1
|
Jin Y, Qu Z, Pang S, Li Z, Wang Y, Zhang H. A new ocotillol-type ginsenoside from American ginseng berry. Nat Prod Res 2023:1-6. [PMID: 37667570 DOI: 10.1080/14786419.2023.2252566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
A new ocotillol-type ginsenoside, named pseudoginsenoside F12 (1), was isolated from American ginseng berry, whose structure was elucidated as 6-O-[α-L-2,3-epoxy-rhamnopyranosyl-(1-2)-β-D-glucopyranosyl]-dammar-20S,24R-epoxy-3β, 6α,12β,25-tetraol. In addition, the known alkaloids β-carboline-1-carboxylic acid (2) and anoectochine (3) were isolated for the first time from the Araliaceae family. The new compound 1 was evaluated for cytotoxicity against MDA-MB-231 breast cancer cell line.
Collapse
Affiliation(s)
- Yinping Jin
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun, China
| | - Zhengyi Qu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shifeng Pang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zheng Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
2
|
Zhang Z, Wang A, Wang Y, Sun W, Zhou X, Xu Q, Mao L, Zhang J. Canthin-6-Ones: Potential Drugs for Chronic Inflammatory Diseases by Targeting Multiple Inflammatory Mediators. Molecules 2023; 28:3381. [PMID: 37110614 PMCID: PMC10141368 DOI: 10.3390/molecules28083381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic inflammatory disease (CID) is a category of medical conditions that causes recurrent inflammatory attacks in multiple tissues. The occurrence of CID is related to inappropriate immune responses to normal tissue substances and invading microbes due to many factors, such as defects in the immune system and imbalanced regulation of commensal microbes. Thus, effectively keeping the immune-associated cells and their products in check and inhibiting aberrant activation of the immune system is a key strategy for the management of CID. Canthin-6-ones are a subclass of β-carboline alkaloids isolated from a wide range of species. Several emerging studies based on in vitro and in vivo experiments reveal that canthin-6-ones may have potential therapeutic effects on many inflammatory diseases. However, no study has yet summarized the anti-inflammatory functions and the underlying mechanisms of this class of compounds. This review provides an overview of these studies, focusing on the disease entities and the inflammatory mediators that have been shown to be affected by canthin-6-ones. In particular, the major signaling pathways affected by canthin-6-ones, such as the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the NF-κB signaling pathway, and their roles in several CIDs are discussed. Moreover, we discuss the limitations in studies of canthin-6-ones and provide possible solutions. In addition, a perspective that may suggest possible future research directions is provided. This work may be helpful for further mechanistic studies and possible therapeutic applications of canthin-6-ones in the treatment of CID.
Collapse
Affiliation(s)
- Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Anqi Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
3
|
Han JL, Lv TM, Song SJ, Huang XX. β-carboline alkaloids in Picrasma quassioides and their chemotaxonomic significance. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Zhou QT, Yang PY, Yang QY, Pang WH, Li XL, Zhang XJ, Zhang RH, Xiao WL. Chemical Constituents of the Branches and Leaves of Picrasma chinensis P.Y. Chen and Tyrosinase Inhibiting Activity. Chem Biodivers 2023; 20:e202201171. [PMID: 36691852 DOI: 10.1002/cbdv.202201171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
One new alkaloid, picrasine A, two new quassinoids, picralactones A-B, together with eleven known compounds were isolated from Picrasma chinensis P.Y. Chen. The structures of these compounds were determined using 1D and 2D NMR, HR-ESI-MS, and IR spectroscopic data, and by comparison with published data. Some compounds were tested for tyrosinase inhibiting activity, however, none of them exhibited strong inhibitory effects.
