1
|
Hogg CJ. Translating genomic advances into biodiversity conservation. Nat Rev Genet 2024; 25:362-373. [PMID: 38012268 DOI: 10.1038/s41576-023-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
A key action of the new Global Biodiversity Framework is the maintenance of genetic diversity in all species to safeguard their adaptive potential. To achieve this goal, a translational mindset, which aims to convert results of basic research into direct practical benefits, needs to be applied to biodiversity conservation. Despite much discussion on the value of genomics to conservation, a disconnect between those generating genomic resources and those applying it to biodiversity management remains. As global efforts to generate reference genomes for non-model species increase, investment into practical biodiversity applications is critically important. Applications such as understanding population and multispecies diversity and longitudinal monitoring need support alongside education for policymakers on integrating the data into evidence-based decisions. Without such investment, the opportunity to revolutionize global biodiversity conservation using genomics will not be fully realized.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Stojanovic D, McLennan E, Olah G, Cobden M, Heinsohn R, Manning AD, Alves F, Hogg C, Rayner L. Reproductive skew in a Vulnerable bird favors breeders that monopolize nest cavities. Anim Conserv 2023. [DOI: 10.1111/acv.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D. Stojanovic
- Fenner School of Environment and Society Australian National University Canberra Australia
| | - E. McLennan
- School of Life & Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - G. Olah
- Fenner School of Environment and Society Australian National University Canberra Australia
| | - M. Cobden
- Fenner School of Environment and Society Australian National University Canberra Australia
| | - R. Heinsohn
- Fenner School of Environment and Society Australian National University Canberra Australia
| | - A. D. Manning
- Fenner School of Environment and Society Australian National University Canberra Australia
| | - F. Alves
- Fenner School of Environment and Society Australian National University Canberra Australia
| | - C. Hogg
- School of Life & Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - L. Rayner
- ACT Parks and Conservation Service, Australian Capital Territory Government Canberra Australia
| |
Collapse
|
3
|
Farquharson KA, McLennan EA, Cheng Y, Alexander L, Fox S, Lee AV, Belov K, Hogg CJ. Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program. iScience 2022; 25:104474. [PMID: 35754729 PMCID: PMC9218385 DOI: 10.1016/j.isci.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation breeding programs aim to maintain 90% wild genetic diversity, but rarely assess functional diversity. Here, we compare both genome-wide and functional diversity (in over 500 genes) of Tasmanian devils (Sarcophilus harrisii) within the insurance metapopulation and across the species’ range (64,519 km2). Populations have declined by 80% since 1996 due to a contagious cancer, devil facial tumor disease (DFTD). However, predicted local extinctions have not occurred. Recent suggestions of selection for “resistance” alleles in the wild precipitated concerns that insurance population devils may be unsuitable for translocations. Using 830 wild samples collected at 31 locations between 2012 and 2021, and 553 insurance metapopulation devils, we show that the insurance metapopulation is representative of current wild genetic diversity. Allele frequencies at DFTD-associated loci were not substantially different between captive and wild devils. Methods presented here are valuable for others investigating evolutionary potential in threatened species, particularly ones under significant selective pressures. Developed target capture to assess functional diversity at over 500 genes Fine-scale structure exists in the genetically depauperate Tasmanian devil Insurance metapopulation is representative of wild genetic diversity Allele frequencies at disease-associated loci were similar in captivity to the wild
Collapse
Affiliation(s)
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Alexander
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Andrew V Lee
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.,San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA 92112, USA
| |
Collapse
|
4
|
McLennan EA, Wise P, Lee AV, Grueber CE, Belov K, Hogg CJ. DNA metabarcoding reveals a broad dietary range for Tasmanian devils introduced to a naive ecosystem. Ecol Evol 2022; 12:e8936. [PMID: 35600680 PMCID: PMC9120209 DOI: 10.1002/ece3.8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Top carnivores are essential for maintaining ecosystem stability and biodiversity. Yet, carnivores are declining globally and current in situ threat mitigations cannot halt population declines. As such, translocations of carnivores to historic sites or those outside the species' native range are becoming increasingly common. As carnivores are likely to impact herbivore and small predator populations, understanding how carnivores interact within an ecosystem following translocation is necessary to inform potential remedial management and future translocations. Dietary analyses provide a preliminary assessment of the direct influence of translocated carnivores on a recipient ecosystem. We used a metabarcoding approach to quantify the diet of Tasmanian devils introduced to Maria Island, Tasmania, a site outside the species' native range. We extracted DNA from 96 scats and used a universal primer set targeting the vertebrate 12S rRNA gene to identify diet items. Tasmanian devils on Maria Island had an eclectic diet, with 63 consumed taxa identified. Cat DNA was detected in 14% of scats, providing the first instance of cats appearing as part of Tasmanian devil diets either via predation or scavenging. Short-tail shearwaters and little penguins were commonly consumed, corresponding with previous surveys showing sharp population declines in these species since the introduction of Tasmanian devils. Our results indicate that the introduction of carnivores to novel ecosystems can be very successful for the focal species, but that commonly consumed species should be closely monitored to identify any vulnerable species in need of remedial management.
