1
|
Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Shukry M, Mohamed WA, Metwally MMM, Mohamed AA. Impacts of n-acetyl cysteine on gibberellic acid-induced testicular dysfunction through regulation of inflammatory cytokines, steroid and antioxidant activity. Andrologia 2021; 53:e14036. [PMID: 33724537 DOI: 10.1111/and.14036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
In agriculture, gibberellic acid (GA3) is commonly used with extreme dangers for public health. The current research evaluates the improving effects of n-acetyl cysteine (NAC, 150 mg/kg bw) co-administered with GA3 (55 mg/kg bw) mediated testicular injury. Twenty-four male albino rats were split into 4 groups: Negative control (CNT), NAC group, positive GA3 group and protective group, co-administered NAC plus GA3. On day 21, rats were anesthetised then euthanised by decapitation. Blood samples were collected; testicular samples were taken for semen analysis, serum chemistry, RNA extraction, histological and antioxidants markers examination. Our results revealed a significant decline p < .05 of catalase level and total antioxidant capacity. There was a substantial rise of MDA concentration in GA3-treated rats along with a considerable decrease of the antioxidant markers (SOD, GSH) and serum male reproductive hormones. In GA3-treated rats, an overexpression of the inflammatory cytokines (TNF-α, IL-1β) and anti-inflammatory cytokine IL-10 with boost mRNA expression of nuclear factor-kappa (NFk B) were confirmed. There was downregulation of steroidogenesis genes and decrease in sperm quality and concentration with an increase in sperm abnormalities, all were reported in GA3-treated rats. NAC treatment significantly increased the antioxidant state, testicular function beside structural germ cell and seminiferous tubules histology accompanied by upsurge of steroidogenic mRNA expressions (P450scc and 3β-HSD) and downregulated the pro-inflammatory cytokines mRNA expression (TNF-α, IL-1β). These results confirm the antioxidant capability of NAC and afford robust evidence about the ameliorative effect of the NAC to attenuate the testicular injury induced by GA3 through modulation of the antioxidant defence system, steroidogenic and pro-inflammatory cytokines mRNA expression.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa Ahmed Mohamed
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Quinting T, Heymann AK, Bicker A, Nauth T, Bernardini A, Hankeln T, Fandrey J, Schreiber T. Myoglobin Protects Breast Cancer Cells Due to Its ROS and NO Scavenging Properties. Front Endocrinol (Lausanne) 2021; 12:732190. [PMID: 34671319 PMCID: PMC8521001 DOI: 10.3389/fendo.2021.732190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Myoglobin (MB) is an oxygen-binding protein usually found in cardiac myocytes and skeletal muscle fibers. It may function as a temporary storage and transport protein for O2 but could also have scavenging capacity for reactive oxygen and nitrogen species. In addition, MB has recently been identified as a hallmark in luminal breast cancer and was shown to be robustly induced under hypoxia. Cellular responses to hypoxia are regulated by the transcription factor hypoxia-inducible factor (HIF). For exploring the function of MB in breast cancer, we employed the human cell line MDA-MB-468. Cells were grown in monolayer or as 3D multicellular spheroids, which mimic the in vivo avascular tumor architecture and physiology with a heterogeneous cell population of proliferating cells in the rim and non-cycling or necrotic cells in the core region. This central necrosis was increased after MB knockdown, indicating a role for MB in hypoxic tumor regions. In addition, MB knockdown caused higher levels of HIF-1α protein after treatment with NO, which also plays an important role in cancer cell survival. MB knockdown also led to higher reactive oxygen species (ROS) levels in the cells after treatment with H2O2. To further explore the role of MB in cell survival, we performed RNA-Seq after MB knockdown and NO treatment. 1029 differentially expressed genes (DEGs), including 45 potential HIF-1 target genes, were annotated in regulatory pathways that modulate cellular function and maintenance, cell death and survival, and carbohydrate metabolism. Of these target genes, TMEFF1, TREX2, GLUT-1, MKNK-1, and RAB8B were significantly altered. Consistently, a decreased expression of GLUT-1, MKNK-1, and RAB8B after MB knockdown was confirmed by qPCR. All three genes of interest are often up regulated in cancer and correlate with a poor clinical outcome. Thus, our data indicate that myoglobin might influence the survival of breast cancer cells, possibly due to its ROS and NO scavenging properties and could be a valuable target for cancer therapy.
