1
|
Sohag AAM, Hossain MT, Rahaman MA, Rahman P, Hasan MS, Das RC, Khan MK, Sikder MH, Alam M, Uddin MJ, Rahman MH, Tahjib-Ul-Arif M, Islam T, Moon IS, Hannan MA. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154012. [PMID: 35286936 DOI: 10.1016/j.phymed.2022.154012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health. PURPOSE This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies. To gain insight into the pharmacological effects of lupeol, the network pharmacological approach is applied. Pharmacokinetics and recent developments in nanotechnology-based approaches to targeted delivery of lupeol along with its safety use are also discussed. METHODS This study is dependent on the systematic and non-exhaustive literature survey for related research articles, papers, and books on the chemistry, pharmacological benefits, pharmacokinetics, and safety of lupeol published between 2011 and 2021. For online materials, the popular academic search engines viz. Google Scholar, PubMed, Science Direct, Scopus, ResearchGate, Springer, as well as official websites were explored with selected keywords. RESULTS Lupeol has shown promising benefits in the management of cancer and many other human diseases such as diabetes, obesity, cardiovascular diseases, kidney and liver problems, skin diseases, and neurological disorders. The pharmacological effects of lupeol primarily rely on its capacity to revitalize the cellular antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Network pharmacological approach revealed some prospective molecular targets and pathways and presented some significant information that could help explain the pharmacological effects of lupeol and its derivatives. Despite significant progress in molecular pharmacology, the clinical application of lupeol is limited due to poor bioavailability and insufficient knowledge on its mode of action. Structural modification and nanotechnology-guided targeted delivery of lupeol improve the bioavailability and bioactivity of lupeol. CONCLUSION The pentacyclic triterpene lupeol possesses numerous human health-benefiting properties. This review updates current knowledge and critically discusses the pharmacological effects and potential applications of lupeol and its derivatives in human health and diseases. Future studies are needed to evaluate the efficacies of lupeol and its derivatives in the management and pathobiology of human diseases.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Arifur Rahaman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Papia Rahman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Rakhal Chandra Das
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Kibria Khan
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; Division of Chemistry and Biotechnology, Dongguk University, Gyeongju, 780-714, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
2
|
Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:cancers14051100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
|
3
|
Che S, Wu S, Yu P. Lupeol induces autophagy and apoptosis with reduced cancer stem-like properties in retinoblastoma via phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin inhibition. J Pharm Pharmacol 2021; 74:208-215. [PMID: 33836050 DOI: 10.1093/jpp/rgab060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the anticancer effects of lupeol in retinoblastoma cells. METHODS WERI-Rb-1 and Y-79 cell lines were used to evaluate the anticancer effect of lupeol. After lupeol treatment, the viability, proliferation, apoptosis, cancer stem-like properties, autophagy and in vivo tumour xenograft formation were detected. KEY FINDINGS In this study, lupeol decreased cell viability in both WERI-Rb-1 and Y-79 cell lines. Lupeol could also inhibit proliferation and induce apoptosis of RB cells, with increased Bax level and decreased Ki67, survivin and Bcl-2 levels. Furthermore, lupeol could suppress the spheroid formation and stem-like properties of RB cells. Moreover, LC3 II/LC3 I ratio and the levels of Beclin1 and ATG7 were increased after lupeol treatment, indicating that lupeol could induce autophagy in RB cells. Next, the inhibitory effect of lupeol on the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway was observed. In tumour-bearing mice, lupeol suppressed tumour growth, and this might relate to its role in cell apoptosis, autophagy and stem-like properties. CONCLUSIONS Lupeol suppressed proliferation and cancer stem-like properties, and promoted autophagy and apoptosis of RB cells by restraining the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Yu
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Liu Y, Bi T, Yuan F, Gao X, Jia G, Tian Z. S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of JAK2/STAT3 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2507-2515. [PMID: 32219484 DOI: 10.1007/s00210-020-01858-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
S-adenosylmethionine (SAM) is a naturally occurring physiologic molecule found ubiquitously in all mammalian cells and an essential compound in many metabolic pathways. It has been reported to possess many pharmacological properties including cancer-preventive and anticancer effects. However, the precise molecular mechanism involved in its anticancer effect is not yet clear. The present study is conducted to investigate the anticancer activity and the underlying mechanisms of SAM on human gallbladder cancer cells (GBC-SD and SGC-996) in vitro and in vivo. Cells were dealt with SAM and subjected to cell viability, colony formation, Hoechst staining, apoptosis, cycle arrest, western blot, and xenograft tumorigenicity assay. Experimental results showed that SAM could significantly inhibit the growth and proliferation and induce the apoptosis as well as cell cycle arrest in G0/G1 phase of GBC-SD and SGC-996 cells in a dose-dependent manner in vitro. The expression levels of p-JAK2, p-STAT3, Mcl-1, and Bcl-XL were significantly downregulated. In addition, inhibition of the JAK2/STAT3 pathway significantly enhanced the anti-apoptotic effect of SAM, suggesting the key roles of JAK2/STAT3 in the process. More importantly, our in vivo studies demonstrated that administration of SAM could significantly decrease the tumor weight and volume and immunohistochemistry analysis proved the downregulation of p-JAK2 and p-STAT3 in tumor tissues following SAM treatment, consistent with our in vitro results. In summary, our findings indicated that SAM can inhibit cell proliferation and induce apoptosis as well as cycle arrest of GBC cells by suppression of JAK2/STAT3 pathways and the dramatic effects of SAM hinting that SAM might be a useful therapeutic option for patients suffering from gallbladder cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Tingting Bi