Collapse
Affiliation(s)
- Qin-Tao Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Peng-Yun Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Quan-Yu Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Wen-Hui Pang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and school of pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, P. R. China
| |
Collapse
|
5
|
Dai P, Chen S, Wang M, Ma H, Liu F, Lin C, Zhu C. β-Carboline alkaloids from Picrasma quassioides and their 3D-QSAR study on anti-inflammation in LPS-induced RAW 264.7 cells. Fitoterapia 2023; 166:105437. [PMID: 36693439 DOI: 10.1016/j.fitote.2023.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Two new β-carboline alkaloids (1-2), 1-pyrrolidone propionyl-β-carboline (1) and 1-(3-hydroxy-2-oxopiperidine-1-ethyl)-4,8-dimethoxyl-β-carboline (2), named kumujantine W and J respectively, together with ten known compounds (3-12) were isolated from the stems of Picrasma quassioides (D. Don) Benn. Their structures were elucidated from spectral data including 1D and 2D NMR, UV, IR, HR-ESI-MS spectroscopic analysis and ECD calculations as well as by comparison to the reference databases or literature. The anti-inflammatory effects of these alkaloids (1-12) and six other β-carboline alkaloids (13-18) in LPS-induced RAW 264.7 cells were evaluated by measuring nitric oxide (NO) concentrations. Among them, compounds 1, 3, 6, 15, and 17 could inhibit the secretion of NO, displaying significant anti-inflammatory activity without affecting cell viability in vitro, and 3D-QSAR analysis further revealed the influence of groups on the activity in β-carboline alkaloids.
Collapse
Affiliation(s)
- Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Huanhuan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Isolation and Characterization of Compounds from Ochreinauclea maingayi (Hook. f.) Ridsd. (Rubiaceae) with the Aid of LCMS/MS Molecular Networking. SEPARATIONS 2023. [DOI: 10.3390/separations10020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phytochemical investigation of the dichloromethane crude extract from the bark of Ochreinauclea maingayi with the aid of LCMS/MS-based molecular networking guided the isolation and accelerated the elucidation of known and new indole alkaloids. The molecular networking analysis produces two main clusters, along with 41 non-prioritized clusters and self-loop nodes. Each cluster has several nodes which depict the fractions contained within those nodes. An implementation of a fraction mapping for each node represents the molecular weight and key fragment data of each compound. From the analysis of each cluster and node, we can deduce the indole alkaloids are the scaffold of interest. Indole scaffold can be found between F5 and F10 that contain several types of indole alkaloids. In total, we have successfully purified nine indole alkaloids, including 9H-β-carboline-4-carboxylate 2, norharmane 3, harmane 4, naucledine 10, neonaucline 15, 1,2,3,4-tetranorharmane-1-one 16, naulafine 19, cadambine 9, and a new monoterpene indole alkaloid dihyrodeglycocadambine 7 from F5 to F10 using a chromatographic technique. Their structures were confirmed by 1D-NMR, 2D-NMR, UV, IR, LCMS, and MS2LDA. Several clusters and nodes contain ions that could not be annotated, suggesting that they may possess novel compounds that are yet to be discovered.
Collapse
|
7
|
Wang H, Tian R, Chen Y, Li W, Wei S, Ji Z, Aioub AAA. In vivo and in vitro antifungal activities of five alkaloid compounds isolated from Picrasma quassioides (D. Don) Benn against plant pathogenic fungi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105246. [PMID: 36464333 DOI: 10.1016/j.pestbp.2022.105246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Highly active and novel antifungal compounds are continuously researched from natural products for pesticide development. Picrasma quassioides (D. Don) Benn, a species of Simaroubaceae, is used in traditional Chinese medicine to treat colds and upper respiratory infections. In this study, the active ingredients of P. quassioides and their antifungal activities against plant pathogenic fungi are investigated to explore the practical application of the plant in the agricultural field. The results showed that the extracts of P. quassioides exhibited highly significant preventive and curative effects on apple valsa canker (AVC) with a reduction of lesion diameter were 80.28% and 83.63%, respectively, and can improve the resistance of apple trees to a pathogen. Five antifungal compounds, namely, canthin-6-one (T1), nigakinone (T2), 4,5-dimethoxycanthin-6-one (T3), 1-methoxycarbonyl-β-carboline (T4), and 1-methoxycarbonyl-3-methoxyl-β-carboline (T5), are isolated from P. quassioides using the bioassay-guided method. This is the first report of 1-methoxycarbonyl-3-methoxyl-β-carboline as a natural product. Canthin-6-one shows strong in vitro inhibitory activity against 11 species of plant pathogenic fungi, and their EC50 values range from 1.49 to 8.80 mg/L. The control efficacy of canthin-6-one at 2000 mg/L are 87.88% and 94.37% against AVC and 80.10% and 84.73% against apple anthracnose (C. gloeosporioides), respectively. Additionally, V. mali is observed after treatment with cannin-6-one, although microscopic. This is the first study on the control of the secondary metabolites of P. quassioides against plant fungal diseases. The results show that P. quassioides is a potential resource for the development of botanical fungicides.