Collapse
Affiliation(s)
- Elspeth A. McLennan
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Phil Wise
- Save the Tasmanian Devil ProgramNREHobartTasmaniaAustralia
| | - Andrew V. Lee
- Save the Tasmanian Devil ProgramNREHobartTasmaniaAustralia
| | - Catherine E. Grueber
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
5
|
McLennan EA, Belov K, Hogg CJ, Grueber CE. How much is enough? Sampling intensity influences estimates of reproductive variance in an introduced population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02462. [PMID: 34614257 DOI: 10.1002/eap.2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Conservation introductions to islands and fenced enclosures are increasing as in situ mitigations fail to keep pace with population declines. Few studies consider the potential loss of genetic diversity and increased inbreeding if released individuals breed disproportionately. As funding is limited and post-release monitoring expensive for conservation programs, understanding how sampling effort influences estimates of reproductive variance is useful. To investigate this relationship, we used a well-studied population of Tasmanian devils (Sarcophilus harrisii) introduced to Maria Island, Tasmania, Australia. Pedigree reconstruction based on molecular data revealed high variance in number of offspring per breeder and high proportions of unsuccessful individuals. Computational subsampling of 20%, 40%, 60%, and 80% of observed offspring resulted in inaccurate estimates of reproductive variance compared to the pedigree reconstructed with all sampled individuals. With decreased sampling effort, the proportion of inferred unsuccessful individuals was overestimated and the variance in number of offspring per breeder was underestimated. To accurately estimate reproductive variance, we recommend sampling as many individuals as logistically possible during the early stages of population establishment. Further, we recommend careful selection of colonizing individuals as they may be disproportionately represented in subsequent generations. Within the conservation management context, our results highlight important considerations for sample collection and post-release monitoring during population establishment.
Collapse
Affiliation(s)
- Elspeth A McLennan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
- San Diego Zoo Global, PO BOX 120551, San Diego, California, 92112, USA
| |
Collapse
|
6
|
Galla SJ, Brown L, Couch-Lewis Ngāi Tahu Te Hapū O Ngāti Wheke Ngāti Waewae Y, Cubrinovska I, Eason D, Gooley RM, Hamilton JA, Heath JA, Hauser SS, Latch EK, Matocq MD, Richardson A, Wold JR, Hogg CJ, Santure AW, Steeves TE. The relevance of pedigrees in the conservation genomics era. Mol Ecol 2021; 31:41-54. [PMID: 34553796 PMCID: PMC9298073 DOI: 10.1111/mec.16192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
Over the past 50 years conservation genetics has developed a substantive toolbox to inform species management. One of the most long‐standing tools available to manage genetics—the pedigree—has been widely used to characterize diversity and maximize evolutionary potential in threatened populations. Now, with the ability to use high throughput sequencing to estimate relatedness, inbreeding, and genome‐wide functional diversity, some have asked whether it is warranted for conservation biologists to continue collecting and collating pedigrees for species management. In this perspective, we argue that pedigrees remain a relevant tool, and when combined with genomic data, create an invaluable resource for conservation genomic management. Genomic data can address pedigree pitfalls (e.g., founder relatedness, missing data, uncertainty), and in return robust pedigrees allow for more nuanced research design, including well‐informed sampling strategies and quantitative analyses (e.g., heritability, linkage) to better inform genomic inquiry. We further contend that building and maintaining pedigrees provides an opportunity to strengthen trusted relationships among conservation researchers, practitioners, Indigenous Peoples, and Local Communities.
