1
|
Zhang Q, Yang Z, Su W. Review of studies on polysaccharides, lignins and small molecular compounds from three Polygonatum Mill. (Asparagaceae) spp. in crude and processed states. Int J Biol Macromol 2024; 260:129511. [PMID: 38242391 DOI: 10.1016/j.ijbiomac.2024.129511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Since ancient times, Polygonatum Mill. (Asparagaceae) has been utilized as a medicinal and culinary resource in China. Its efficacy in treating various illnesses has been well documented. Traditional processing involves the Nine-Steam-Nine-Bask method, which results in a reduction of toxicity and enhanced effectiveness of Polygonatum. Many substances, such as polysaccharides, lignins, saponins, homoisoflavones, alkaloids, and others, have been successfully isolated from Polygonatum. This review presents the research progress on the chemical composition of three crude and processed Polygonatum, including Polygonatum sibiricum Redouté (P. sibiricum), Polygonatum kingianum Collett & Hemsl (P. kingianum), and Polygonatum cyrtonema Hua (P. cyrtonema). The review also includes the pharmacology of Polygonatum, specifically on the pharmacology of polysaccharides both before and after processing. Its objective is to provide a foundation for uncovering the significance of the processing procedure, and to facilitate the development and utilization of Polygonatum in clinical practice.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zouyue Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Lin H, Wang W, Peng M, Kong Y, Zhang X, Wei X, Shang H. Pharmacological properties of Polygonatum and its active ingredients for the prevention and treatment of cardiovascular diseases. Chin Med 2024; 19:1. [PMID: 38163901 PMCID: PMC10759625 DOI: 10.1186/s13020-023-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Despite continued advances in prevention and treatment strategies, cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and more effective therapeutic methods are urgently needed. Polygonatum is a traditional Chinese herbal medicine with a variety of pharmacological applications and biological activities, such as antioxidant activity, anti-inflammation, antibacterial effect, immune-enhancing effect, glucose regulation, lipid-lowering and anti-atherosclerotic effects, treatment of diabetes and anticancer effect. There has also been more and more evidence to support the cardioprotective effect of Polygonatum in recent years. However, up to now, there has been a lack of comprehensive studies on the active ingredients and their pharmacotoxicological effects related to cardiovascular diseases. Therefore, the main active components of Polygonatum (including Polysaccharides, Flavonoids, Saponins) and their biological activities were firstly reviewed in this paper. Furthermore, we summarized the pharmacological effects of Polygonatum's active components in preventing and treating CVDs, and its relevant toxicological investigations. Finally, we emphasize the potential of Polygonatum in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenhui Wang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mengqi Peng
- Weifang Medical University, Weifang, 261000, China
| | - Yifan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaowei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
3
|
Tang W, Chen Y, Guo F. Effects of topping on rhizome, and analysis of chemical composition, antioxidant activity and α-amylase and α-glucosidase inhibition of the aerial parts in Polygonatum cyrtonema. PLoS One 2023; 18:e0287894. [PMID: 37917721 PMCID: PMC10621978 DOI: 10.1371/journal.pone.0287894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 11/04/2023] Open
Abstract
Polygonatum cyrtonema is a perennial plant, and it has long been used in traditional Chinese medicine for food and medicine. The medicinal part of P.cyrtonema is the rhizome; however, the aerial part has not been studied. To understand the effect of the topping of aerial parts on the yield and chemical components of rhizomes, as well as the chemical constituents, antioxidant, and in vitro hypoglycemic activities of the aerial stem, leave, and flower parts of P.cyrtonema, the present study was conducted. The results showed that compared to the control (CK) treatment, the topping of the aerial part increased rhizome weight gain coefficient (3.43) and the total saponin content (37.60 mg/g) significantly (P<0.01) than the CK treatment. The contents of total phenols and total flavonoids in PCL and PCF were significantly (P<0.01) higher than those in rhizomes; however, the polysaccharide content (10.47%) in PCR (whole rhizome) was higher than that in PCS (3.65%), PCL (5.99%), and PCF (4.76%) content. The protein and amino acid contents in PCS, PCL, and PCF were higher than those in rhizomes. The protein and amino acid contents in PCS, PCL, and PCF were higher than those in rhizomes. PCS, PCL, and PCF showed strong antioxidant activity (DPPH, ·OH, ABTS, and FRAP), which were better than traditional medicinal parts (the rhizome).In vitro hypoglycemic results showed that PCS, PCL, and PCF had certain inhibitory activities on α-amylase and α-glucosidase (66.25% and 52.81%), which were close to the hypoglycemic activity of rhizomes (67.96% and 52.22%). The leaf extracts also showed better inhibitory activity. To sum up, the topping measures can improve yield and total saponin content of the rhizomes from P.cyrtonema, which can be applied to improve production. The stems, leaves, and flowers had a much stronger antioxidant and hypoglycemic activities and higher the total polyphenols, flavonoids, proteins, and amino acid content. Therefore, stems, leaves, and flowers of Polygonatum can be fully developed according to different needs. they are typically used in animal feed, food storage and cosmetics.
