1
|
Guseva GB, Eremeeva YV, Antina EV, Gilfanov IR, Lisovskaya SA, Ostolopovskaya OV, Trizna EY, Kayumov AR, Nikitina LE. Effect of meso-substituents and medium properties on the photo- and pH-stability, penetration efficiency into bacterial and microscopic fungi cells of terpene-BODIPY conjugates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123701. [PMID: 38070313 DOI: 10.1016/j.saa.2023.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
In order to expand the arsenal of tools and areas for practical use of BODIPY dyes as bifunctional fluorescent theranostics, we studied the effect of the meso-substituents nature and medium properties on photo- and pH-stability, efficiency of singlet oxygen generation, and affinity to biostructures of terpene-BODIPY conjugates. The BODIPYs fused with myrtenol or thiotherpenoid via carboxylic acid residues exhibit high stability over a wide pH range and the presence of a bulky substituent at the meso-position of BODIPY conjugates increases their photostability two-fold compared to structurally related meso-unsubstituted analogues. Furthermore, the photodegradation rate of the conjugates directly depends on their ability to generate singlet oxygen and the course probability of the corresponding red-ox reactions involving reactive oxygen species. The conjugate of BODIPY with a thiotherpenoid demonstrated high ability to penetrate the membranes of filamentous and yeast-like fungi and bind to membrane of organelles in the fungal cell. At the same time, this compound also had a high ability to penetrate into biofilms of Staphylococcus aureus and Klebsiella pneumoniae and into bacterial cells within the matrix, which makes this compound promising for staining intracellular structures of eukaryotic cells and bacteria embedded into biofilms.
Collapse
Affiliation(s)
- Galina B Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - Yuliya V Eremeeva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - Ilmir R Gilfanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Svetlana A Lisovskaya
- Kazan State Medical University, Faculty of Medicine and Biology, 420012 Kazan, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Scientific Research Institute of Epidemiology and Microbiology, 420015 Kazan, Russia.
| | - Olga V Ostolopovskaya
- Kazan State Medical University, Faculty of Medicine and Biology, 420012 Kazan, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Elena Y Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Liliya E Nikitina
- Kazan State Medical University, Faculty of Medicine and Biology, 420012 Kazan, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
2
|
Sudarikov DV, Nikitina LE, Rollin P, Izmest’ev ES, Rubtsova SA. Monoterpene Thiols: Synthesis and Modifications for Obtaining Biologically Active Substances. Int J Mol Sci 2023; 24:15884. [PMID: 37958865 PMCID: PMC10649346 DOI: 10.3390/ijms242115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an application in asymmetric synthesis as chiral auxiliaries, derivatizing agents, and ligands for metal complex catalysis and organocatalysts. Since monoterpenes and monoterpenoids are a renewable source, there are emerging trends to use monoterpene thiols as monomers for producing new types of green polymers. Monoterpene thioderivatives are also known to possess antioxidant, anticoagulant, antifungal, and antibacterial activity. The current review covers methods for the synthesis of acyclic, mono-, and bicyclic monoterpene thiols, as well as some investigations related to their usage for the preparation of the compounds with antimicrobial properties.
