1
|
Temperature-responsive optogenetic probes of cell signaling. Nat Chem Biol 2022; 18:152-160. [PMID: 34937907 PMCID: PMC9252025 DOI: 10.1038/s41589-021-00917-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.
Collapse
|
2
|
Identification of cis-acting determinants mediating the unconventional secretion of tau. Sci Rep 2021; 11:12946. [PMID: 34155306 PMCID: PMC8217235 DOI: 10.1038/s41598-021-92433-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
The deposition of tau aggregates throughout the brain is a pathological characteristic within a group of neurodegenerative diseases collectively termed tauopathies, which includes Alzheimer’s disease. While recent findings suggest the involvement of unconventional secretory pathways driving tau into the extracellular space and mediating the propagation of the disease-associated pathology, many of the mechanistic details governing this process remain elusive. In the current study, we provide an in-depth characterization of the unconventional secretory pathway of tau and identify novel molecular determinants that are required for this process. Here, using Drosophila models of tauopathy, we correlate the hyperphosphorylation and aggregation state of tau with the disease-related neurotoxicity. These newly established systems recapitulate all the previously identified hallmarks of tau secretion, including the contribution of tau hyperphosphorylation as well as the requirement for PI(4,5)P2 triggering the direct translocation of tau. Using a series of cellular assays, we demonstrate that both the sulfated proteoglycans on the cell surface and the correct orientation of the protein at the inner plasma membrane leaflet are critical determinants of this process. Finally, we identify two cysteine residues within the microtubule binding repeat domain as novel cis-elements that are important for both unconventional secretion and trans-cellular propagation of tau.
Collapse
|
3
|
Bosch JA, Knight S, Kanca O, Zirin J, Yang-Zhou D, Hu Y, Rodiger J, Amador G, Bellen HJ, Perrimon N, Mohr SE. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2020; 130:e112. [PMID: 31869524 PMCID: PMC7213786 DOI: 10.1002/cpmb.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Shannon Knight
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| | - Donghui Yang-Zhou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Rodiger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| | - Gabriel Amador
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Zitzmann J, Schreiber C, Eichmann J, Bilz RO, Salzig D, Weidner T, Czermak P. Single-cell cloning enables the selection of more productive Drosophila melanogaster S2 cells for recombinant protein expression. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00272. [PMID: 29998071 PMCID: PMC6037645 DOI: 10.1016/j.btre.2018.e00272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
The generation of monoclonal cell lines is an important early process development step for recombinant protein production. Although single-cell cloning is an established method in mammalian cell lines, straightforward protocols are not yet available for insect cells. We describe a new method for the generation of monoclonal insect cells without using fetal bovine serum and/or feeder cells pretreated by irradiation or exposure to mitomycin. Highly productive clones of Drosophila melanogaster S2 cells were prepared in a two-step procedure, comprising the establishment of a polyclonal population and subsequent single cell isolation by limiting dilution. Necessary growth factors were provided by co-cultivation of single transformants with untransfected feeder cells, which were later removed by antibiotic selection. Enhanced expression of EGFP and two target peptides was confirmed by flow cytometry and dot/western blotting. Highly productive clones were stable, showed a uniform expression profile and typically a sixfold to tenfold increase in cell-specific productivity.