Collapse
Affiliation(s)
- Stephanie J Galla
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA.,School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Liz Brown
- New Zealand Department of Conservation, Twizel, Canterbury, New Zealand
| | | | - Ilina Cubrinovska
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Daryl Eason
- New Zealand Department of Conservation, Invercargill, Southland, New Zealand
| | - Rebecca M Gooley
- Smithsonian-Mason School of Conservation, Front Royal, Maryland, USA.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Julie A Heath
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Samantha S Hauser
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Emily K Latch
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Anne Richardson
- The Isaac Conservation and Wildlife Trust, Christchurch, Canterbury, New Zealand
| | - Jana R Wold
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| |
Collapse
|
7
|
Grueber CE, Farquharson KA, Wright BR, Wallis GP, Hogg CJ, Belov K. First evidence of deviation from Mendelian proportions in a conservation programme. Mol Ecol 2021; 30:3703-3715. [PMID: 34051005 DOI: 10.1111/mec.16004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Classic Mendelian inheritance is the bedrock of population genetics and underpins pedigree-based management of animal populations. However, assumptions of Mendelian inheritance might not be upheld in conservation breeding programmes if early viability selection occurs, even when efforts are made to equalise genetic contributions of breeders. To test this possibility, we investigated deviations from Mendelian proportions in a captive metapopulation of the endangered Tasmanian devil. This marsupial population is ideal for addressing evolutionary questions in conservation due to its large size, range of enclosure types (varying in environmental conditions), good genomic resources (which aid interpretation), and the species' biology. Devil mothers give birth to more offspring than they can nurse in the pouch, providing the potential for intense viability selection amongst embryos. We used data from 140 known sire-dam-offspring triads to isolate within-family selection from population-level mechanisms (such as mate choice or inbreeding), and compared observed offspring genotypes at 123 targeted SNPs to neutral (i.e., Mendelian) expectations. We found lower offspring heterozygosity than expected, and subtle patterns that varied across a gradient of management intensity from zoo-like enclosures to semi-wild environments for some loci. Meiotic drive or maternal-foetal incompatibilities are consistent with our results, although we cannot statistically confirm these mechanisms. We found some evidence that maternal genotype affects annual litter size, suggesting that family-level patterns are driven by differential offspring mortality before birth or during early development. Our results show that deviations from Mendelian inheritance can occur in conservation programmes, despite best-practice management to prevent selection.
Collapse
Affiliation(s)
- Catherine E Grueber
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,San Diego Zoo Global, San Diego, CA, USA
| | - Katherine A Farquharson
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Belinda R Wright
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Graham P Wallis
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Carolyn J Hogg
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Iglesias Pastrana C, Navas González FJ, Ruiz Aguilera MJ, Dávila García JA, Delgado Bermejo JV, Abelló MT. White-naped mangabeys' viable insurance population within European Zoo Network. Sci Rep 2021; 11:674. [PMID: 33436901 PMCID: PMC7804940 DOI: 10.1038/s41598-020-80281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
The success and viability of an ex-situ conservation program lie in the establishment and potential maintenance of a demographically and genetically viable insurance population. Such population reserve may support reintroduction and reinforcement activities of wild populations. White-naped mangabeys are endangered restricted-range African primates which have experienced a dramatic population decrease in their natural habitats over the last few decades. Since 2001, some European zoos singularly monitor an ex-situ population aiming to seek the recovery of the current wild population. The aim of the present paper is to evaluate the genetic status and population demographics of European zoo-captive white-naped mangabeys based on pedigree data. The captive population is gradually growing and preserves specific reproductive and demographic parameters linked to the species. The intensive management program that is implemented has brought about the minimization of inbreeding and average relatedness levels, thus maintaining high levels of genetic diversity despite the existence of fragmented populations. This finding suggests white-naped mangabey ex-situ preservation actions may be a good example of multifaceted conservation throughout studbook management which could be used as a model for other ex-situ live-animal populations.
Collapse
Affiliation(s)
| | | | | | | | | | - María Teresa Abelló
- White-naped mangabey EEP Coordination (EAZA: European Association of Zoos & Aquariums), Parc Zoològic de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Salles‐Oliveira I, Machado T, Banci KRDS, Almeida‐Santos SM, Silva MJDJ. Genetic variability, management, and conservation implications of the critically endangered Brazilian pitviper Bothrops insularis. Ecol Evol 2020; 10:12870-12882. [PMID: 33304500 PMCID: PMC7713924 DOI: 10.1002/ece3.6838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low-to-medium genetic diversity parameters were found. Both populations showed low-albeit significant-values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.