Collapse
Affiliation(s)
- Theresa Quinting
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Theresa Nauth
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Andre Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Joachim Fandrey,
| | - Timm Schreiber
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
3
|
Alanyl-glutamine Heals Indomethacin-induced Gastric Ulceration in Rats Via Antisecretory and Anti-apoptotic Mechanisms. J Pediatr Gastroenterol Nutr 2019; 69:710-718. [PMID: 31764439 DOI: 10.1097/mpg.0000000000002474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Alanylglutamine (AG) is a dipeptide that fuels enterocytes and has a coadjuvant role during gut healing. The current study aimed to investigate the potential ulcer-healing effect of AG in indomethacin-induced gastropathy. METHODS Animals (n = 10 rats/group) were randomly allocated into 5 groups. Gastric ulcerated rats were administered AG, AG + dexamethasone, or pantoprazole after indomethacin exposure. RESULTS Comparable to pantoprazole, AG inhibited H-KATPase pump, and elevated the pH of gastric juice. Moreover, the dipeptide increased the serum/mucosal contents of glucagon-like peptide-1 (GLP-1), pS473-Akt, and cyclin-D1. On the contrary, AG abated serum tumor necrosis factor-α and gastric mucosal content of pS45-β catenin, pS9-GSK3β, pS133-CREB, pS536-NF-κB, H2O2, claudin-1, and caspase-3. The administration of dexamethasone before AG hampered its effect on almost all the measured parameters. CONCLUSIONS AG confers its antiulcerogenic/antisecretory potentials by repressing the proton pump to increase the gastric juice pH via boosting p-CREB, p-Akt, p-GSK-3β, and GLP-1. Also, it inhibits apoptosis through suppressing nuclear factor-kappa B/tumor necrosis factor-α/H2O2/claudin-1 cue. This trajectory contributes to loosen the tight junction priming AG-mediated GLP-1/β-catenin/cyclin-D1 that results in pronounced increase in gastric mucosa proliferation. Therefore, the crosstalk between multiple pathways orchestrates the action of AG against gastric ulceration.
Collapse
|
4
|
Khalaf HA, Arafat EA, Ghoneim FM. A histological, immunohistochemical and biochemical study of the effects of pomegranate peel extracts on gibberellic acid induced oxidative stress in adult rat testes. Biotech Histochem 2019; 94:569-582. [DOI: 10.1080/10520295.2019.1602884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- H. A. Khalaf
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Al Mansurah, Egypt
| | - E. A. Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Al Mansurah, Egypt
| | - F. M. Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Al Mansurah, Egypt
| |
Collapse
|
5
|
Zhang L, Wang X, Wang R, Zheng X, Li N, Li H, Cao X, Zhou B, Lin Y, Yang L. Baicalin potentiates TRAIL‑induced apoptosis through p38 MAPK activation and intracellular reactive oxygen species production. Mol Med Rep 2017; 16:8549-8555. [PMID: 28983599 DOI: 10.3892/mmr.2017.7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/11/2017] [Indexed: 11/05/2022] Open
Abstract
The combination of tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) with other agents has been recognized as a promising strategy to overcome TRAIL resistance in cancer cells. Baicalin (5, 6‑dihydroxy‑7‑o‑glucuronide flavone) is a flavonoid from the root of the medicinal herb Scutellaria baicalensis Georgi, which has been reported to exert antioxidant, anti‑inflammatory, antiviral and anticancer activities in vitro. However, the effect of baicalin on TRAIL‑induced cytotoxicity has not been previously reported. In the present study, the effect of combining TRAIL and baicalin was investigated in non‑small cell lung cancer cell lines. The results revealed that baicalin was able to sensitize A549 and H2009 cells to TRAIL‑induced apoptosis. This was detected by the potentiation of poly‑adenosine‑5'‑diphosphate‑ribose polymerase cleavage and Annexin V‑fluorescein isothiocyanate staining of cells co‑treated with baicalin and TRAIL. In addition, p38 mitogen‑activated protein kinase was activated in baicalin and TRAIL co‑treated cancer cells, whereas the p38 inhibitor SB203580 effectively suppressed cell death within the co‑treated cells. Butylated hydroxyanisole and N‑acetyl‑cysteine, known reactive oxygen species (ROS) scavengers, significantly suppressed the potentiated cytotoxicity induced by baicalin and TRAIL co‑treatment. The present study is the first, to the best of our knowledge, to demonstrate that baicalin enhances the anticancer activity of TRAIL via p38 activation and ROS accumulation, and may be exploited for anticancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xia Wang
- Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruixue Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuelian Zheng
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Na Li
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huannan Li
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaoren Cao
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Bin Zhou
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong Lin
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lan Yang
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
6
|
Wang J, Aung LHH, Prabhakar BS, Li P. The mitochondrial ubiquitin ligase plays an anti-apoptotic role in cardiomyocytes by regulating mitochondrial fission. J Cell Mol Med 2016; 20:2278-2288. [PMID: 27444773 PMCID: PMC5134389 DOI: 10.1111/jcmm.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
Apoptosis plays a critical role in the development of myocardial infarction. Cardiomyocytes are enriched with mitochondria and excessive mitochondrial fission can trigger cellular apoptosis. Recently, the mitochondrial ubiquitin ligase (MITOL), localized in the mitochondrial outer membrane, was reported to play an important role in the regulation of mitochondrial dynamics and apoptosis. However, the underlying mechanism of its action remains uncertain. The present study was aimed at uncovering the role of MITOL in the regulation of cardiomyocyte apoptosis. Our results showed that MITOL expression was up-regulated in cardiomyocytes in response to apoptotic stimulation. Mitochondrial ubiquitin ligase overexpression blocked dynamin-related protein 1 accumulation in the mitochondria, and attenuated the mitochondrial fission induced by hydrogen peroxide. Conversely, MITOL knockdown sensitized cardiomyocytes to undergo mitochondrial fission, resulting in subsequent apoptosis. These findings suggest that MITOL plays a protective role against apoptosis in cardiomyocytes, and may serve as a potential therapeutic target for apoptosis-related cardiac diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynn H H Aung
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peifeng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Yao Q, Lin M, Wang Y, Lai Y, Hu J, Fu T, Wang L, Lin S, Chen L, Guo Y. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int J Mol Med 2015; 36:1118-26. [PMID: 26310655 DOI: 10.3892/ijmm.2015.2327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/10/2015] [Indexed: 11/05/2022] Open
Abstract
Curcumin has been found to exhibit anticancer activity and certain studies have shown that curcumin triggers the apoptosis of human A549 lung adenocarcinoma cells. However, the mechanism underlying curcumin‑mediated apoptosis is not completely understood. The present study was designed to investigate the effect of curcumin on the induction of apoptosis and apoptosis‑related factors in human A549 lung adenocarcinoma cells. Treatment of A549 cells with curcumin caused a concentration‑dependent inhibition of cell growth and an increase in apoptosis, as confirmed by THE MTT assay, flow cytometry and morphology analysis. Curcumin‑treatment of A549 cells induced a loss of the mitochondrial membrane potential and increased cytosolic cytochrome c. Furthermore, curcumin‑induced apoptosis was accompanied by changes in intracellular oxidative stress‑related enzymes, including decreased intracellular reactive oxygen species levels, increased superoxide dismutase and decreased malondialdehyde and 4‑hydroxynonenal. In addition, induction of apoptosis was also accompanied by phosphorylation and activation of mitogen‑activated protein kinase signaling pathway factors c‑Jun N‑terminal kinase, p38 and extracellular signal-regulated kinase.