Collapse
Affiliation(s)
- Wenwen Tang
- College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Tongren Polytechnic College, Tongren, China
| | - Yuan Chen
- College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Xu C, Xia B, Zhang Z, Lin Y, Li C, Lin L. Research progress in steroidal saponins from the genus Polygonatum: Chemical components, biosynthetic pathways and pharmacological effects. PHYTOCHEMISTRY 2023; 213:113731. [PMID: 37245687 DOI: 10.1016/j.phytochem.2023.113731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
The genus Polygonatum Mill. belongs to the Liliaceae family, which is widely distributed all over the world. Modern studies have found that Polygonatum plants are very rich in chemical compounds such as saponins, polysaccharides and flavonoids. Steroidal saponins are the most commonly studied saponins in the genus Polygonatum and a total of 156 compounds have been isolated from 10 species of the genus. These molecules possess antitumor, immunoregulatory, anti-inflammatory, antibacterial, antiviral, hypoglycemic, lipid-lowering and anti-osteoporotic activities. In this review, we summarize recent advances in studies of the chemical constituents of steroidal saponins from Polygonatum, including their structural characteristics, possible biosynthetic pathways and pharmacological effects. Then, the relationship between the structure and some physiological activities is considered. This review aims to provide reference for further exploitation and utilization of the genus Polygonatum.
Collapse
Affiliation(s)
- Chunfang Xu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
5
|
Zhao L, Xu C, Zhou W, Li Y, Xie Y, Hu H, Wang Z. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116296. [PMID: 36841378 DOI: 10.1016/j.jep.2023.116296] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizoma (PR), which contains rich national cultural connotations, is a traditional Chinese medicine with homology of medicine and food. It has been used for a long time as a tonic in China's multi-ethnic medical system, and is also used to treat diseases such as premature graying hair, deficiency of blood and essence, diabetes, hypertension, etc. Meanwhile, PR is often used as food in China, India, South Korea and other Asian countries, which can satisfy hunger and provide many health benefits. AIM OF THE REVIEW This paper systematically reviewed the ethnopharmacology, botany, phytochemistry, pharmacology and related applications research of PR, and provided a reference for the comprehensive applications of PR, including basic research, product development and clinical applications. This paper also refined the national application characteristics of PR, such as rich plant resources, special chemical components and anti-hidden hungry, which laid a foundation for its high value and high connotation development in the future. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine. RESULTS A comprehensive analysis of the above literature confirmed that PR has been used in the ethnic medicine system of Asian countries such as China for thousands of years. In this paper, 12 species including official species that can be used as PR are summarized, which provide rich plant resources for PR. The chemical components in PR are divided into nutritional components and active components. The former not only contains non-starch polysaccharides and fructo-oligosaccharides, which account for about 50% in PR and are recognized as high-quality diet in the world, but also contains inorganic elements and mineral elements. And a total of 199 kinds active ingredients, including saponins, flavonoids, alkaloids, etc., were sorted out by us. The above ingredients make PR have a special property of anti-hidden hunger. Studies have shown that PR has a wide range of pharmacological activities, such as immune regulation, blood glucose regulation, lipid-lowering, antioxidant, anti-tumor, antibacterial, etc. It has been widely used in medicine, food, cosmetics, gardens and other fields. CONCLUSIONS PR, as a classic medicinal material of the same origin, is widely used in the traditional ethnic medicine system. It contains abundant potential plant resources, chemical components and pharmacological activities. This paper also suggests that PR with high application value in food industry, has the potential to become a high-quality coarse grain. Exploring the way of grain and industrialization of PR is beneficial to fully develop the economic value of PR.