Collapse
Key Words
- AMP, antimicrobial peptide/protein
- BR021, Harmonia axyridis antimicrobial peptide BR021
- BSA, bovine serum albumin
- D. melanogaster S2 cells
- DMSO, dimethyl sulfoxide
- EGFP, enhanced green fluorescent protein
- FACS, fluorescence activated cell sorting
- FBS, fetal bovine serum
- GMP, good manufacturing practice
- GmGlv, Galleria mellonella antimicrobial peptide Gloverin
- Insect cell culture
- Monoclonal cell line
- OD600, optical density at 600nm
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PVDF, polyvinylidene difluoride
- RMCE, recombinase mediated cassette exchange
- Recombinant protein expression
- SDS-PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis
- SFM, serum free medium
- Sf9, clonal isolate of Spodoptera frugiperda Sf21 cells
- Single-cell cloning
- Stably transformed
- rS2, recombinant Drosophila melanogaster Schneider 2 cells
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Christine Schreiber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Joel Eichmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Roberto Otmar Bilz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan KS, USA
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| |
Collapse
|
5
|
Zitzmann J, Weidner T, Czermak P. Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells. Cytotechnology 2017; 69:371-389. [PMID: 28132128 PMCID: PMC5366974 DOI: 10.1007/s10616-017-0068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial proteins and peptides (AMPs) are valuable as leads in the pharmaceutical industry for the development of novel anti-infective drugs. Here we describe the efficient heterologous expression and basic characterization of a Gloverin-family AMP derived from the greater wax moth Galleria mellonella. Highly productive single-cell clones prepared by limiting dilution achieved a 100% increase in productivity compared to the original polyclonal Drosophila melanogaster S2 cell line. Comprehensive screening for suitable expression conditions using statistical experimental designs revealed that optimal induction was achieved using 600 µM CuSO4 at the mid-exponential growth phase. Under these conditions, 25 mg/L of the AMP was expressed at the 1-L bioreactor scale, with optimal induction and harvest times ensured by dielectric spectroscopy and the online measurement of optical density. Gloverin was purified from the supernatant by immobilized metal ion affinity chromatography followed by dialysis. In growth assays, the purified protein showed specific antimicrobial activity against two different strains of Escherichia coli.
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Giessen, Germany.
- Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
6
|
Santos AK, Parreira RC, Resende RR. Expression System Based on an MTIIa Promoter to Produce hPSA in Mammalian Cell Cultures. Front Microbiol 2016; 7:1280. [PMID: 27582737 PMCID: PMC4987383 DOI: 10.3389/fmicb.2016.01280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/03/2016] [Indexed: 11/30/2022] Open
Abstract
Because of the limitations of standard culture techniques, the development of new recombinant protein expression systems with biotechnological potential is a key challenge. Ideally, such systems should be able to effectively and accurately synthesize a protein of interest with intrinsic metabolic capacity. Here, we describe such a system that was designed based on a plasmid vector containing promoter elements derived from the metallothionein MTIIa promoter, as well as processing and purification elements. This promoter can be induced by heavy metals in a culture medium to induce the synthesis of human prostate-specific antigen (hPSA), which has been modified to insert elements for purification, proteolysis, and secretion. We optimized hPSA production in this system by comparing the effects and contributions of ZnCl2, CdCl2, and CuSO4 in HEK293FT, HeLa, BHK-21, and CHO-K1 cells. We also compared the effectiveness of three different transfection agents: multi-walled carbon nanotubes, Lipofectamine 2000, and X-tremeGENE HP Reagent. hPSA production was confirmed via the detection of enhanced green fluorescent protein fluorescence, and cell viability was determined. The expression of hPSA was compared with that of the native protein produced by LNCaP cells, using enzyme-linked immunosorbent assay and sodium dodecyl sulfate polyacrylamide gel electrophoresis. X-tremeGENE reagent, the BHK-21 cell line, and CuSO4 showed the highest hPSA production rates. Furthermore, BHK-21 cells were more resistant to the oxidative stress caused by 100 μM CuSO4. These results suggest that the proposed optimized inducible expression system can effectively produce recombinant proteins with desired characteristics for a wide range of applications in molecular biology.