Collapse
Affiliation(s)
- Denis V. Sudarikov
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| | - Liliya E. Nikitina
- General and Organic Chemistry Department, Kazan State Medical University, 49 Butlerov St., 420012 Kazan, Russia;
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d’Orléans et the French National Center for Scientific Research (CNRS), UMR 7311, BP 6759, F-45067 Orléans, France;
| | - Evgeniy S. Izmest’ev
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| | - Svetlana A. Rubtsova
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| |
Collapse
|
3
|
Nikitina LE, Lisovskaya S A, Gilfanov IR, Pavelyev R S, Ostolopovskaya OV, Fedyunina IV, Kiselev SV, Azizova ZR, Pestova SV, Izmest’ev ES, Rubtsova SA, Akhverdiev RF, Gerasimov AV, Sarbazyan EA, Shipina OT, Boichuk SV, Izmailov AG. Thioterpenoids of the Bornane Series with Potent Activity Against Opportunistic Micromycetes. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Ilchenko NO, Sudarikov DV, Rumyantcev RV, Baidamshina DR, Zakarova ND, Yahia MN, Kayumov AR, Kutchin AV, Rubtsova SA. Synthesis and Antimicrobial Activity of Sulfenimines Based on Pinane Hydroxythiols. Antibiotics (Basel) 2022; 11:1548. [PMID: 36358203 PMCID: PMC9686613 DOI: 10.3390/antibiotics11111548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2023] Open
Abstract
The widespread presence of multidrug-resistant pathogenic microorganisms challenges the development of novel chemotype antimicrobials, insensitive to microbial tools of resistance. To date, various monoterpenoids have been shown as potential antimicrobials. Among many classes of molecules with antimicrobial activity, terpenes and terpenoids are an attractive basis for the design of antimicrobials because of their low toxicity and availability for various modifications. In this work, we report on the synthesis of sulfenimines from chiral trifluoromethylated and non-fluorinated pinane-type thiols. Final compounds were obtained with yields of up to 81%. Among the 13 sulfenimines obtained, 3 compounds were able to repress the growth of both bacteria (S. aureus, both MSSA and MRSA; P. aeruginosa) and fungi (C. albicans) with an MIC of 8-32 µg/mL. Although compounds exhibited relatively high cytotoxicity (the therapeutic index of 3), their chemotype can be used as a starter point for the development of disinfectants and antiseptics for targeting multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Nikita O. Ilchenko
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
| | - Denis V. Sudarikov
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Roman V. Rumyantcev
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina St., 603950 Nizhny Novgorod, Russia
| | - Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Nargiza D. Zakarova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Monyr Nait Yahia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Aleksandr V. Kutchin
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
| | - Svetlana A. Rubtsova
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
| |
Collapse
|
5
|
Guseva GB, Antina EV, Berezin MB, Ksenofontov AA, Bocharov PS, Smirnova AS, Pavelyev RS, Gilfanov IR, Pestova SV, Izmest'ev ES, Rubtsova SA, Kayumov AR, Kiselev SV, Azizova ZR, Ostolopovskaya OV, Efimov SV, Klochkov VV, Khodov IA, Nikitina LE. Conjugate of meso-carboxysubstituted-BODIPY with thioterpenoid as an effective fluorescent probe: Synthesis, structure, spectral characteristics, and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120638. [PMID: 34840052 DOI: 10.1016/j.saa.2021.120638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This paper is devoted to the design of a fluorescent probe based on meso-carboxysubstituted-BODIPY with a thioterpene fragment. The functional replacement of the methoxy group in the BODIPY molecule on a thioterpene fragment was carried out in order to find out the antiplatelet and anticoagulant action mechanisms of thioterpenoids and to assess the membrane and receptor factors contributions. The molecular structure of the conjugate was confirmed via UV/vis-, NMR- and MS-spectra. It is found that the probe is a high fluorescence quantum yield (to ∼ 100%) in the blue-green region at 509-516 nm. Molecular docking of all studied molecules showed that the BODIPY with terpenoid conjugation is an excellent way to increase their affinity to platelet receptor P2Y12.
Collapse
Affiliation(s)
- Galina B Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia.
