1
|
Barik BK, Mishra M. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology 2018; 13:258-284. [DOI: 10.1080/17435390.2018.1530393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
2
|
Bianchini MC, Portela JLR, Puntel RL, Ávila DS. Cellular Responses in Drosophila melanogaster Following Teratogen Exposure. Methods Mol Biol 2018; 1797:243-276. [PMID: 29896697 DOI: 10.1007/978-1-4939-7883-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies focusing on the teratogenicity of a series of new chemicals that are produced in a daily basis represent an important focus in toxicological/pharmaceutical research, particularly due to the risks arising from occupational exposure of the subjects. However, the complex mating procedures, scheduling of treatments, requirements for trained personnel, and elevated costs of traditional teratological assays with mammals hamper this type of assessments. Accordingly, the use of Drosophila melanogaster as a model for teratological studies has received considerable attention. Here some general protocols about Drosophila exposure-at different stages of their life cycle-to any chemical with putative teratological activity are presented. Importantly, some details about D. melanogaster embryonic, larval, pupal, or adult endpoints, that can be used to assess teratogenicity using flies as a model organism, are presented.
Collapse
|
3
|
Abstract
Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| | - Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
4
|
Standardization of Alternative Methods for Nanogenotoxicity Testing in Drosophila melanogasterUsing Iron Nanoparticles: A Promising Link to Nanodosimetry. JOURNAL OF NANOTECHNOLOGY 2016. [DOI: 10.1155/2016/2547467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The remarkable advancement of nanotechnology has triggered enormous production of metal nanoparticles and nanomaterials for diverse applications in clinical diagnostics and biomedical research. Nanotechnology has facilitated understanding and analysing nanotoxicology in a holistic approach. Iron nanoparticles have been of special interest in recent research owing to their dynamic, paramagnetic, and catalytic properties. Research studies (in vitromodel) have demonstrated the lack of toxicity in nanoiron. The present study design involvesin vivotoxicity assessment of nanoiron at specific concentrations of 0.1 mM, 1 mM, 5 mM, and 10 mM inDrosophila. DNA fragmentation assay in exposed and F1 population showed first-line toxicity to flies. Viability and reproductive ability were assessed at 24-hour and 48-hour intervals and thus indicated no statistical significance between the exposed and control groups. The wing spot assay has expressed transparent lack of toxicity in the studied concentrations of nanoiron. Protein profiling has demonstrated that the protein profiles have been intact in the larvae which confirm lack of toxicity of nanoiron. This leads to concluding that nanoiron at the defined concentrations is neither genotoxic nor mutagenic.
Collapse
|
5
|
Alaraby M, Hernández A, Annangi B, Demir E, Bach J, Rubio L, Creus A, Marcos R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 2014; 9:749-59. [PMID: 25358738 DOI: 10.3109/17435390.2014.976284] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra , Cerdanyola del Vallès, Barcelona , Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Han X, Geller B, Moniz K, Das P, Chippindale AK, Walker VK. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:822-9. [PMID: 24462134 DOI: 10.1016/j.scitotenv.2013.12.129] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 05/28/2023]
Abstract
There is concern that waste waters containing manufactured metal nanoparticles (NPs) originating from consumer goods, will find their way into streams and larger water bodies. Aquatic invertebrates could be vulnerable to such pollution, and here we have used fruit flies, Drosophila melanogaster, as a model invertebrate, to test for the effect of NPs on fitness. Both copper NP and microparticle (MP)-containing medium slowed development, reduced adult longevity and decreased sperm competition. In contrast, ingestion of silver resulted in a significant reduction in developmental success only if the metal particles were nanosized. Ag NP-treatments resulted in reduced developmental success as assessed by larval and pupal survival as well as larval climbing ability, but there was no impact of silver on adult longevity and little effect on reproductive success. However, Cu NPs generally appeared to be no more toxic to this invertebrate model than the bulk counterpart. The impact of silver ingestion in larvae was further investigated by 454 pyrosequencing of the 16S rRNA genes of the midgut flora. There was a striking reduction in the diversity of the gut microbiota of Ag NP-treated larvae with a rise in the predominance of Lactobacillus brevis and a decrease in Acetobacter compared to control or Ag MP-treatment groups. Importantly, these experiments show that perturbation of the microbial assemblage within a metazoan model may contribute to Ag NP-mediated toxicity. These observations have implications for impact assessments of nanoparticles as emerging contaminants.