Collapse
Affiliation(s)
- Anderson K Santos
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Instituto NanocellDivinópolis, Brazil
| | - Ricardo C Parreira
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Instituto NanocellDivinópolis, Brazil
| | - Rodrigo R Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Instituto NanocellDivinópolis, Brazil
| |
Collapse
|
7
|
Expression and purification of HER2 extracellular domain proteins in Schneider2 insect cells. Protein Expr Purif 2015; 125:26-33. [PMID: 26363121 DOI: 10.1016/j.pep.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu) results in ligand independent activation of kinase signaling and is found in about 30% of human breast cancers, and is correlated with a more aggressive tumor phenotype. The HER2 extracellular domain (ECD) consists of four domains - I, II, III and IV. Although the role of each domain in the dimerization and activation of the receptor has been extensively studied, the role of domain IV (DIV) is not clearly understood yet. In our previous studies, we reported peptidomimetic molecules inhibit HER2:HER3 heterodimerization. In order to study the binding interactions of peptidomimetics with HER2 DIV in detail, properly folded recombinant HER2 protein in pure form is important. We have expressed and purified HER2 ECD and DIV proteins in the Drosophila melanogaster Schneider2 (S2) cell line. Using the commercial Drosophila expression system (DES), we transfected S2 cells with plasmids designed to direct the expression of secreted recombinant HER2 ECD and DIV proteins. The secreted proteins were purified from the conditioned medium by filtration, ultrafiltration, dialysis and nickel affinity chromatography techniques. The purified HER2 proteins were then analyzed using Western blot, mass spectrometry and circular dichroism (CD) spectroscopy.
Collapse
|
8
|
Astray RM, Ventini DC, Boldorini VLL, Silva FG, Rocca MP, Pereira CA. Rabies virus glycoprotein and immune response pattern using recombinant protein or recombinant RNA viral vectors. Vaccine 2014; 32:2829-32. [PMID: 24598721 DOI: 10.1016/j.vaccine.2014.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study shows the humoral and cellular aspects of immune response generated by a recombinant rabies virus glycoprotein (rRVGP) as compared to those generated by viral vector carrying the RNA coding for this protein (RVGP-RNA). The rRVGP was synthesized by stably transfected Drosophila melanogaster Schneider 2 (S2) cells and the RVGP-RNA was carried by a recombinant Semiliki Forest Virus (SFV-RVGP). The data show that protein as well as the RNA vaccine was capable of inducing reasonably acceptable levels of antibodies as compared to the optimized commercial whole virus vaccine. As expected, the RNA vaccine was clearly more effective than the protein vaccines in inducing a cellular immune response, as evaluated by the IgG2a/IgG1 ratio and synthesis of interferon gamma (IFNγ) and interleukin 2 (IL2). Our study supports the importance of vaccine designing taking into consideration the concept of DNA/RNA ability to induce an effective cell immune response.
Collapse
Affiliation(s)
- Renato M Astray
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil
| | - Daniella C Ventini
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil
| | - Vera L L Boldorini
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil
| | - Fernanda G Silva
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil
| | - Mayra P Rocca
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil
| | - Carlos A Pereira
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil.
| |
Collapse
|
9
|
Benbahouche NEH, Iliopoulos I, Török I, Marhold J, Henri J, Kajava AV, Farkaš R, Kempf T, Schnölzer M, Meyer P, Kiss I, Bertrand E, Mechler BM, Pradet-Balade B. Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries. J Biol Chem 2014; 289:6236-47. [PMID: 24394412 DOI: 10.1074/jbc.m113.499608] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.