Collapse
Affiliation(s)
| | - Taís Machado
- Laboratório de Ecologia e EvoluçãoInstituto ButantanSão PauloBrazil
| | | | | | | |
Collapse
|
10
|
Grueber CE, Peel E, Wright B, Hogg CJ, Belov K. A Tasmanian devil breeding program to support wild recovery. Reprod Fertil Dev 2020; 31:1296-1304. [PMID: 32172782 DOI: 10.1071/rd18152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an 'insurance population' to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.
Collapse
Affiliation(s)
- C E Grueber
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - E Peel
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - B Wright
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - C J Hogg
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - K Belov
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Gooley RM, Tamazian G, Castañeda‐Rico S, Murphy KR, Dobrynin P, Ferrie GM, Haefele H, Maldonado JE, Wildt DE, Pukazhenthi BS, Edwards CW, Koepfli K. Comparison of genomic diversity and structure of sable antelope ( Hippotragus niger) in zoos, conservation centers, and private ranches in North America. Evol Appl 2020; 13:2143-2154. [PMID: 32908610 PMCID: PMC7463370 DOI: 10.1111/eva.12976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
As we enter the sixth mass extinction, many species that are no longer self-sustaining in their natural habitat will require ex situ management. Zoos have finite resources for ex situ management, and there is a need for holistic conservation programs between the public and private sector. Ex situ populations of sable antelope, Hippotragus niger, have existed in zoos and privately owned ranches in North America since the 1910s. Unknown founder representation and relatedness has made the genetic management of this species challenging within zoos, while populations on privately owned ranches are managed independently and retain minimal-to-no pedigree history. Consequences of such challenges include an increased risk of inbreeding and a loss of genetic diversity. Here, we developed and applied a customized targeted sequence capture panel based on 5,000 genomewide single-nucleotide polymorphisms to investigate the genomic diversity present in these uniquely managed populations. We genotyped 111 sable antelope: 23 from zoos, 43 from a single conservation center, and 45 from ranches. We found significantly higher genetic diversity and significantly lower inbreeding in herds housed in zoos and conservation centers, when compared to those in privately owned ranches, likely due to genetic-based breeding recommendations implemented in the former populations. Genetic clustering was strong among all three populations, possibly as a result of genetic drift. We propose that the North American ex situ population of sable antelope would benefit from a metapopulation management system, to halt genetic drift, reduce the occurrence of inbreeding, and enable sustainable population sizes to be managed ex situ.
Collapse
Affiliation(s)
- Rebecca M. Gooley
- Smithsonian‐Mason School of ConservationFront RoyalVAUSA
- Center for Species Survival, Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome BioinformaticsSaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Susette Castañeda‐Rico
- Smithsonian‐Mason School of ConservationFront RoyalVAUSA
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Katherine R. Murphy
- Laboratories of Analytical BiologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Pavel Dobrynin
- Computer Technologies LaboratoryITMO UniversitySt. PetersburgRussian Federation
| | - Gina M. Ferrie
- Animals, Science and EnvironmentDisney’s Animal KingdomLake Buena VistaFLUSA
| | | | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - David E. Wildt
- Center for Species Survival, Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Budhan S. Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Cody W. Edwards
- Smithsonian‐Mason School of ConservationFront RoyalVAUSA
- Department of BiologyGeorge Mason UniversityFairfaxVAUSA
| | - Klaus‐Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| |
Collapse
|
12
|
Gooley RM, Hogg CJ, Fox S, Pemberton D, Belov K, Grueber CE. Inbreeding depression in one of the last DFTD-free wild populations of Tasmanian devils. PeerJ 2020; 8:e9220. [PMID: 32587794 PMCID: PMC7304431 DOI: 10.7717/peerj.9220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/28/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Vulnerable species experiencing inbreeding depression are prone to localised extinctions because of their reduced fitness. For Tasmanian devils, the rapid spread of devil facial tumour disease (DFTD) has led to population declines and fragmentation across the species' range. Here we show that one of the few remaining DFTD-free populations of Tasmanian devils is experiencing inbreeding depression. Moreover, this population has experienced a significant reduction in reproductive success over recent years. METHODS We used 32 microsatellite loci to examine changes in genetic diversity and inbreeding in the wild population at Woolnorth, alongside field data on breeding success from females to test for inbreeding depression. RESULTS Wefound that maternal internal relatedness has a negative impact on litter sizes. The results of this study imply that this population may be entering an extinction vortex and that to protect the population genetic rescue should be considered. This study provides conservation managers with useful information for managing wild devils and provides support for the "Wild Devil Recovery Program", which is currently augmenting small, isolated populations.