Collapse
Affiliation(s)
- Xu Han
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Brennen Geller
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Kristy Moniz
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Pranab Das
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Adam K Chippindale
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
7
|
Barandeh F, Nguyen PL, Kumar R, Iacobucci GJ, Kuznicki ML, Kosterman A, Bergey EJ, Prasad PN, Gunawardena S. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 2012; 7:e29424. [PMID: 22238611 PMCID: PMC3250438 DOI: 10.1371/journal.pone.0029424] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 11/28/2011] [Indexed: 11/29/2022] Open
Abstract
The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.
Collapse
Affiliation(s)
- Farda Barandeh
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Phuong-Lan Nguyen
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rajiv Kumar
- Institute of Lasers, Photonics and Biophotonics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Gary J. Iacobucci
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michelle L. Kuznicki
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Andrew Kosterman
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Earl J. Bergey
- Institute of Lasers, Photonics and Biophotonics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Paras N. Prasad
- Institute of Lasers, Photonics and Biophotonics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Institute of Lasers, Photonics and Biophotonics, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lemos MAN, Santos ASD, Astray RM, Pereira CA, Jorge SAC. Rabies virus glycoprotein expression in Drosophila S2 cells. I: design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. J Biotechnol 2009; 143:103-10. [PMID: 19615415 DOI: 10.1016/j.jbiotec.2009.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/30/2009] [Accepted: 07/08/2009] [Indexed: 11/30/2022]
Abstract
The cDNA encoding the rabies virus glycoprotein (RVGP) gene was cloned in expression plasmids under the control of the inductive metallothionein promoter. They were designed in order to bear or not a secretion signal (i) and a cDNA coding for the selection hygromycin. These vectors were transfected into S2 cells, cell populations selected and subpopulations were then obtained by reselection with hygromycin. Cell cultures were examined for kinetics of cell growth, detection of RVGP mRNA and expression of RVGP. All cell populations were shown to express the RVGP mRNA upon induction. S2MtRVGPHy cell population, transfected with one vector that contains RGPV gene and selection gene, was shown to express higher amounts of RVGP as evaluated by flow cytometry ( approximately 52%) and ELISA (0.64 microg/10(7)cells at day 7). Subpopulation selection allowed a higher RVGP expression, specially for the S2MtRVGPHy(+) (5.5 microg/10(7)cells at day 7). NaBu treatment leading to lower cell growth and higher RVGP expression allowed an even higher RVGP synthesis by S2MtRVGPHy(+) (8.4 microg/10(7)cells at day 7). SF900II medium leading to a higher S2MtRVGPHy(+)cell growth allowed a higher final RVGP synthesis in this cell culture. RVGP synthesis may be optimized by the expression/selection vectors design, cell subpopulations selection, chromatin exposure and culture medium employed.
Collapse
|
9
|
Rand MD. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 2009; 32:74-83. [PMID: 19559084 DOI: 10.1016/j.ntt.2009.06.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 05/26/2009] [Accepted: 06/08/2009] [Indexed: 02/04/2023]
Abstract
Understanding neurotoxic mechanisms is a challenge of deciphering which genes and gene products in the developing or mature nervous system are targeted for disruption by chemicals we encounter in our environment. Our understanding of nervous system development and physiology is highly advanced due in large part to studies conducted in simple non-mammalian models. The paucity of toxicological data for the more than 80,000 chemicals in commercial use today, and the approximately 2000 new chemicals introduced each year, makes development of sensitive and rapid assays to screen for neurotoxicity paramount. In this article I advocate the use of Drosophila in the modern regimen of toxicological testing, emphasizing its unique attributes for assaying neurodevelopment and behavior. Features of the Drosophila model are reviewed and a generalized overall scheme for its use in toxicology is presented. Examples of where the fly has proven fruitful in evaluating common toxicants in our environment are also highlighted. Attention is drawn to three areas where development and application of the fly model might benefit toxicology the most: 1) optimizing sensitive endpoints for pathway-specific screening, 2) accommodating high throughput demands for analysis of chemical toxicant libraries, 3) optimizing genetic and molecular protocols for more rapid identification toxicant-by-gene interactions. While there are shortcomings in the Drosophila model, which exclude it from effective toxicological testing in certain arenas, conservation of fundamental cellular and developmental mechanisms between flies and man is extensive enough to warrant a central role for the Drosophila model in toxicological testing of today.
Collapse
Affiliation(s)
- Matthew D Rand
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
10
|
Avanesian A, Semnani S, Jafari M. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions? Drug Discov Today 2009; 14:761-6. [PMID: 19482095 DOI: 10.1016/j.drudis.2009.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/30/2009] [Accepted: 05/13/2009] [Indexed: 01/25/2023]
Abstract
Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model.
Collapse
Affiliation(s)
- Agnesa Avanesian
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|