Collapse
Affiliation(s)
- Hua Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Runze Tian
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yu Chen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqi Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shaopeng Wei
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhiqin Ji
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China.
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
8
|
Zorrilla JG, Evidente A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules 2022; 12:biom12081025. [PMID: 35892335 PMCID: PMC9332295 DOI: 10.3390/biom12081025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaloids are a wide family of basic N-containing natural products, whose research has revealed bioactive compounds of pharmacological interest. Studies on these compounds have focused more attention on those produced by plants, although other types of organisms have also been proven to synthesize bioactive alkaloids, such as animals, marine organisms, bacteria, and fungi. This review covers the findings of the last 20 years (2002–2022) related to the isolation, structures, and biological activities of the alkaloids produced by mushrooms, a fungal subgroup, and their potential to develop drugs and agrochemicals. In some cases, the synthesis of the reviewed compounds and structure−activity relationship studies have been described.
Collapse
Affiliation(s)
- Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, C/Republica Saharaui, s/n, 11510 Puerto Real, Spain
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
- Correspondence:
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
| |
Collapse
|
9
|
Yao L, Lv JH, Pan MC, Xing L, Wang LP, Li CT, Liu SY, Li Y. Two new compounds from edible mushroom Sarcomyxa edulis. Nat Prod Res 2022; 37:1491-1497. [PMID: 34986726 DOI: 10.1080/14786419.2021.2023146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical investigation of the edible mushroom Sarcomyxa edulis led to the isolation of one new highly degraded sterol (1), and one new β-carboline alkaloid (2), along with nine known compounds (3-11) for the first time from this mushroom. The structures of new compounds were elucidated using HR-ESI-MS data and NMR spectroscopy. In addition, anti-inflammatory activity of new compounds was evaluated against lipopolysaccharide-induced NO production in RAW 264.7 macrophages. Compound 2 exhibited a good anti-inflammatory activity with IC50 value of 9.88 ± 0.48 μM, and compound 1 exhibited a weak inhibitory effect with IC50 value of 71.36 ± 5.11 μM.
Collapse
Affiliation(s)
- Lan Yao
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| | - Jian-Hua Lv
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China
| | - Mei-Chen Pan
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China
| | - Lei Xing
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China
| | - Lu-Peng Wang
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China
| | - Chang-Tian Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| | - Shu-Yan Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Ministry of Science and Technology, Jilin Agricultural University, Changchun, PR China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
10
|
Qian-Wen C, Xiao Y, Xiao-Qian L, Yao-Hua L, Wei-Hong F, Chun L, Zhi-Min W. Alkaloids from Picrasma quassioides: An overview of their NMR data, biosynthetic pathways and pharmacological effects. PHYTOCHEMISTRY 2022; 193:112987. [PMID: 34768188 DOI: 10.1016/j.phytochem.2021.112987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Picrasma quassioides, a member of the Simaroubaceae family, is the subject of research in numerous pharmacological and chemical studies. This plant mainly contains alkaloids, quassinoids and terpenoids. These molecules exhibit various pharmacological benefits, such as anti-inflammatory, anticancer, and anti-viral effects, on the cardiovascular system. Alkaloids make up the majority of these molecules. This review describes 127 alkaloid substances from P. quassioides. These alkaloids can be divided into the following classes: β-carbolines, canthinones and alkaloid dimers. A compilation of their nuclear magnetic resonance spectroscopy data and possible biosynthetic pathways of these compounds and the pharmacological effects of P. quassioides are also included.