Collapse
Affiliation(s)
- Rebecca M. Gooley
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
- Toledo Zoo, Toledo, OH, United States of America
| | - David Pemberton
- Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, CA, United States of America
| |
Collapse
|
13
|
|
14
|
McLennan EA, Grueber CE, Wise P, Belov K, Hogg CJ. Mixing genetically differentiated populations successfully boosts diversity of an endangered carnivore. Anim Conserv 2020. [DOI: 10.1111/acv.12589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- E. A. McLennan
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. E. Grueber
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- San Diego Zoo Global San Diego CA USA
| | - P. Wise
- Save the Tasmanian Devil Program, DPIPWE Hobart Tas Australia
| | - K. Belov
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. J. Hogg
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
15
|
Brandies P, Peel E, Hogg CJ, Belov K. The Value of Reference Genomes in the Conservation of Threatened Species. Genes (Basel) 2019; 10:E846. [PMID: 31717707 PMCID: PMC6895880 DOI: 10.3390/genes10110846] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Conservation initiatives are now more crucial than ever-over a million plant and animal species are at risk of extinction over the coming decades. The genetic management of threatened species held in insurance programs is recommended; however, few are taking advantage of the full range of genomic technologies available today. Less than 1% of the 13505 species currently listed as threated by the International Union for Conservation of Nature (IUCN) have a published genome. While there has been much discussion in the literature about the importance of genomics for conservation, there are limited examples of how having a reference genome has changed conservation management practice. The Tasmanian devil (Sarcophilus harrisii), is an endangered Australian marsupial, threatened by an infectious clonal cancer devil facial tumor disease (DFTD). Populations have declined by 80% since the disease was first recorded in 1996. A reference genome for this species was published in 2012 and has been crucial for understanding DFTD and the management of the species in the wild. Here we use the Tasmanian devil as an example of how a reference genome has influenced management actions in the conservation of a species.
Collapse
Affiliation(s)
| | | | | | - Katherine Belov
- School of Life & Environmental Sciences, The University of Sydney, Sydney 2006, Australia; (P.B.); (E.P.); (C.J.H.)
| |
Collapse
|
16
|
Abstract
The Tasmanian devil is the only mammalian species to harbour two independent lineages of contagious cancer. Devil facial tumour 1 (DFT1) emerged in the 1990s and has caused significant population declines. Devil facial tumour 2 (DFT2) was identified in 2014, and evidence indicates that this new tumour has emerged independently of DFT1. While DFT1 is widespread across Tasmania, DFT2 is currently found only on the Channel Peninsula in south east Tasmania. Allograft transmission of cancer cells should be prevented by major histocompatibility complex (MHC) molecules. DFT1 avoids immune detection by downregulating MHC class I expression, which can be reversed by treatment with interferon-gamma (IFNγ), while DFT2 currently circulates in hosts with a similar MHC class I genotype to the tumour. Wild Tasmanian devil numbers have not recovered from the emergence of DFT1, and it is feared that widespread transmission of DFT2 will be devastating to the remaining wild population. A preventative solution for the management of the disease is needed. Here, we review the current research on immune responses to devil facial tumours and vaccine strategies against DFT1 and outline our plans moving forward to develop a specific, effective vaccine to support the wild Tasmanian devil population against the threat of these two transmissible tumours.
