Temperature and shrub density present a positive and significant relationship with polymorphism values. Furthermore, our results show the positive effect of surrounding forest habitat on genetic diversity, confirming that E. tatila is a bio-indicator of undisturbed tropical forest. We found evidence of sex-biased dispersal. This paper represents one of the few studies on population genetics of tropical butterfly in a fragmented landscape and is, therefore, an important step in understanding the impact of habitat fragmentation on the risk of a butterflies’ decline.
Collapse
|
5
|
Luna˗Lucena D, Moure˗Oliveira D, Ferreira KM, Lucena DAA, Garófalo CA, Moraes EM, Del Lama MA. High mitochondrial DNA diversity and lack of population structure in a solitary cavity-nesting bee in an urban landscape. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Vickruck JL, Richards MH. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance. Mol Ecol 2017; 26:2674-2686. [DOI: 10.1111/mec.14064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 01/22/2023]
Affiliation(s)
- J. L. Vickruck
- Department of Biological Sciences; Brock University; 1812 Sir Isaac Brock Way St. Catharines ON Canada L2S 3A1
| | - M. H. Richards
- Department of Biological Sciences; Brock University; 1812 Sir Isaac Brock Way St. Catharines ON Canada L2S 3A1
| |
Collapse
|
10
|
Jha S, Kremen C. Urban land use limits regional bumble bee gene flow. Mol Ecol 2013; 22:2483-95. [DOI: 10.1111/mec.12275] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Shalene Jha
- Integrative Biology; 401 Biological Laboratories; University of Texas; Austin TX 78712 USA
| | - C. Kremen
- Environmental Science, Policy & Management; University of California; 130 Mulford Hall Berkeley CA 94720 USA
| |
Collapse
|
12
|
DAVIS EMILYS, MURRAY TOMÁSE, FITZPATRICK ÚNA, BROWN MARKJF, PAXTON ROBERTJ. Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 2010; 19:4922-35. [DOI: 10.1111/j.1365-294x.2010.04868.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|