Collapse
Affiliation(s)
- Nour El Houda Benbahouche
- From the Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. eLife 2013; 2:e00036. [PMID: 24015354 PMCID: PMC3762186 DOI: 10.7554/elife.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001 Stem cells are ‘pluripotent’—in other words, they have the potential to become many other cell types. This ability makes them extremely valuable for research. They also hold substantial promise for medical applications, since they can be used to replace cells lost or damaged by disease or injury. Embryos represent a rich source of stem cells; however, obtaining these cells from human embryos raises obvious ethical and practical concerns, and they have also been difficult to isolate from many species. A recent discovery circumvented these issues for humans and several mammalian species commonly studied in the laboratory. This technique can turn cells from adult mammals into ‘induced pluripotent stem cells’, or iPSCs, by switching on four genes. Nevertheless, no analogous method has yet been established to create similar cell populations in non-mammalian organisms, which are also important models for human development and disease. Now, Rosselló et al. have shown that cells from both invertebrate and non-mammalian vertebrate species—including birds, fish and insects—can be reprogrammed into cells that closely resemble iPSCs. Intriguingly, these cells were created by switching on the same four genes that generate iPSCs in mammals, even though vertebrates and invertebrates are separated by around 550 million years of evolution. Rosselló et al. used a viral vector that carries the four stem-cell genes (from the mouse) into target cells from the different species. The genetically altered cells developed into iPSC-like cells with many of the characteristics of natural mammalian and bird stem cells. To confirm that the cells were pluripotent, Rossello et al. first showed that the cells could develop into primitive early embryos called embryoid bodies. For the vertebrate species tested, the embryoid bodies contained cells from each of the three main vertebrate embryo cell types. Secondly, iPSC-like cells from two organisms—chicks and zebrafish—formed various mature cell types when injected into developing chick or zebrafish embryos. These results have two important implications. They suggest that the genetic mechanisms by which cells can be reprogrammed into a stem-like state have been conserved through 550 million years of evolution; additionally, they demonstrate that stem-like cells can be generated from important experimental organisms, and provide an important tool for both biological and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.00036.002
Collapse
Affiliation(s)
- Ricardo Antonio Rosselló
- Department of Biochemistry , University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico ; Department of Neurobiology , Duke University Medical Center , Durham , United States ; Howard Hughes Medical Institute, Duke University Medical Center , Durham , United States
| | | | | | | | | | | |
Collapse
|
11
|
Moraes AM, Jorge SAC, Astray RM, Suazo CAT, Calderón Riquelme CE, Augusto EFP, Tonso A, Pamboukian MM, Piccoli RAM, Barral MF, Pereira CA. Drosophila melanogaster S2 cells for expression of heterologous genes: From gene cloning to bioprocess development. Biotechnol Adv 2011; 30:613-28. [PMID: 22079894 DOI: 10.1016/j.biotechadv.2011.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 10/07/2011] [Accepted: 10/30/2011] [Indexed: 12/16/2022]
Abstract
In the present review we discuss strategies that have been used for heterologous gene expression in Drosophila melanogaster Schneider 2 (S2) cells using plasmid vectors. Since the growth of S2 cells is not dependent on anchorage to solid substrates, these cells can be easily cultured in suspension in large volumes. The factors that most affect the growth and gene expression of S2 cells, namely cell line, cell passage, inoculum concentration, culture medium, temperature, dissolved oxygen concentration, pH, hydrodynamic forces and toxic metabolites, are discussed by comparison with other insect and mammalian cells. Gene expression, cell metabolism, culture medium formulation and parameters involved in cellular respiration are particularly emphasized. The experience of the authors with the successful expression of a biologically functional protein, the rabies virus glycoprotein (RVGP), by recombinant S2 cells is presented in the topics covered.
Collapse
Affiliation(s)
- Angela M Moraes
- Departamento de Engenharia de Materiais e de Bioprocessos, Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pamboukian MM, Pereira CA, Augusto EDFP, Tonso A. Adaptation of the "Dynamic Method" for measuring the specific respiration rate in oxygen transfer systems through diffusion membrane. Biotechnol J 2011; 6:1497-503. [PMID: 21648091 DOI: 10.1002/biot.201000273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/23/2010] [Accepted: 04/26/2011] [Indexed: 11/10/2022]
Abstract
Monitoring the specific respiration rate (Q(O2)) is a valuable tool to evaluate cell growth and physiology. However, for low Q(O2) values the accuracy may depend on the measurement methodology, as it is the case in animal cell culture. The widely used "Dynamic Method" imposes serious difficulties concerning oxygen transfer cancellation, especially through membrane oxygenation. This paper presents an improved procedure to this method, through an automated control of the gas inlet composition that can minimize the residual oxygen transfer driving force during the Q(O2) measurement phase. The improved technique was applied to animal cell cultivation, particularly three recombinant S2 (Drosophila melanogaster) insect cell lines grown in a membrane aeration bioreactor. The average measurements of the proposed method reached 98% of stationary liquid phase balance method, taken as a reference, compared to 21% when the traditional method was used. Furthermore, this methodology does not require knowledge of the volumetric transfer coefficient k(L)a, which may vary during growth.