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Pavel S Bocharov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, 153000 Ivanovo, Russia
| | - Anastassia S Smirnova
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, 153000 Ivanovo, Russia
| | - Roman S Pavelyev
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | - Ilmir R Gilfanov
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | - Svetlana V Pestova
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Evgeny S Izmest'ev
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Svetlana A Rubtsova
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Airat R Kayumov
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | - Sergei V Kiselev
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | - Zulfiya R Azizova
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | | | - Sergey V Efimov
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | | | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Liliya E Nikitina
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia; Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| |
Collapse
|
6
|
Antina E, Bumagina N, Marfin Y, Guseva G, Nikitina L, Sbytov D, Telegin F. BODIPY Conjugates as Functional Compounds for Medical Diagnostics and Treatment. Molecules 2022; 27:1396. [PMID: 35209191 PMCID: PMC8877204 DOI: 10.3390/molecules27041396] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescent dyes absorbing and emitting in the visible and near-IR regions are promising for the development of fluorescent probes for labeling and bio-visualization of body cells. The ability to absorb and emit in the long-wavelength region increases the efficiency of recording the spectral signals of the probes due to the higher permeability of the skin layers. Compared to other fluorescent dyes, BODIPYs are attractive due to their excellent photophysical properties-narrow absorption and emission, intense fluorescence, simple signal modulation for the practical applications. As part of conjugates with biomolecules, BODIPY could act as a biomarker, but as therapeutic agent, which allows solving several problems at once-labeling or bioimaging and treatment based on the suppression of pathogenic microflora and cancer cells, which provides a huge potential for practical application of BODIPY conjugates in medicine. The review is devoted to the discussion of the recent, promising directions of BODIPY application in the field of conjugation with biomolecules. The first direction is associated with the development of BODIPY conjugates with drugs, including compounds of platinum, paclitaxel, chlorambucil, isoxazole, capsaicin, etc. The second direction is devoted to the labeling of vitamins, hormones, lipids, and other biomolecules to control the processes of their transport, localization in target cells, and metabolism. Within the framework of the third direction, the problem of obtaining functional optically active materials by conjugating BODIPY with other colored and fluorescent particles, in particular, phthalocyanines, is being solved.
Collapse
Affiliation(s)
- Elena Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (E.A.); (N.B.); (G.G.)
| | - Natalia Bumagina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (E.A.); (N.B.); (G.G.)
| | - Yuriy Marfin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskiy Ave., 153000 Ivanovo, Russia; (D.S.); (F.T.)
| | - Galina Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (E.A.); (N.B.); (G.G.)
| | - Liliya Nikitina
- Department of General and Organic Chemistry, Kazan State Medical University, 49 Butlerova St., 420012 Kazan, Russia;
- Biologically Active Terpenoids Laboratory, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Dmitry Sbytov
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskiy Ave., 153000 Ivanovo, Russia; (D.S.); (F.T.)
| | - Felix Telegin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskiy Ave., 153000 Ivanovo, Russia; (D.S.); (F.T.)
| |
Collapse
|
7
|
Lodochnikova OA, Islamov DR, Gerasimova DP, Zakharychev DV, Saifina AF, Pestova SV, Izmest'ev ES, Rubtsova SA, Pavelyev RS, Rakhmatullin IZ, Klochkov VV, Ostolopovskaya OV, Nikitina LE, Rollin P. Isobornanyl sulfoxides and isobornanyl sulfone: Physicochemical characteristics and the features of crystal structure. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Synthesis and Oxidative Transformations of New Chiral Pinane-Type γ-Ketothiols: Stereochemical Features of Reactions. Molecules 2021; 26:molecules26175245. [PMID: 34500679 PMCID: PMC8433878 DOI: 10.3390/molecules26175245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/01/2022] Open
Abstract
Chiral γ-ketothiols, thioacetates, thiobenzoate, disulfides, sulfones, thiosulfonates, and sulfonic acids were obtained from β-pinene for the first time. New compounds open up prospects for the synthesis of other polyfunctional compounds combining a biologically active pinane fragment with various pharmacophore groups. It was shown that the syntheses of sulfanyl and sulfonyl derivatives based on 2-norpinanone are characterized by high stereoselectivity in comparison with similar reactions of pinocarvone. The conditions for the preparation of diastereomerically pure thioacetyl and thiobenzoyl derivatives based on pinocarvone, as well as for the chemoselective oxidation of γ-ketothiols with chlorine dioxide to the corresponding thiolsulfonates and sulfonic acids, were selected. The effect of the VO(acac)2 catalyst on the increase in the yields of thiosulfonates was shown. A new direction of the transformation of thiosulfonates with the formation of sulfones was revealed. In the case of pinocarvone-based sulfones, the configuration is inversed at the C2 atom. An epimerization scheme is proposed.
