1
|
Adardour M, Ait Lahcen M, Oubahmane M, Ettahiri W, Hdoufane I, Bouamama H, Alanazi MM, Cherqaoui D, Taleb M, Garcia EZ, Baouid A. Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants. Pharmaceuticals (Basel) 2023; 16:1648. [PMID: 38139775 PMCID: PMC10747449 DOI: 10.3390/ph16121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In the present study, we used benzimidazolone as a starting material to efficiently synthesize several hybrid compounds of pyrazole benzimidazolone derivatives by the 1,3-dipolar cycloaddition reaction. These compounds were obtained in average yields and were characterized by NMR (1H and 13C) and HRMS analysis. The antioxidant activity of the synthesized compounds 5(a-c) and 6(a-c) was evaluated using in vitro reduction assays, including ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC). The results indicated that products 5c, 6b, and 6c exhibit higher antioxidant activity compared to the reference compounds and showed a remarkable ability to effectively remove the radical at IC50 (14.00 ± 0.14, 12.47± 0.02, and 12.82 ± 0.10 µM, respectively) under the TAC assessment. Conversely, compound 6c showed excellent activity at IC50 (68.97 ± 0.26 µM) in the FRAP assay. We carried out molecular docking and dynamics simulations to investigate the binding mode and stability of 5c, 6b, and 6c in the active site of human Peroxiredoxin 5. An ADMET study was conducted to determine the drug properties of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Mehdi Oubahmane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Walid Ettahiri
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Ismail Hdoufane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Hafida Bouamama
- Laboratory of Sustainable Development and Health Research, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Driss Cherqaoui
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
- Sustainable Materials Research Center (SUSMAT-RC), University of Mohammed VI Polytechnic, Benguerir 43150, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Elena Zaballos Garcia
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Ave. Vte. Andres Estelles s/n, 46100 Valencia, Spain;
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| |
Collapse
|
2
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
3
|
Abdelwahab RE, Abdelhamid IA, Elwahy AHM, Abdelmoniem AM. Synthesis of novel acridines, tetrahydrodipyrazolo [3,4- b:4',3'- e]pyridines, tri-substituted methanes (TRSMs) bearing 2-(4-(1-phenyl-1 H-pyrazol-3-yl)phenoxy)- N-phenylacetamide unit as novel hybrid molecules. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2190462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | | | - Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr M. Abdelmoniem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Murai Y, Hashimoto M. Heteroaromatic Diazirines Are Essential Building Blocks for Material and Medicinal Chemistry. Molecules 2023; 28:molecules28031408. [PMID: 36771073 PMCID: PMC9921084 DOI: 10.3390/molecules28031408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In materials (polymer) science and medicinal chemistry, heteroaromatic derivatives play the role of the central skeleton in development of novel devices and discovery of new drugs. On the other hand, (3-trifluoromethyl)phenyldiazirine (TPD) is a crucial chemical method for understanding biological processes such as ligand-receptor, nucleic acid-protein, lipid-protein, and protein-protein interactions. In particular, use of TPD has increased in recent materials science to create novel electric and polymer devices with comparative ease and reduced costs. Therefore, a combination of heteroaromatics and (3-trifluoromethyl)diazirine is a promising option for creating better materials and elucidating the unknown mechanisms of action of bioactive heteroaromatic compounds. In this review, a comprehensive synthesis of (3-trifluoromethyl)diazirine-substituted heteroaromatics is described.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (M.H.); Tel.: +81-11-706-9030 (Y.M.); +81-11-706-3849 (M.H.)
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Correspondence: (Y.M.); (M.H.); Tel.: +81-11-706-9030 (Y.M.); +81-11-706-3849 (M.H.)
| |
Collapse
|
5
|
Theoretical and molecular mechanistic investigations of novel (3-(furan-2-yl)pyrazol-4-yl) chalcones against lung carcinoma cell line (A549). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:719-736. [PMID: 36469109 PMCID: PMC10042774 DOI: 10.1007/s00210-022-02344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
AbstractA new chalcone series has been developed that may be useful in the treatment of lung cancer. The new series was confirmed by the different spectral tools. MTT assay was used to detect the cytotoxic effect of the novel chalcones against lung cancer cell line (A549). Molecular docking studies were performed on the most two effective chalcones 7b and 7c. Different molecular techniques were utilized to study the activity and the effect of two chalcones 7b and 7c on apoptosis of A549 cell line.