Collapse
|
13
|
Wang GL, Jiang PJ, Wang XH, Chen W. Construction of a eukaryotic expression plasmid encoding the human PKAR IIβ gene and its expression in human gastric cancer BGC-823 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:1446-1450. [DOI: 10.11569/wcjd.v19.i14.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a eukaryotic expression plasmid encoding the human protein kinase A regulatory subunit II beta (PKAR IIβ) gene and to examine its expression and localization in BGC-823 gastric cells using green fluorescent protein as a reporter.
METHODS: The coding sequence of the PKAR IIβ gene was amplified from the plasmid pRSETB-PKARIIβ by PCR and subcloned into pEGFP-C1 vector after digestion with Xho I and EcoR I. After the identity of recombinant plasmid was verified by direct sequencing, the plasmid was transfected into BGC-823 cells. The expression of the recombinant plasmid in BGC-823 cells was detected by Western blot. The localization of GFP-PKARIIβ in BGC-823 cells was observed by laser scanning confocal microscopy.
RESULTS: The coding sequence of the PKARIIβ gene was inserted into the pEGFP-C1 vector successfully. Restriction enzymes digestion showed that the length of the insert was 1.2 kb, matching the expected size. The expression of GFP-PKARIIβ fusion protein, which had a molecular weight of 72 000 Da, was detected in BGC-823 cells by Western blot. The GFP-PKARIIβ protein was localized predominantly to the cytoplasm but sparsely to the nucleus of HEK293 and BGC-823 cells.
CONCLUSION: A recombinant plasmid expressing the PKARIIβ gene has been successfully constructed and provides a tool for future investigation of PKARIIβ functions. The GFP-PKARIIβ fusion protein was expressed mainly in the cytoplasm of HEK293 and BGC7901 cells.
Collapse
|
14
|
Sørensen HP. Towards universal systems for recombinant gene expression. Microb Cell Fact 2010; 9:27. [PMID: 20433754 PMCID: PMC2876075 DOI: 10.1186/1475-2859-9-27] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/30/2010] [Indexed: 01/19/2023] Open
Abstract
Recombinant gene expression is among the most important techniques used both in molecular and medical research and in industrial settings. Today, two recombinant expression systems are particularly well represented in the literature reporting on recombinant expression of specific genes. According to searches in the PubMed citation database, during the last 15 years 80% of all recombinant genes reported on in the literature were expressed in either the enterobacterium Escherichia coli or the methylotropic yeast Pichia pastoris. Nevertheless, some eukaryotic proteins are misfolded or inadequately posttranslationally modified in these expression systems. This situation demands identification of other recombinant expression systems that enable the proper expression of the remaining eukaryotic genes. As of now, a single universal system allowing expression of all target genes is still a distant goal. In this light, thorough experimental screening for systems that can yield satisfying quantity and quality of target protein is required. In recent years, a number of new expression systems have been described and used for protein production. Two systems, namely Drosophila melanogaster S2 insect cells and human embryonic kidney 293 (HEK293) cells stably expressing the EBNA-1 gene, show exceptional promise. The time has come to identify a few well-performing systems that will allow us to express, purify, and characterize entire eukaryotic genomes.