Collapse
Affiliation(s)
- Chen Qian-Wen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ye Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liu Xiao-Qian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Yao-Hua
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Wei-Hong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Chun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wang Zhi-Min
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
11
|
Lee J, Gong YX, Jeong H, Seo H, Xie DP, Sun HN, Kwon T. Pharmacological effects of Picrasma quassioides (D. Don) Benn for inflammation, cancer and neuroprotection (Review). Exp Ther Med 2021; 22:1357. [PMID: 34659503 PMCID: PMC8515544 DOI: 10.3892/etm.2021.10792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Picrasma quassioides (D. Don) Benn is an Asian shrub with a considerable history of traditional medicinal use. P. quassioides and its extracts exhibit good therapeutic properties against several diseases, including anti-inflammatory, antibacterial and anticancer effects. However, the composition of compounds contained in P. quassioides is complex; although various studies have examined mixtures or individual compounds extracted from it, studies on the application of P. quassioides extracts remain limited. In the present review, the structures and functions of the compounds identified from P. quassioides and their utility in anti-inflammatory, anticancer and neuroprotectant therapies was discussed. The present review provided up-to-date information on pharmacological activities and clinical applications for P. quassioides extracts.
Collapse
Affiliation(s)
- Jaihyung Lee
- Epigenetics Drug Discovery Center, Hwalmyeong Convalescence Hospital, Gapyeong, Gyeonggi 12458, Republic of Korea
- Korean Convergence Medicine Center, Hwalmyeong Hospital of Korean Medicine, Seoul 03790, Republic of Korea
| | - Yi-Xi Gong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hyunjeong Jeong
- Epigenetics Drug Discovery Center, Hwalmyeong Convalescence Hospital, Gapyeong, Gyeonggi 12458, Republic of Korea
- Korean Convergence Medicine Center, Hwalmyeong Hospital of Korean Medicine, Seoul 03790, Republic of Korea
| | - Hoyoung Seo
- Epigenetics Drug Discovery Center, Hwalmyeong Convalescence Hospital, Gapyeong, Gyeonggi 12458, Republic of Korea
- Korean Convergence Medicine Center, Hwalmyeong Hospital of Korean Medicine, Seoul 03790, Republic of Korea
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
12
|
Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D, Luyten W. Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometry Combined With Fragmentation and Retention Time Calculation. Front Pharmacol 2021; 12:761751. [PMID: 34776978 PMCID: PMC8581800 DOI: 10.3389/fphar.2021.761751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The stem of Picrasma quassioides (PQ) was recorded as a prominent traditional Chinese medicine, Kumu, which was effective for microbial infection, inflammation, fever, and dysentery, etc. At present, Kumu is widely used in China to develop different medicines, even as injection (Kumu zhusheye), for combating infections. However, the chemical basis of its antimicrobial activity has still not been elucidated. To examine the active chemicals, its stem was extracted to perform bioassay-guided purification against Staphylococcus aureus and Escherichia coli. In this study, two types of columns (normal and reverse-phase) were used for speedy bioassay-guided isolation from Kumu, and the active peaks were collected and identified via an UHPLC-Orbitrap-Ion Trap Mass Spectrometer, combined with MS Fragmenter and ChromGenius. For identification, the COCONUT Database (largest database of natural products) and a manually built PQ database were used, in combination with prediction and calculation of mass fragmentation and retention time to better infer their structures, especially for isomers. Moreover, three standards were analyzed under different conditions for developing and validating the MS method. A total of 25 active compounds were identified, including 24 alkaloids and 1 triterpenoid against S. aureus, whereas only β-carboline-1-carboxylic acid and picrasidine S were active against E. coli. Here, the good antimicrobial activity of 18 chemicals was reported for the first time. Furthermore, the spectrum of three abundant β-carbolines was assessed via their IC50 and MBC against various human pathogens. All of them exhibited strong antimicrobial activities with good potential to be developed as antibiotics. This study clearly showed the antimicrobial chemical basis of Kumu, and the results demonstrated that HRMS coupled with MS Fragmenter and ChromGenius was a powerful tool for compound analysis, which can be used for other complex samples. Beta-carbolines reported here are important lead compounds in antibiotic discovery.