Collapse
|
6
|
Ardila DM, Rodríguez DF, Palma A, Díaz Costa I, Cobo J, Glidewell C. Synthesis, and spectroscopic and structural characterization of three new styrylquinoline-benzimidazole hybrids. Acta Crystallogr C Struct Chem 2022; 78:671-680. [PMID: 36331891 PMCID: PMC9635590 DOI: 10.1107/s2053229622010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Three new 4-styrylquinoline-benzimidazole hybrids have been synthesized using a reaction sequence in which 2-methylquinoline precursors first undergo selective oxidation by selenium dioxide to form the corresponding 2-formylquinoline intermediates, followed by oxidative cyclocondensation reactions with benzene-1,2-diamine to yield the hybrid products. The formyl intermediates and the hybrid products have all been fully characterized using a combination of IR, 1H and 13C NMR spectroscopy, and high-resolution mass spectrometry, and the structures of the three hybrid products have been determined using single-crystal X-ray diffraction. Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chlorostyryl)quinoline-3-carboxylate, C27H20ClN3O2, (IIIa), and ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(2-methoxystyryl)quinoline-3-carboxylate, C28H23N3O3, (IIIb), both crystallize in the solvent-free form with Z' = 1, but ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methylstyryl)quinoline-3-carboxylate, C28H23N3O2, (IIIc), crystallizes as a partial hexane solvate with Z' = 3, and the ester group in one of the independent molecules is disordered over two sets of atomic sites having occupancies of 0.765 (7) and 0.235 (7). The molecules of (IIIc) enclose continuous channels which are occupied by disordered solvent molecules having partial occupancy. In all of the molecules of (IIIa)-(IIIc), the styrylquinoline fragment is markedly nonplanar. Different combinations of N-H...O and C-H...π hydrogen bonds generate supramolecular assemblies which are two-dimensional in (IIIb) and (IIIc), but three-dimensional in (IIIa). Comparisons are made with the structures of some related compounds.
Collapse
Affiliation(s)
- Diana M. Ardila
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Diego F. Rodríguez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Iván Díaz Costa
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | | |
Collapse
|
7
|
Shatrova AA. Straightforward Synthesis of 2-(1H-Pyrazol-4-yl)-1H-benzimidazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Helmy MT, Sroor FM, Mahrous KF, Mahmoud K, Hassaneen HM, Saleh FM, Abdelhamid IA, Mohamed Teleb MA. Anticancer activity of novel 3-(furan-2-yl)pyrazolyl and 3-(thiophen-2-yl)pyrazolyl hybrid chalcones: Synthesis and in vitro studies. Arch Pharm (Weinheim) 2021; 355:e2100381. [PMID: 34939695 DOI: 10.1002/ardp.202100381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Twelve novel chalcone derivatives were prepared using the Claisen-Schmidt condensation reaction. The reaction of 4-acetyl-5-furan/thiophene-pyrazole derivatives 5 with the corresponding aldehydes 6 afforded the targeted chalcone derivatives 7a-l in good yields. The newly synthesized chalcones were fully characterized by spectrometric and elemental analyses. The in vitro anticancer activities of the novel compounds 7a-l were evaluated against four human cancer cell lines: HepG2 (human hepatocellular carcinoma), MCF7 (human Caucasian breast adenocarcinoma), A549 (lung carcinoma), and BJ1 (normal skin fibroblasts). Compound 7g emerged as the most promising compound, with IC50 = 27.7 µg/ml against A549 cells compared to the reference drug doxorubicin (IC50 = 28.3 µg/ml), and IC50 = 26.6 µg/ml against HepG2 cells compared to the reference drug doxorubicin (IC50 = 21.6 µg/ml). The gene expression and DNA damage values and the DNA fragmentation percentages for compound 7g were determined on the lung and liver cell lines. The expression levels of the AMY2A and FOXG1 genes increased significantly (p < 0.01) in the negative samples of lung cancer cells compared with treated cells. Also, the expression values of the PKM and PSPH genes improved significantly (p < 0.01) in the negative samples compared with treated samples of liver cancer cells. The DNA damage values increased significantly (p < 0.01) in treated lung cell line samples (7g) and the positive control. The results showed a significant decrease (p < 0.05) in DNA damage values in the negative samples of liver cancer cells compared to those treated with 7g. However, the DNA fragmentation values increased significantly (p < 0.01) in the treated lung and liver cell line samples compared with the negative control.
Collapse
Affiliation(s)
- Mirna T Helmy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt.,Institut für Anorganische Chemie, Universität Göttingen, Göttingen, Germany
| | | | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, Dokki, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma M Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | | |
Collapse
|
9
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
10
|
|
11
|
Saranya PV, Neetha M, Radhika S, Anilkumar G. An overview of palladium‐catalyzed synthesis of seven‐membered heterocycles. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
12
|
Design, synthesis, and structure of alkyl 1H-pyrazolecarboxylates from a raspberry ketone methyl ether. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Allahresani A, Naghdi E, Ali Nasseri M. Catalytic activity of Co(II) Salen@KCC-1 on the synthesis of 2,4,5-triphenyl-1H-imidazoles and benzimidazoles. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Neelima G, Lakshmi K, Sesha Maheswaramma K. Development of novel pyrazolones by using SiO2/ZnCl2 – green approach. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1679-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Synthesis of novel substituted 3-(4-((1H-benzo[d]imidazol-2-ylthio)methyl)-1-phenyl-1H-pyrazol-3-yl)-2H-chromen-2-ones: various approaches. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3397-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|