Collapse
|
9
|
Ilchenko NO, Sudarikov DV, Slepukhin PA, Rubtsova SA, Kutchin AV. Synthesis of Chiral CF
3
‐Contaning Pinane‐Type Hydroxythiols. ChemistrySelect 2021. [DOI: 10.1002/slct.202002657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nikita O. Ilchenko
- Institute of Chemistry FRC “Komi Scientific Centre” Ural Branch of the Russian Academy of Sciences Pervomayskaya St. 28 167000 Syktyvkar Komi Republic Russia
| | - Denis V. Sudarikov
- Institute of Chemistry FRC “Komi Scientific Centre” Ural Branch of the Russian Academy of Sciences Pervomayskaya St. 28 167000 Syktyvkar Komi Republic Russia
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis Ural Branch of the Russian Academy of Sciences S. Kovalevskaya St. 22 620137 Ekaterinburg Russia
| | - Svetlana A. Rubtsova
- Institute of Chemistry FRC “Komi Scientific Centre” Ural Branch of the Russian Academy of Sciences Pervomayskaya St. 28 167000 Syktyvkar Komi Republic Russia
| | - Alexandr V. Kutchin
- Institute of Chemistry FRC “Komi Scientific Centre” Ural Branch of the Russian Academy of Sciences Pervomayskaya St. 28 167000 Syktyvkar Komi Republic Russia
| |
Collapse
|
10
|
Nikitina LE, Pavelyev RS, Startseva VA, Kiselev SV, Galiullina LF, Aganova OV, Timerova AF, Boichuk SV, Azizova ZR, Klochkov VV, Huster D, Khodov IA, Scheidt HA. Structural details on the interaction of biologically active sulfur-containing monoterpenoids with lipid membranes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Grebyonkina ON, Lezina OM, Izmestʼev ES, Rubtsova SA, Kutchin AV. Synthesis of New Sulfonamides Based on β-Pinene. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Grebyonkina ON, Lezina OM, Izmest’ev ES, Frolova LL, Rubtsova SA, Kutchin AV. Synthesis and Oxidation of Myrtanethiol and Its Functional Derivatives with Chlorine Dioxide. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s107042801910004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Izmest'ev YS, Pestova SV, Lezina OM, Rubtsova SA, Kutchin AV. Synthesis of Novel Chiral 18‐Sulfanyl and Sulfonyl Dehydroabietane Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yevgeniy S. Izmest'ev
- Institute of ChemistryFederal Research Center “Komi Science Center of Ural Branch of the Russian Academy of Scienses” Pervomaiskaya 48 Syktyvkar 167000 Russian Federation
| | - Svetlana V. Pestova
- Institute of ChemistryFederal Research Center “Komi Science Center of Ural Branch of the Russian Academy of Scienses” Pervomaiskaya 48 Syktyvkar 167000 Russian Federation
| | - Ol'ga M. Lezina
- Institute of ChemistryFederal Research Center “Komi Science Center of Ural Branch of the Russian Academy of Scienses” Pervomaiskaya 48 Syktyvkar 167000 Russian Federation
| | - Svetlana A. Rubtsova
- Institute of ChemistryFederal Research Center “Komi Science Center of Ural Branch of the Russian Academy of Scienses” Pervomaiskaya 48 Syktyvkar 167000 Russian Federation
| | - Aleksandr V. Kutchin
- Institute of ChemistryFederal Research Center “Komi Science Center of Ural Branch of the Russian Academy of Scienses” Pervomaiskaya 48 Syktyvkar 167000 Russian Federation
| |
Collapse
|
14
|
|
15
|
Nikitina LE, Lisovskaya SА, Startseva VA, Pavelyev RS, Gilfanov IR, Fedyunina IV, Ostolopovskaya OV, Akhverdiev RF. Development of Novel Effective Agents Against Candida albicans Biofilms. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Suslov EV, Ponomarev KY, Korchagina DV, Volcho KP, Salakhutdinov NF. Synthesis of diazaadamantanes from 1,5-dimethylbispidinone and some natural ketones. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2461-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Zhang X, Han B, Feng Z, Jiang J, Yang Y, Zhang P. Bioactive thionic compounds and aromatic glycosides from Ligusticum chuanxiong. Acta Pharm Sin B 2018; 8:818-824. [PMID: 30245968 PMCID: PMC6147803 DOI: 10.1016/j.apsb.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022] Open