Collapse
Affiliation(s)
- Qinghua Yao
- Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Banshan Qiao, Hangzhou, Zhejiang 310022, P.R. China
| | - Miao Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuqi Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuebiao Lai
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jingjing Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ting Fu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lu Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shuyuan Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Liangliang Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Guo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
8
|
Wang Y, Wang Y, Yang D, Yu X, Li H, Lv X, Lu D, Wang H. β₁-adrenoceptor stimulation promotes LPS-induced cardiomyocyte apoptosis through activating PKA and enhancing CaMKII and IκBα phosphorylation. Crit Care 2015; 19:76. [PMID: 25887954 PMCID: PMC4383083 DOI: 10.1186/s13054-015-0820-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/18/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Caspase activation and cardiomyocyte apoptosis have been implicated in lipopolysaccharide (LPS)-induced cardiac contractile dysfunction. We have recently demonstrated that β1-adrenoceptor (AR) activation by endogenous norepinephrine contributes to cardiomyocyte apoptosis in endotoxemic mice. Here, we further investigated the molecular mechanisms for the enhancing effect of β₁-AR activation on LPS-induced cardiomyocyte apoptosis. METHODS The adult mouse ventricular myocytes were exposed to LPS, dobutamine, protein kinase A (PKA) inhibitor or/and nifedipine, an L-type Ca(2+) channel blocker. Male BALB/c mice were treated with LPS or/ and β₁-AR antagonist, atenolol. Cardiomyocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) assay and apoptosis-associated molecules were detected. RESULTS LPS induced apoptosis in adult mouse ventricular myocytes, dobutamine (DOB), a β₁-AR agonist, promoted apoptosis, caspase-8, 9 and 3 activation and increased cytosolic Ca(2+) concentration in LPS-challenged cardiomyocytes. DOB also up-regulated TNF-α expression, decreased Bcl-2 levels, promoted Bax translocation to mitochondria, mitochondrial membrane potential loss and cytochrome c release as well as IκBα, p38 MAPK, JNK and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation in LPS-treated cardiomyocytes. PKA inhibitor abolished the effects of DOB on caspase-9 activation, Bcl-2 levels as well as JNK and p38 MAPK phosphorylation, but not on IκBα phosphorylation, TNF-α expression and caspase-8 activation in LPS-stimulated cardiomyocytes. Pretreatment with nifedipine not only significantly blocked the enhancing effects of DOB on LPS-induced elevation in cytosolic Ca(2+) concentration and CaMKII phosphorylation in cardiomyocytes, but also partly reversed the effects of DOB on caspase-9 and caspase-3/7 activities in LPS-treated cardiomyocytes. Furthermore, atenolol suppressed TNF-α expression, JNK, p38 MAPK and CaMKII phosphorylation, increased Bcl-2 expression, and inhibited cytochrome c release and cardiomyocyte apoptosis in the myocardium of endotoxemic mice. CONCLUSIONS β1-AR activation promotes LPS-induced apoptosis through activating PKA, increasing CaMKII phosphorylation as well as enhancing IκBα phosphorylation and TNF-α expression in cardiomyocytes.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Duomeng Yang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiaohui Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Daxiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
9
|
Yu L, Zhao Y, Xu S, Jin C, Wang M, Fu G. Leptin confers protection against TNF-α-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun 2014; 455:126-32. [DOI: 10.1016/j.bbrc.2014.10.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
|
10
|
Hassan HA, Isa AM, El-Kholy WM, Nour SE. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract. Cytotechnology 2013; 65:851-62. [PMID: 23292365 PMCID: PMC3967610 DOI: 10.1007/s10616-012-9525-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig's cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties.
Collapse
Affiliation(s)
- Hanaa A Hassan
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt,
| | | | | | | |
Collapse
|
11
|
Hosseinchi M, Soltanalinejad F, Najafi G, Roshangar L. Effect of gibberellic acid on the quality of sperm and in vitro fertilization outcome in adult male rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2013; 4:259-64. [PMID: 25568681 PMCID: PMC4279616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 07/13/2013] [Accepted: 12/15/2013] [Indexed: 12/01/2022]
Abstract
Gibberellic acid (GA3) is a group of plant hormones identified in various plants. The aim of this study was to determine the effects of GA3 on sperm parameters and in vitro fertilization (IVF). Fifty six adult male rats were divided into seven groups as, control, treatment and sham. Following 15, 30 and 45 days of GA3 and methanol alcohol (MA) administration, rats were euthanized and epididymis tail was transferred to human tubular fluid (HTF) medium containing 4 mg mL(-1) bovine serum albumin (BSA) .Total number of sperms, the percentage of live sperms, immature sperms and sperms with damaged chromatin and IVF were examined. The oocytes were obtained from immature rats after the injection of pregnant mare's serum (PMSG) and human chorionic gonadotropin (HCG) hormones. Human tubular fluid was used as the fertilization medium and zygotes transferred to fresh 1-cell rat embryos culture medium (mR1ECM) to reach the blastocyst stage. This study showed that GA3 could decrease the number of total sperms on days 30 and 45 in treated group comparison with the control and sham groups. Additionally, GA3 increased the immature sperms and sperms with damaged chromatin. The percentage of fertilization, two-cell embryos and blastocyst resulting from the treatment group on days 30 and 45 also decreased and showed significant differences with the control and sham groups (p < 0.05). The results obtained from this study indicated that the oral use of GA3 could reduce the fertility in rats by influencing the sperm number and the quality of sperm's chromatins.