Collapse
Affiliation(s)
- Haibo Hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Postharvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Alokesh Kumar Ghosh
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Ajmal Khan
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Dan Sun
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,College of Life Sciences, NanKai University, Tianjin, China
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
He C, Wang Y, Yang T, Wang H, Liao H, Liang D. Quassinoids with Insecticidal Activity against Diaphorina citri Kuwayama and Neuroprotective Activities from Picrasma quassioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:117-127. [PMID: 31820963 DOI: 10.1021/acs.jafc.9b05796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Six new quassinoids, named kumulactone F (1), kumulactone G (2), kumulactone H (4), kumulactone I (5), kumulactone J (6), and kumulactone K (7), a pair of undescribed epimers α- and β-nigakihemiacetal G (3), 15 known quassinoids (8-22), and a mixture of the known compounds α- and β-neoquassin (23) were separated from the dried stems of the medical plants Picrasma quassioides. The chemical structures of all of the new compounds were established by spectroscopic data analyses (HR-ESI-MS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD)). Biologically, compounds 9 and 21 showed toxicity toward the Asian citrus psyllid Diaphorina citri Kuwayama with potent activity even equal to that of the positive control (Abamectin), compound 11 exhibited an excellent neuroprotective effect against SH-SY5Y cells which were pretreated by H2O2 with potent activity equal to that of the positive control (Trolox), and none of them showed cytotoxic activity toward the HeLa or A549 cell lines (IC50 > 100 μM).
Collapse
Affiliation(s)
- Cui He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yaqi Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Tingmi Yang
- Guangxi Key Laboratory of Citrus Biology , Guangxi Academy of Specialty Crops , Guilin 541004 , People's Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Haibing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
14
|
Guo E, Hu Y, Du T, Zhu H, Chen L, Qu W, Zhang J, Xie N, Liu W, Feng F, Xu J. Effects of Picrasma quassioides and its active constituents on Alzheimer's disease in vitro and in vivo. Bioorg Chem 2019; 92:103258. [PMID: 31520892 DOI: 10.1016/j.bioorg.2019.103258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer disease (AD), a prevalent neurodegenerative disorder, is one of the leading causes of dementia. However, there is no effective drug for this disease to date. Picrasma quassioides (D.Don) Benn, a Chinese traditional medicine, was used mainly for the treatment of inflammation, fever, microbial infection and dysentery. In this paper, we reported that the EtOAc extract of Picrasma quassioides stems showed potential neuroprotective activities in l-glutamate-stimulated PC12 and Aβ25-35-stimulated SH-SY5Y cell models, as well as improved memory and cognitive abilities in AD mice induced by amyloid-β peptide. Moreover, it was revealed that the anti-AD mechanism was related to suppressing neuroinflammatory and reducing Aβ1-42 deposition using ELISA assay kits. To clarify the active components of the EtOAc extract of Picrasma quassioides stems, a systematic phytochemistry study led to isolate and identify six β-carboline alkaloids (1-6), seven canthin-6-one alkaloids (7-13), and five quassinoids (14-18). Among them, four β-carbolines (1-3, and 6) and six canthin-6-ones (7-11, and 13) exhibited potential neuroprotective activities in vitro. Based on these date, the structure-activity relationships of alkaloids were discussed. Furthermore, molecular docking experiments showed that compounds 2 and 3 have high affinity for both of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYPKIA) and butyrylcholinesterase (BuChE).