Collapse
Affiliation(s)
- Hans Peter Sørensen
- Danish-Chinese Centre for Proteases and Cancer, Danish National Research Foundation, Aarhus University, Department of Molecular Biology, Gustav Wieds Vej 10C, DK 8000 Aarhus, Denmark.
| |
Collapse
|
15
|
Dos Santos AS, Lemos MAN, Pereira CA, Jorge SAC. Rabies virus glycoprotein expression in Drosophila S2 cells: influence of re-selection on protein expression. Biotechnol J 2009; 4:1578-81. [PMID: 19824020 DOI: 10.1002/biot.200900123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to achieve expression of recombinant rabies virus glycoprotein (rRVGP) in Drosophila S2 cells. For this, a cDNA coding for the selection hygromycin antibiotic and the cDNA encoding the RVGP protein under the control of the constitutive actin promoter (Ac) were cloned in an expression plasmid, which was transfected into S2 cells. S2 cell populations (S2AcRVGPHy) showed rRVGP expression in cell lysates, attaining concentrations up to 1.5 microg/10(7) cells (705 microg/L). Of the transfected cells, 20% were shown to express the rRVGP. Cell subpopulations selected by limiting dilution expressed higher rRVGP yields and 90% of the cells were shown to express the rRVGP. Cell populations re-selected by addition of hygromycin were shown to express 10 times higher rRVGP yields. The data presented here show that Drosophila S2 cells can be efficiently transfected with an expression/selection plasmid for rRVGP expression, allowing its synthesis with a high degree of physical and biological integrity. The importance of subpopulation selection was indicated by the increasing rRVGP yields during these procedures.
Collapse
|
16
|
Lemos MAN, Santos ASD, Astray RM, Pereira CA, Jorge SAC. Rabies virus glycoprotein expression in Drosophila S2 cells. I: design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. J Biotechnol 2009; 143:103-10. [PMID: 19615415 DOI: 10.1016/j.jbiotec.2009.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/30/2009] [Accepted: 07/08/2009] [Indexed: 11/30/2022]
Abstract
The cDNA encoding the rabies virus glycoprotein (RVGP) gene was cloned in expression plasmids under the control of the inductive metallothionein promoter. They were designed in order to bear or not a secretion signal (i) and a cDNA coding for the selection hygromycin. These vectors were transfected into S2 cells, cell populations selected and subpopulations were then obtained by reselection with hygromycin. Cell cultures were examined for kinetics of cell growth, detection of RVGP mRNA and expression of RVGP. All cell populations were shown to express the RVGP mRNA upon induction. S2MtRVGPHy cell population, transfected with one vector that contains RGPV gene and selection gene, was shown to express higher amounts of RVGP as evaluated by flow cytometry ( approximately 52%) and ELISA (0.64 microg/10(7)cells at day 7). Subpopulation selection allowed a higher RVGP expression, specially for the S2MtRVGPHy(+) (5.5 microg/10(7)cells at day 7). NaBu treatment leading to lower cell growth and higher RVGP expression allowed an even higher RVGP synthesis by S2MtRVGPHy(+) (8.4 microg/10(7)cells at day 7). SF900II medium leading to a higher S2MtRVGPHy(+)cell growth allowed a higher final RVGP synthesis in this cell culture. RVGP synthesis may be optimized by the expression/selection vectors design, cell subpopulations selection, chromatin exposure and culture medium employed.
Collapse
|
17
|
Dai C, Li JY. Construction of pEGFP-restin recombinant plasmid and its expression in BGC-803 gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2008; 16:3937-3940. [DOI: 10.11569/wcjd.v16.i35.3937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a vector containing human restin gene and observe its expression in gastric cancer cells BGC-803 with green fluorescence protein as the reporter gene.
METHODS: Restin gene was amplified from mRNA of fetal kidney tissue by RT-PCR. The RT-PCR products and pEGFP-C1 were simultaneously digested, then purified, ligated, and transformed to construct the recombinant vector pEGFP-restin. Then the recombinant pEGFP-restin was transfected into gastric cancer cells BGC-803. The expression of green fluorescence protein was observed by fluorescence microscopy, and Western blot was used to examine the expression of target protein.