Collapse
Affiliation(s)
- Rachel S Owen
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton , Southampton , UK
| | - Hannah V Siddle
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton , Southampton , UK.,Institute for Life Sciences, Faculty of Medicine, University of Southampton , Southampton , UK
| |
Collapse
|
17
|
|
18
|
McLennan EA, Wright BR, Belov K, Hogg CJ, Grueber CE. Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Mol Ecol Resour 2019; 19:659-671. [DOI: 10.1111/1755-0998.12997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Elspeth A. McLennan
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Belinda R. Wright
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Katherine Belov
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
- San Diego Zoo Global San Diego California
| |
Collapse
|
19
|
Grueber CE, Fox S, McLennan EA, Gooley RM, Pemberton D, Hogg CJ, Belov K. Complex problems need detailed solutions: Harnessing multiple data types to inform genetic management in the wild. Evol Appl 2019; 12:280-291. [PMID: 30697339 PMCID: PMC6346650 DOI: 10.1111/eva.12715] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
For bottlenecked populations of threatened species, supplementation often leads to improved population metrics (genetic rescue), provided that guidelines can be followed to avoid negative outcomes. In cases where no "ideal" source populations exist, or there are other complicating factors such as prevailing disease, the benefit of supplementation becomes uncertain. Bringing multiple data and analysis types together to plan genetic management activities can help. Here, we consider three populations of Tasmanian devil, Sarcophilus harrisii, as candidates for genetic rescue. Since 1996, devil populations have been severely impacted by devil facial tumour disease (DFTD), causing significant population decline and fragmentation. Like many threatened species, the key threatening process for devils cannot currently be fully mitigated, so species management requires a multifaceted approach. We examined diversity of 31 putatively neutral and 11 MHC-linked microsatellite loci of three remnant wild devil populations (one sampled at two time-points), alongside computational diversity projections, parameterized by field data from DFTD-present and DFTD-absent sites. Results showed that populations had low diversity, connectivity was poor, and diversity has likely decreased over the last decade. Stochastic simulations projected further diversity losses. For a given population size, the effects of DFTD on population demography (including earlier age at death and increased female productivity) did not impact diversity retention, which was largely driven by final population size. Population sizes ≥500 (depending on the number of founders) were necessary for maintaining diversity in otherwise unmanaged populations, even if DFTD is present. Models indicated that smaller populations could maintain diversity with ongoing immigration. Taken together, our results illustrate how multiple analysis types can be combined to address complex population genetic challenges.
Collapse
Affiliation(s)
- Catherine E. Grueber
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- San Diego Zoo GlobalSan DiegoCalifornia
| | - Samantha Fox
- Save the Tasmanian Devil ProgramDPIPWEHobartTasmaniaAustralia
- Toledo ZooToledoOhio
| | - Elspeth A. McLennan
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Rebecca M. Gooley
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - David Pemberton
- Save the Tasmanian Devil ProgramDPIPWEHobartTasmaniaAustralia
| | - Carolyn J. Hogg
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Zoo and Aquarium Association AustralasiaMosmanNew South WalesAustralia
| | - Katherine Belov
- Faculty of Science, School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
20
|
Hohenlohe PA, McCallum HI, Jones ME, Lawrance MF, Hamede RK, Storfer A. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. CONSERV GENET 2019; 20:81-87. [PMID: 31551664 PMCID: PMC6759055 DOI: 10.1007/s10592-019-01157-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
Maintenance of adaptive genetic variation has long been a goal of management of natural populations, but only recently have genomic tools allowed identification of specific loci associated with fitness-related traits in species of conservation concern. This raises the possibility of managing for genetic variation directly relevant to specific threats, such as those due to climate change or emerging infectious disease. Tasmanian devils (Sarcophilus harrisii) face the threat of a transmissible cancer, devil facial tumor disease (DFTD), that has decimated wild populations and led to intensive management efforts. Recent discoveries from genomic and modeling studies reveal how natural devil populations are responding to DFTD, and can inform management of both captive and wild devil populations. Notably, recent studies have documented genetic variation for disease-related traits and rapid evolution in response to DFTD, as well as potential mechanisms for disease resistance such as immune response and tumor regression in wild devils. Recent models predict dynamic persistence of devils with or without DFTD under a variety of modeling scenarios, although at much lower population densities than before DFTD emerged, contrary to previous predictions of extinction. As a result, current management that focuses on captive breeding and release for maintaining genome-wide genetic diversity or demographic supplementation of populations could have negative consequences. Translocations of captive devils into wild populations evolving with DFTD can cause outbreeding depression and/or increases in the force of infection and thereby the severity of the epidemic, and we argue that these risks outweigh any benefits of demographic supplementation in wild populations. We also argue that genetic variation at loci associated with DFTD should be monitored in both captive and wild populations, and that as our understanding of DFTD-related genetic variation improves, considering genetic management approaches to target this variation is warranted in developing conservation strategies for Tasmanian devils.
Collapse
Affiliation(s)
- Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Menna E. Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Matthew F. Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rodrigo K. Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|