Collapse
Affiliation(s)
- Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
6
|
Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem 2023; 408:135183. [PMID: 36566543 DOI: 10.1016/j.foodchem.2022.135183] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is one of the most serious health problems worldwide. Species in the genus Polygonatum are traditional food and medicinal plants, which play an important role in controlling blood glucose. In this reveiw, we systematically summarized the traditional and modern applications of the genus Polygonatum in DM, focused on the material bases of polysaccharides, flavonoids and saponins. We highlighted their mechanisms of action in preventing obese diabetes, improving insulin resistance, promoting insulin secretion, regulating intestinal microecology, inhibiting advanced glycation end products (AGEs) accumulation, suppressing carbohydrate digestion and obsorption and modulating gluconeogenesis. Based on the safety and efficacy of this 'medicinal food' and its utility in the prevention and treatment of diabetes, we proposed a research and development program that includs diet design (supplementary food), medical nutrition therapy and new drugs, which could provide new pathways for the use of natural plants in prevention and treatment of DM.
Collapse
|
7
|
Zhao ZY, Zhang YQ, Chen J, Huang JH, Zhao CC, Shao JH. Two New Phenolic Compounds with Aldose Reductase Inhibitory Activities from Polygonatum cyrtonema Leaves. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Zheng M, Su H, Xiao R, Chen J, Chen H, Tan KB, Zhu Y. Effects of Polygonatum cyrtonema extracts on the antioxidant ability, physical and structure properties of carboxymethyl cellulose-xanthan gum-flaxseed gum active packaging films. Food Chem 2023; 403:134320. [DOI: 10.1016/j.foodchem.2022.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
|
9
|
Luo L, Qiu Y, Gong L, Wang W, Wen R. A Review of Polygonatum Mill. Genus: Its Taxonomy, Chemical Constituents, and Pharmacological Effect Due to Processing Changes. Molecules 2022; 27:4821. [PMID: 35956772 PMCID: PMC9369890 DOI: 10.3390/molecules27154821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Polygonatum Tourn, ex Mill. contains numerous chemical components, such as steroidal saponins, polysaccharides, flavonoids, alkaloids, and others, it possesses diverse pharmacological activities, such as anti-aging, anti-tumor, immunological regulation, as well as blood glucose management and fat reducing properties. AIM OF THE REVIEW This study reviews the current state of research on the systematic categorization, chemical composition, pharmacological effects, and processing changes of the plants belonging to the genus Polygonatum, to provide a theoretical foundation for their scientific development and rational application. MATERIALS AND METHODS The information was obtained by searching the scientific literature published between 1977 and 2022 on online databases (including PubMed, CNKI, SciFinder, and Web of Science) and other sources (such as the Chinese Pharmacopoeia 2020 edition, and Chinese herbal books). RESULTS The genus Polygonatum contains 79 species, and 233 bioactive chemical compounds were identified in them. The abundance of pharmacological activities, such as antioxidant activities, anti-fatigue activities, anti-inflammatory activities, etc., were revealed for the representatives of this genus. In addition, there are numerous processing methods, and many chemical constituents and pharmacological activities change after the unappropriated processing. CONCLUSIONS This review summarizes the taxonomy classification, chemical composition, pharmacological effects, and processing of the plants belonging to the genus Polygonatum, providing references and research tendencies for plant-based drug development and further clinical applications.
Collapse
Affiliation(s)
- Lu Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medic Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.L.); (Y.Q.); (R.W.)
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medic Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.L.); (Y.Q.); (R.W.)
| | - Limin Gong
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medic Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.L.); (Y.Q.); (R.W.)
- School of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medic Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.L.); (Y.Q.); (R.W.)
| | - Ruiding Wen
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medic Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.L.); (Y.Q.); (R.W.)
| |
Collapse
|
10
|
Mi Y, Hu W, Li W, Wan S, Xu X, Liu M, Wang H, Mei Q, Chen Q, Yang Y, Chen B, Jiang M, Li X, Yang W, Guo D. Systematic Qualitative and Quantitative Analyses of Wenxin Granule via Ultra-High Performance Liquid Chromatography Coupled with Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry and Triple Quadrupole-Linear Ion Trap Mass Spectrometry. Molecules 2022; 27:3647. [PMID: 35684583 PMCID: PMC9181919 DOI: 10.3390/molecules27113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.