RESULTS: Agarose gel elctrophrosis showed a 600-bp band of the RT-PCR product, which matched the expected size. Through digestion, the inserted DNA sequence was confirmed to be the premature gene of restin, which was ligated to pEGFP-C1 and transfected into BGC-803 cells successfully. The strong expression of green fluorescence protein was observed by fluorescence microscopy, and the expression of target protein was identified using Western blot.
CONCLUSION: The recombinant vector pEGFP-restin is successfully constructed, providing important subject for further investigation of restin function.
Collapse
|
18
|
Pamboukian MM, Jorge SAC, Santos MG, Yokomizo AY, Pereira CA, Tonso A. Insect cells respiratory activity in bioreactor. Cytotechnology 2008; 57:37-44. [PMID: 19003170 DOI: 10.1007/s10616-007-9118-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/18/2007] [Indexed: 01/12/2023] Open
Abstract
Specific respiration rate ( [Formula: see text]) is a key parameter to understand cell metabolism and physiological state, providing useful information for process supervision and control. In this work, we cultivated different insect cells in a very controlled environment, being able to measure [Formula: see text]. Spodoptera frugiperda (Sf9) cells have been used through virus infection as host for foreign protein expression and bioinsecticide production. Transfected Drosophila melanogaster (S2) cells can be used to produce different proteins. The objective of this work is to investigate respiratory activity and oxygen transfer during the growth of different insect cells lines as Spodoptera frugiperda (Sf9), Drosophila melanogaster (S2) wild and transfected for the expression of GPV and EGFP. All experiments were performed in a well-controlled 1-L bioreactor, with SF900II serum free medium. Spodoptera frugiperda (Sf9) cells reached 10.7 x 10(6) cells/mL and maximum specific respiration rate ([Formula: see text]) of 7.3 x 10(-17) molO(2)/cell s. Drosophila melanogaster (S2) cells achieved 51.2 x 10(6) cells/mL and [Formula: see text] of 3.1 x 10(-18) molO(2)/cell s. S2AcGPV (expressing with rabies virus glycoprotein) reached 24.9 x 10(6) cells/mL and [Formula: see text] of 1.7 x 10(-17) molO(2)/cell s, while S2MtEGFP (expressing green fluorescent protein) achieved 15.5 x 10(6) cells/mL and [Formula: see text] = 1.9 x 10(-17) molO(2)/cell s. Relating to the Sf9, S2 cells reached higher maximum cell concentrations and lower specific respiration rate, which can be explained by its smaller size. These results presented useful information for scale-up and process control of insect cells.
Collapse
Affiliation(s)
- Marilena Martins Pamboukian
- Escola Politécnica da Usp - Departamento de Engenharia Química , Av. Prof. Luciano Gualberto, trav.3 n.380 - PQI/EPUSP , São Paulo, SP, 05508-970, Brazil,
| | | | | | | | | | | |
Collapse
|
19
|
Jorge SAC, Santos AS, Spina A, Pereira CA. Expression of the hepatitis B virus surface antigen in Drosophila S2 cells. Cytotechnology 2008; 57:51-9. [PMID: 19003172 DOI: 10.1007/s10616-008-9154-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 12/01/2022] Open
Abstract
Drosophila melanogaster S2 cells were transfected with a plasmid vector (pAcHBsAgHy) containing the S gene, coding for the hepatitis B virus surface antigen (HBsAg), under control of the constitutive drosophila actin promoter (pAc), and the hygromycin B (Hy) selection gene. The vector was introduced into Schneider 2 (S2) Drosophila cells by DNA transfection and a cell population (S2AcHBsAgHy) was selected by its resistance to hygromycin B. The pAcHBsAgHy vector integrated in transfected S2 cell genome and approximately 1,000 copies per cell were found in a higher HBsAg producer cell subpopulation. The HBsAg production varied in different subpopulations, but did not when a given subpopulation was cultivated in different culture flasks. Higher HBsAg expression was found in S2AcHBsAgHy cells cultivated in Insect Xpress medium (13.5 mug/1E7 cells) and SFX medium (7 mug/1E7 cells) in comparison to SF900II medium (0.6 mug/1E7 cells). An increase of HBsAg was observed in culture maintained under hygromycin selection pressure. Data presented in the paper show that S2AcHBsAgHy cells produce efficiently the HBsAg which is mainly found in the cell supernatant, suggesting that HBsAg is secreted from the cells. The data also show that our approach using the Drosophila expression system is suitable for the preparation of other viral protein preparation.
