1
|
Khabibulina LR, Garifullin BF, Aznagulov RF, Andreeva OV, Strobykina IY, Belenok MG, Voloshina AD, Abramova DF, Vyshtakalyuk AB, Lyubina AP, Amerhanova SK, Sharipova RR, Kataev VE. Synthesis, cytotoxicity and antioxidant activity of new conjugates of N-acetyl-d-glucosamine with α-aminophosphonates. Carbohydr Res 2024; 541:109146. [PMID: 38788561 DOI: 10.1016/j.carres.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
A series of the first conjugates of N-acetyl-d-glucosamine with α-aminophosphonates was synthesized using the Kabachnik-Fields reaction, the Pudovik reaction, a copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) and evaluated for the in vitro cytotoxicity against human cancer cell lines M - HeLa, HuTu-80, A549, PANC-1, MCF-7, T98G and normal lung fibroblast cells WI-38. The tested conjugates, with exception of compound 21b, considered as a lead compound, were either inactive against the used cancer cells or showed moderate cytotoxicity in the range of IC50 values 33-80 μM. The lead compound 21b, being non cytotoxic against normal human cells WI-38 (IC50 = 90 μM), demonstrated good activity (IC50 = 17 μM) against breast adenocarcinoma cells (MCF-7) which to be 1.5 times higher than the activity of the used reference anticancer drug tamoxifen (IC50 = 25.0 μM). A flexible receptor molecular docking simulation showed that the cytotoxicity of the synthesized conjugates of N-acetyl-d-glucosamine with α-aminophosphonates against breast adenocarcinoma MCF-7 cell line is due to their ability to inhibit EGFR kinase domain. In addition, it was found that conjugates 22a and 22b demonstrated antioxidant activity that was not typical for α-aminophosphonates.
Collapse
Affiliation(s)
- Leysan R Khabibulina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation.
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Ravil F Aznagulov
- Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Dinara F Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Alexandra B Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
3
|
Gao K, Qin Y, Liu S, Wang L, Xing R, Yu H, Chen X, Li P. A review of the preparation, derivatization and functions of glucosamine and N-acetyl-glucosamine from chitin. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Juang YP, Liang PH. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020; 25:E4974. [PMID: 33121124 PMCID: PMC7663351 DOI: 10.3390/molecules25214974] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Saponins are amphiphilic molecules consisting of carbohydrate and either triterpenoid or steroid aglycone moieties and are noted for their multiple biological activities-Fungicidal, antimicrobial, antiviral, anti-inflammatory, anticancer, antioxidant and immunomodulatory effects have all been observed. Saponins from natural sources have long been used in herbal and traditional medicines; however, the isolation of complexed saponins from nature is difficult and laborious, due to the scarce amount and structure heterogeneity. Chemical synthesis is considered a powerful tool to expand the structural diversity of saponin, leading to the discovery of promising compounds. This review focuses on recent developments in the structure optimization and biological evaluation of synthetic triterpenoid and steroid saponin derivatives. By summarizing the structure-activity relationship (SAR) results, we hope to provide the direction for future development of saponin-based bioactive compounds.
Collapse
Affiliation(s)
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|