Collapse
Affiliation(s)
- Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wandi Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Weiwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Shiyu Wan
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiyu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Quanxi Mei
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Boxue Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Dean Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
11
|
Yang X, Guan Y, Yan B, Xie Y, Zhou M, Wu Y, Yao L, Qiu X, Yan F, Chen Y, Huang L. Evidence-based complementary and alternative medicine bioinformatics approach through network pharmacology and molecular docking to determine the molecular mechanisms of Erjing pill in Alzheimer's disease. Exp Ther Med 2021; 22:1252. [PMID: 34539848 PMCID: PMC8438686 DOI: 10.3892/etm.2021.10687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 11/06/2022] Open
Abstract
Erjing pill, a Traditional Chinese Medicine (TCM) formulation composed of Polygonatum sibiricum and Lycium chinense, has an important role in the treatment of Alzheimer's disease (AD). However, the underlying mechanisms of the action of Erjing pill in AD have remained elusive. In the present study, the key ingredients of Erjing pill were investigated and the active components and their mechanisms of action on AD were analyzed based on networks pharmacology. By using the TCM and TCM Systems Pharmacology and databases, the components of Erjing pill were screened and the data were captured using Discovery Studio. The SwissTarget webserver database was used to predict the potential protein targets of Erjing pill components for pathologies related to AD. The data were further analyzed with the disease targets of AD based on analysis of the Online Mendelian Inheritance in Man, DiGSeE and Therapeutic Target Database. Subsequent analysis of mechanistic pathways of the screened components and protein targets allowed us to construct a network by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, which revealed potential molecular mechanisms of Erjing pill against AD. Finally, the protective effect of three active components on neurons was verified using an in vitro injury model of PC12 cells induced by Aβ25-35. The results indicated that 65 bioactive components of Erjing pill, including lauric acid and zederone, and 6 targets, including acetylcholinesterase, butylcholinesterase and amyloid protein precursor, were closely associated with the prevention and treatment of AD. The molecular components of Erjing pill were indicated to be involved in various biological signaling processes, mainly in synaptic signal transmission, transsynaptic signal transmission and chemical synaptic transmission. Furthermore, related pathways targeted by Erjing pill in AD included the regulation of neuroactive ligand-receptor interactions, the PI3K-Akt signaling pathway, serotoninergic synapses, calcium signaling pathways and dopaminergic synapses. A cell viability assay indicated that the compounds (polygonatine A, polygonatine C and 4',5-dihydroxyflavone) assessed were able to significantly improve the survival rate and increase the Ca2+ level in a PC12 cell model of AD induced by amyloid-β25-35. The present study revealed that the mechanisms of action of Erjing pill to prevent and treat AD included a multicompound, multitarget and multipathway regulatory network.