Collapse
Affiliation(s)
- Eryan Guo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yunwei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tao Du
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huilin Zhu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lei Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicines and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou 341000, Jiangxi, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China.
| | - Jian Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
15
|
Design, synthesis and antitumour and anti-angiogenesis evaluation of 22 moscatilin derivatives. Bioorg Med Chem 2019; 27:2657-2665. [PMID: 31047774 DOI: 10.1016/j.bmc.2019.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Two series of moscatilin derivatives were designed, synthesized and evaluated as anti-tumor and anti-angiogenesis agents. Most of these compounds showed moderate-to-obvious cytotoxicity against five cancer cell lines (A549, HepG2, MDA-MB-231, MKN-45, HCT116). Among these cell lines, compounds had obvious effects on HCT116. Especially for 8Ae, the IC50 was low to 0.25 μM. 8Ae can inhibit the viability and induce the apoptosis of HCT116 cells but exhibit no cytotoxic activity in noncancerous NCM460 colon cells. 8Ae can also arrest the G2/M cell cycle in HCT116 cells by inhibiting the α-tubulin expression. Zebrafish bioassay-guided screen showed the 22 moscatilin derivatives had potent anti-angiogenic activities and compound 8Ae had better activities than positive compound. Molecular docking indicated 8Ae interacted with tubulin at the affinity of -7.2 Kcal/mol. In conclusion, compound 8Ae was a potential antitumor and anti-angiogenesis candidate for further development.
Collapse
|
16
|
Discovery of potent indoleamine 2,3-dioxygenase (IDO) inhibitor from alkaloids in Picrasma quassioides by virtual screening and in vitro evaluation. Fitoterapia 2019; 133:137-145. [DOI: 10.1016/j.fitote.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 01/21/2023]
|
17
|
Zhao WY, Chen JJ, Zou CX, Zhang YY, Yao GD, Wang XB, Huang XX, Lin B, Song SJ. New tirucallane triterpenoids from Picrasma quassioides with their potential antiproliferative activities on hepatoma cells. Bioorg Chem 2019; 84:309-318. [DOI: 10.1016/j.bioorg.2018.11.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/06/2018] [Accepted: 11/25/2018] [Indexed: 01/21/2023]
|
18
|
Zhao WY, Shang XY, Zhao L, Yao GD, Sun Z, Huang XX, Song SJ. Bioactivity-guided isolation of β-Carboline alkaloids with potential anti-hepatoma effect from Picrasma quassioides (D. Don) Benn. Fitoterapia 2018; 130:66-72. [DOI: 10.1016/j.fitote.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 01/14/2023]
|
19
|
Park SI, Lee YJ, Won H, Oh KB, Lee HS. Indole Alkaloids from Tropical Sponge Hyrtios sp. as Isocitrate Lyase Inhibitors. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new β-carboline alkaloid, 3,4-dihydrohyrtiosulawesine (8), and fifteen known alkaloids were isolated from the tropical marine sponge Hyrtios sp. Among these known compounds, β-ketoserotonin (10) has been isolated for the first time from a natural source. The structures of the isolated compounds were determined by spectroscopic analyses and comparison with literature values. Compound 8 displayed potent inhibitory activities against isocitrate lyase (IC50: 92.9 μM) from Candida albicans.