Collapse
Affiliation(s)
- Mohammadreza Hosseinchi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Farhad Soltanalinejad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;,Correspondence: Farhad Soltanalinejad. DVM, DVSc , Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail:
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Leila Roshangar
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Li JZ, Yu SY, Wu JH, Shao QR, Dong XM. Paeoniflorin protects myocardial cell from doxorubicin-induced apoptosis through inhibition of NADPH oxidase. Can J Physiol Pharmacol 2012; 90:1569-75. [PMID: 23210435 DOI: 10.1139/y2012-140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased intracellular reactive oxygen species (ROS) are involved in doxorubicin (DOX)-induced myocardial cell apoptosis, and paeoniflorin (PEF) has been shown to exert an antioxidant effect. The aim of the present study was to explore the protective effect of PEF on DOX-induced myocardial cell apoptosis and the underlying mechanisms. In cultured H9c2 cells, different concentrations (1, 10, or 100 μmol/L) of PEF was added for 2 h prior to exposure to DOX (5 μmol/L) for 24 h. Cell apoptosis was evaluated by hoechst 33342 staining, and caspase-3 expression and activity. The mRNA and protein expression of NADPH oxidase (NOX) 2 and NOX4 was determined by real-time polymerase chain reaction and Western blot, respectively. Intracellular ROS and NOX activity were measured by assay kit. The results showed that DOX significantly increased myocardial cell apoptosis, increased caspase-3 expression and activity concomitantly with enhanced ROS production, and increased NOX2, NOX4 mRNA and protein expression, and NOX activity. These effects were remarkably inhibited by pretreatment of PEF. Our results suggested that PEF has a protective effect against DOX-induced myocardial cell apoptosis through a mechanism involving a decrease in ROS production by inhibition of NOX2, NOX4 expression, and NOX activity.
Collapse
Affiliation(s)
- Jian-Zhe Li
- Department of Pharmacy, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | | | | | | | | |
Collapse
|
13
|
Group VIB Phospholipase A(2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:989372. [PMID: 23213352 PMCID: PMC3503447 DOI: 10.1155/2012/989372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
Abstract
Group VIB Phospholipase A(2) (iPLA(2)γ) is distributed in membranous organelles in which β-oxidation occurs, that is, mitochondria and peroxisomes, and is expressed by insulin-secreting pancreatic islet β-cells and INS-1 insulinoma cells, which can be injured by inflammatory cytokines, for example, IL-1β and IFN-γ, and by oxidants, for example, streptozotocin (STZ) or t-butyl-hydroperoxide (TBHP), via processes pertinent to mechanisms of β-cell loss in types 1 and 2 diabetes mellitus. We find that incubating INS-1 cells with IL-1β and IFN-γ, with STZ, or with TBHP causes increased expression of iPLA(2)γ mRNA and protein. We prepared INS-1 knockdown (KD) cell lines with reduced iPLA(2)γ expression, and they proliferate more slowly than control INS-1 cells and undergo increased membrane peroxidation in response to cytokines or oxidants. Accumulation of oxidized phospholipid molecular species in STZ-treated INS-1 cells was demonstrated by LC/MS/MS scanning, and the levels in iPLA(2)γ-KD cells exceeded those in control cells. iPLA(2)γ-KD INS-1 cells also exhibited higher levels of apoptosis than control cells when incubated with STZ or with IL-1β and IFN-γ. These findings suggest that iPLA(2)γ promotes β-cell proliferation and that its expression is increased during inflammation or oxidative stress as a mechanism to mitigate membrane injury that may enhance β-cell survival.
Collapse
|
14
|
Du Y, Yan L, Du H, Wang L, Ding F, Quan L, Cheng X, Song K, Liu H. β1-adrenergic receptor autoantibodies from heart failure patients enhanced TNF-α secretion in RAW264.7 macrophages in a largely PKA-dependent fashion. J Cell Biochem 2012; 113:3218-28. [DOI: 10.1002/jcb.24198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|