Abstract
Three new thionic compounds, (S)-2-(2-carboxyl-2-hydroxyethylthio)-ferulic acid (1), (E)-2-methoxy-4-(3-(methylsulfonyl)prop-1-en-1-yl)phenol (2), and thiosenkyunolide C (3), together with two new aromatic glycosides (4 and 5) were isolated from the rhizome of Ligusticum chuanxiong Hort. Two known compounds (6 and 7) were also obtained. Their structures were elucidated based on extensive spectroscopic data (UV, IR, 1D and 2D NMR, and HR-ESI-MS). Furthermore the absolute configurations were established by comparison of their calculated and experimental circular dichroism spectra and by a dimolybdenum tetraacetate [Mo2(AcO)4]-induced circular dichroism procedure. All compounds were evaluated against lipopolysaccharide (LPS)-induced NO production in BV2 cells, and compounds 4 and 5 showed strong inhibitory activities with IC50 values of 2.03 and 3.09 µmol/L, respectively (positive control curcumin, IC50 = 6.17 µmol/L). In addition, compound 1 showed weak proteintyrosine phosphatase-1B (PTP1B) inhibitory activity.
Collapse
|
18
|
Patrusheva OS, Volcho KP, Salakhutdinov NF. Synthesis of oxygen-containing heterocyclic compounds based on monoterpenoids. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4810] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Nikitina LE, Kiselev SV, Startseva VA, Bodrov AV, Azizova ZR, Shipina OT, Fedyunina IV, Boichuk SV, Lodochnikova OA, Klochkov VV, Galiullina LF, Khaliullina AV. Sulfur-Containing Monoterpenoids as Potential Antithrombotic Drugs: Research in the Molecular Mechanism of Coagulation Activity Using Pinanyl Sulfoxide as an Example. Front Pharmacol 2018. [PMID: 29515444 PMCID: PMC5825891 DOI: 10.3389/fphar.2018.00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this article we present the synthesis of enantiomerically pure sulfoxide and study the influence of this compound on hemostasis. Detailed NMR studies and molecular dynamics simulations using sodium dodecyl sulfate (SDS) membrane models indicated that the bicyclic fragment of sulfoxide was embedded into the SDS micelle whereas the -SO(CH2)2OH fragment remained on the surface of the micelle and was in contact with the solvent. We also found that the pro-coagulative activity of sulfoxide was due to its ability to inhibit platelet activation and inhibited the catalytic activity of phospholipid surface which was involved in formation of coagulation clotting factor complexes.
Collapse
Affiliation(s)
- Liliya E Nikitina
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia.,Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Sergei V Kiselev
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia
| | - Valeriya A Startseva
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia
| | - Andrei V Bodrov
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia
| | - Zulfiya R Azizova
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia
| | - Olga T Shipina
- Department of Chemistry and Technology of Macromolecular Compounds, Kazan National Research Technological University, Kazan, Russia
| | - Inna V Fedyunina
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia
| | - Sergei V Boichuk
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia
| | - Olga A Lodochnikova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Vladimir V Klochkov
- Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Leisan F Galiullina
- Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Aliya V Khaliullina
- Department of General and Organic Chemistry, Kazan State Medical University, Kazan, Russia.,Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan, Russia
| |
Collapse
|