Collapse
Affiliation(s)
- Seung-Il Park
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea
- Department of Chemistry & Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yeon-Ju Lee
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea
| | - Hoshik Won
- Department of Chemistry & Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea
| |
Collapse
|
20
|
Two new β-carboline alkaloids from the stems of Picrasma quassioides. Arch Pharm Res 2018; 41:513-518. [DOI: 10.1007/s12272-018-1034-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
|
21
|
Cui YL, Shen N, Zhao JQ, Dang J, Shao Y, Mei LJ, Wang QL, Tao YD, Liu ZG. Phytochemical Constituents of Arenaria kansuensis. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2185-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Lee J, Hwang IH, Kim JH, Kim MA, Hwang JS, Kim YH, Na M. Quinoxaline-, dopamine-, and amino acid-derived metabolites from the edible insect Protaetia brevitarsis seulensis. Arch Pharm Res 2017; 40:1064-1070. [PMID: 28780757 DOI: 10.1007/s12272-017-0942-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Edible insects have been reported to produce metabolites showing various pharmacological activities, recently emerging as rich sources of health functional food. In particular, the larvae of Protaetia brevitarsis seulensis (Kolbe) have been used as traditional Korean medicines for treating diverse diseases, such as breast cancer, inflammatory disease, hepatic cancer, liver cirrhosis, and hepatitis. However, only few chemical investigations were reported on the insect larvae. Therefore, the aim of this study was to discover and identify biologically active chemical components of the larvae of P. brevitarsis seulensis. As a result, a quinoxaline-derived alkaloid (1) was isolated, which was not reported previously from natural sources. In addition, other related compounds (2, 4-10, 15, 16) were also encountered for the first time from the larvae. The structures of all the isolated compounds were established mainly by analysis of HRESIMS, NMR, and electronic circular dichroism data. Compound 5 exhibited inhibition of tyrosinase with IC50 value of 44.8 µM.
Collapse
Affiliation(s)
- JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In Hyun Hwang
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, 55338, Republic of Korea
| | - Jang Hoon Kim
- Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Jeonbuk, 55365, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Jeonbuk, 55365, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
23
|
Abstract
Mushrooms are known to produce over 140 natural products bearing an indole heterocycle. In this review, the isolation of these mushroom-derived indole alkaloids is discussed, along with their associated biological activities.
Collapse
Affiliation(s)
- Joshua A Homer
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Cui Y, Shen N, Dang J, Mei L, Tao Y, Liu Z. Anti-inflammatory bioactive equivalence of combinatorial components β-carboline alkaloids identified in Arenaria kansuensis
by two-dimensional chromatography and solid-phase extraction coupled with liquid-liquid extraction enrichment technology. J Sep Sci 2017; 40:2895-2905. [DOI: 10.1002/jssc.201700144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yulei Cui
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province; Xining Qinghai P.R. China
- University of Chinese Academy of Sciences; Beijing P.R. China
| | - Na Shen
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province; Xining Qinghai P.R. China
- University of Chinese Academy of Sciences; Beijing P.R. China
| | - Jun Dang
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province; Xining Qinghai P.R. China
| | - Lijuan Mei
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province; Xining Qinghai P.R. China
| | - Yanduo Tao
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province; Xining Qinghai P.R. China
| | - Zenggen Liu
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research; Chinese Academy of Sciences; Xining Qinghai P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province; Xining Qinghai P.R. China
| |
Collapse
|
25
|
Yokoo H, Ohsaki A, Kagechika H, Hirano T. Structural development of canthin-5,6-dione moiety as a fluorescent dye and its application to novel fluorescent sensors. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Gong G, Lin Q, Xu J, Ye F, Jiang L, Liu W, He MF, Feng F, Qu W, Xie N. In vivo SAR and STR analyses of alkaloids from Picrasma quassioides identify 1-hydroxymethyl-8-hydroxy-β-carboline as a novel natural angiogenesis inhibitor. RSC Adv 2016. [DOI: 10.1039/c5ra22391a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Twenty alkaloids were obtained from the anti-angiogenic fraction of Picrasma quassioides and their SAR/STR were studies by a zebrafish model. We had identified 3 as an angiogenesis inhibitor and confirmed in vitro.
Collapse
Affiliation(s)
- Guiyi Gong
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jian Xu
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Feng Ye
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lingling Jiang
- Institute of Translational Medicine College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
| | - Ming-Fang He
- Institute of Translational Medicine College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Feng Feng
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Biomedical Functional Materials
| | - Wei Qu
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Biomedical Functional Materials
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicines and TCM Injections
- Jiangxi Qingfeng Pharmaceutical Co., Ltd
- Ganzhou 341000
- China
| |
Collapse
|