Collapse
Affiliation(s)
- Xiyang Yang
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yang Guan
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Bo Yan
- Department of Research and Development, Shandong Qidu Pharmaceutical Co., Ltd., Zibo, Shandong 255400, P.R. China
| | - Yongyan Xie
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 333004, P.R. China
| | - Maofu Zhou
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yi Wu
- Department of Jiangxi Provincial Institute for Drug Control, Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang, Jiangxi 330006, P.R. China
| | - Lihua Yao
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
- Department of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, P.R. China
| | - Xiaopeng Qiu
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Feixia Yan
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yaohui Chen
- Department of Nephrology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Liping Huang
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|
12
|
Li XL, Ma RH, Zhang F, Ni ZJ, Thakur K, Wang S, Zhang JG, Wei ZJ. Evolutionary research trend of Polygonatum species: a comprehensive account of their transformation from traditional medicines to functional foods. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34669530 DOI: 10.1080/10408398.2021.1993783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the advances in Polygonatum research, there is a huge interest in harnessing the valuable functional ingredients of this genus with the potential for functional foods. This review emphasizes the different aspects of Ploygonatum based research starting from its bioactive compounds, their structural characterization, various extraction methods, as well as biological activities. In view of its integral use as an essential medicinal plant, our review emphasizes on its promising food applications both as an ingredient and as a whole food, and its improved health benefits with potential for agricultural and environmental relevance are also discussed. As we collated the recent research information, we present the main challenges and limitations of the current research trend in this area which can upgrade the further expansion of Polygonatum-related research that will strengthen its economic and accessible nutritional value in the food and health industries. By highlighting the need for the unattended species, this review not only fills existing research gaps, but also encourages the researchers to find new avenues for the natural production of bio-based functional materials and the development of highly functional and health-promoting foods for disease prevention and treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
13
|
Ma B, Wang Y, Bao Y, Wang M, Hou M. Saponins from the rhizomes of Polygonatum nodosum Hua and their chemotaxonomic significance. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
|
15
|
Jiao J, Huang W, Bai Z, Liu F, Ma C, Liang Z. DNA barcoding for the efficient and accurate identification of medicinal polygonati rhizoma in China. PLoS One 2018; 13:e0201015. [PMID: 30021015 PMCID: PMC6051646 DOI: 10.1371/journal.pone.0201015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/06/2018] [Indexed: 12/23/2022] Open
Abstract
Polygonati rhizoma (PR), a traditional medicinal and edible product with various bioactive components (Polygonatum polysaccharides, saponins, phenols, and flavonoids), is widely consumed in China. However, other species with morphological characteristics similar to those of the actual components are being used to replace or adulterate PR, causing issues with quality control and product safety. The morphological similarity of PR and its substitutes makes classic morphological identification challenging. To address this issue, DNA barcoding-based identification using ITS2 and psbA-trnH sequences was applied in this study to evaluate the efficiency and accuracy of this approach in identifying PR samples collected from 39 different regions in China. The identification of PR by this method was confirmed by other methods (phylogeny-based and character-based methods), and all the samples were clearly and accurately distinguished. This study highlights the efficient and accurate nature of DNA barcoding in PR identification. Applying this technique will provide a means to differentiate PR from other altered formulations, thus improving product quality and safety for consumers of PR and its products.
Collapse
Affiliation(s)
- Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Zhenqing Bai
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Feng Liu
- Research Department, Buchang Pharma, Xi’an, Shaanxi, China
| | - Cunde Ma
- Research Department, Buchang Pharma, Xi’an, Shaanxi, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Science, Zhejiang SCI-TECH University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
16
|
Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P, Gao W. The genus Polygonatum : A review of ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:274-291. [PMID: 29246502 DOI: 10.1016/j.jep.2017.12.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Affiliation(s)
- Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Wang W, Dabu X, He J, Yang H, Yang S, Chen J, Fan W, Zhang G, Cai J, Ai H, Hai M. Polygonatone H, a new homoisoflavanone with cytotoxicity from Polygonatum Cyrtonema Hua. Nat Prod Res 2018; 33:1727-1733. [PMID: 29457519 DOI: 10.1080/14786419.2018.1434645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new homoisoflavonoid, (3R)-5,7-dihydroxy-6-methyl-3-(2'-hydroxy-4'-methoxybenzyl)-chroman-4-one (1), namely polygonatone H, in addition to fourteen known homoisoflavones (2-15) were isolated from the rhizome of Polygonatum Cyrtonema Hua. The structures were identified with the aid of 1D/2D NMR spectroscopic technologies. Compounds 2, 6, 8, 10, 11, 13, and 15 were isolated from P. Cyrtonema for the first time. Compound 1 showed cytotoxicities to human cancer cell lines with IC50 values to comparable those of cisplatin.
Collapse
Affiliation(s)
- Wenxiang Wang
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China
| | - Xilatu Dabu
- b College of Resources and Environment , Yunnan Agricultural University , Kunming , China
| | - Juan He
- c School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan , China
| | - Huixiang Yang
- c School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan , China
| | - Shengchao Yang
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China
| | - Junwen Chen
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China
| | - Wei Fan
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China.,b College of Resources and Environment , Yunnan Agricultural University , Kunming , China
| | - Guanghui Zhang
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China
| | - Jinlong Cai
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China
| | - Honglian Ai
- c School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan , China
| | - Meirong Hai
- a Yunnan Agricultural University National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China , Kunming , China
| |
Collapse
|