Collapse
Affiliation(s)
- Soraia A C Jorge
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brazil, 1500, CEP 05503-900, Sao Paulo, SP, Brazil,
| | | | | | | |
Collapse
|
20
|
Kinetic response of a Drosophila melanogaster cell line to different medium formulations and culture conditions. Cytotechnology 2008; 57:23-35. [PMID: 19003169 DOI: 10.1007/s10616-008-9146-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 03/29/2008] [Indexed: 10/22/2022] Open
Abstract
In the past few years, Drosophila melanogaster cells have been employed for recombinant protein production purposes, and a comprehensive knowledge of their metabolism is essential for process optimization. In this work, the kinetic response of a Schneider S2 cell line, grown in shake flasks, in two different culture media, the serum-free SF900-II((R)) and the serum-supplemented TC-100, was evaluated. Cell growth, amino acids and glucose uptake, and lactate synthesis were measured allowing the calculation of kinetic parameters. The results show that S2 cells metabolism was able to adjust to different environmental situations, as determined by medium formulation, as well as by the particular situation resulting from the culture conditions. Cells attained a 163% higher final cell concentration (1.4 x 10(7) cells mL(-1)) in SF900 II((R)) medium, when compared to serum-supplemented TC-100 medium. Also, a maximum specific cell growth rate 52% higher in SF900 II((R) )medium, when compared to serum-supplemented TC-100 one, was observed. Glutamine was the growth limiting factor in SF900 II((R)) medium, while glucose, sometimes associated with glutamine, controlled growth in serum-supplemented TC-100 medium based formulation. The different pattern of lactate production is an example of the versatility of the metabolism of these cells. This by-product was produced only in glutamine limitation, but the amount synthesized depended not only on the excess glucose, but on other medium components. Therefore, in serum-supplemented TC-100 medium a much smaller lactate amount was generated. Besides, glucose was identified not only as a growth limiting factor, but also as a viability limiting factor, since its depletion accelerated cell death.
Collapse
|
21
|
Brillet K, Perret BG, Klein V, Pattus F, Wagner R. Using EGFP fusions to monitor the functional expression of GPCRs in the Drosophila Schneider 2 cells. Cytotechnology 2008; 57:101-9. [PMID: 19003178 DOI: 10.1007/s10616-008-9125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/09/2008] [Indexed: 11/30/2022] Open
Abstract
In combining fluorescence measurements with ligand binding assays, the versatility of the EGFP C-terminally fused to the human mu opioid receptor (EGFP-hMOR) has been exploited to notably improve the expression level of functional G protein-coupled receptors in Drosophila S2 cells. A selected array of efficient optimization approaches is presented herein, ranging from a cell-sorting method, allowing for a substantial enrichment in EGFP-hMOR expressing cells, to the addition of chemical and pharmacological chaperones, significantly enhancing the yield and the activity of the expressed receptors. Consistent with previous studies, significant discrepancies were observed between the total amounts of fluorescent receptors over a limited subpopulation capable of ligand binding, even after expression optimization. Subsequently, membrane isopycnic centrifugation experiments allowed to separate the ligand binding active from the non-active membrane fraction, the latter most probably containing misfolded receptors. Taken together, these results illustrate a coherent set of advantageous productive and preparative methods for the production of GPCRs in the highly valuable Drosophila S2 expression system.
Collapse
Affiliation(s)
- Karl Brillet
- Département des Récepteurs et des Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg - CNRS, UMR7175, BP 10413, 67 412, Illkirch, France
| | | | | | | | | |
Collapse
|