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Fukang Yuan
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Xinbao Gao
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Gaolei Jia
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
| | - Zhilong Tian
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
| |
Collapse
|
6
|
Yuan XH, Zhang P, Yu TT, Huang HK, Zhang LL, Yang CM, Tan T, Yang SD, Luo XJ, Luo JY. Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. Am J Transl Res 2020; 12:5381-5398. [PMID: 33042426 PMCID: PMC7540099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Osteosarcoma (OS) is the most common type of primary bone cancer. Even with advances in early diagnosis and aggressive treatment, the overall prognosis for OS remains to be further elevated. Lycorine was an isoquinoline alkaloid mainly existed in the bulb of lyco salvia miltiorrhiza and was shown to inhibit several types of cancer. In the present study, we investigated the anti-OS activity of lycorine and the possible underlying mechanism. We found that lycorine inhibited cell proliferation of human OS cells while had lower cytotoxcity against normal cells, and triggered cell cycle arrest at the G1/S transition. Moreover, we validated that lycorine promoted apoptosis via death receptor pathway and mitochondrial pathway, suppressed migration and invasion by reversing epithelial mesenchymal transition (EMT) and suppressing the degradation of extracellular matrix (ECM) in vitro. In addition, orthotopic implantation model of 143B OS cells further confirmed that lycorine suppressed OS growth and lung metastasis in vivo. Mechanically, lycorine reduced the protein level of β-catenin and its' downstream molecule c-Myc. Furthermore, lycorine also decreased the phosphorylation of ERK1/2 and AKT. Together, our results reveal that lycorine may inhibit tumor growth of OS cells possibly through suppressing Wnt/β-catenin, ERK1/2 and PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hui Yuan
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Ping Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Ting-Ting Yu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Hua-Kun Huang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Lu-Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Chun-Mei Yang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Tao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Sheng-Dong Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Xiao-Ji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| | - Jin-Yong Luo
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing 400016, People’s Republic of China
| |
Collapse
|
7
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75–85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China. .,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
8
|
Sánchez-Valdeolívar CA, Alvarez-Fitz P, Zacapala-Gómez AE, Acevedo-Quiroz M, Cayetano-Salazar L, Olea-Flores M, Castillo-Reyes JU, Navarro-Tito N, Ortuño-Pineda C, Leyva-Vázquez MA, Ortíz-Ortíz J, Castro-Coronel Y, Mendoza-Catalán MA. Phytochemical profile and antiproliferative effect of Ficus crocata extracts on triple-negative breast cancer cells. BMC Complement Med Ther 2020; 20:191. [PMID: 32571387 PMCID: PMC7309984 DOI: 10.1186/s12906-020-02993-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background Some species of the Ficus genus show pharmacological activity, including antiproliferative activity, in cell lines of several cancer Types. ficus crocata is distributed in Mexico and used in traditional medicine, as it is believed to possess anti-inflammatory, analgesic, and antioxidant properties. However, as of yet, there are no scientific reports on its biological activity. This study aims to evaluate the phytochemical profile of F. crocata leaf extracts and their effects on breast cancer MDA-MB-231 cells proliferation. Moreover, the study aims to unearth possible mechanisms involved in the decrease of cell proliferation. Methods The extracts were obtained by the maceration of leaves with the solvents hexane, dichloromethane, and acetone. The phytochemical profile of the extracts was determined using gas chromatography coupled with mass analysis. Cell proliferation, apoptosis, and cell cycle analysis in MDA-MB-231 cells were determined using a Crystal violet assay, MTT assay, and Annexin-V/PI assay using flow cytometry. The data were analyzed using ANOVA and Dunnett’s test. Results The hexane (Hex-EFc), dichloromethane (Dic-EFc), and acetone (Ace-EFc) extracts of F. crocata decreased the proliferation of MDA-MB-231 cells, with Dic-EFc having the strongest effect. Dic-EFc was fractioned and its antiproliferative activity was potentiated, which enhanced its ability to induce apoptosis in MDA-MB-231 cells, as well as increased p53, procaspase-8, and procaspase-3 expression. Conclusions This study provides information on the biological activity of F. crocata extracts and suggests their potential use against triple-negative breast cancer.
Collapse
Affiliation(s)
- Carlos A Sánchez-Valdeolívar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | | | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Macdiel Acevedo-Quiroz
- Tecnológico Nacional de México, Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, Centro, 62780, Zacatepec, Morelos, Mexico
| | - Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Jhonathan U Castillo-Reyes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Carlos Ortuño-Pineda
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Marco A Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Julio Ortíz-Ortíz
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Yaneth Castro-Coronel
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
9
|
Zhang Z, Xu C, Hao J, Zhang M, Wang Z, Yin T, Lin K, Liu W, Jiang Q, Li Z, Wang D, Mao Z, Tong H, Zhang L. Beneficial consequences of Lupeol on middle cerebral artery-induced cerebral ischemia in the rat involves Nrf2 and P38 MAPK modulation. Metab Brain Dis 2020; 35:841-848. [PMID: 32212043 DOI: 10.1007/s11011-020-00565-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
Lupeol has been reported to exhibit anti-inflammatory and anti-tumor activities in many diseases, but its potential effects in cerebral ischemia injury have not been studied to date. In this work we present evidence for a beneficial effect of lupeol in a rat model of middle cerebral artery occlusion (MCAO) followed by reperfusion (MCAO/R) injury and provide some histological and biochemical evidence for its mechanism of action. A cerebral MCAO rat model was established by vascular occlusion for 2 h, followed by 24 h reperfusion period. The infarct volume, neurological deficits, and brain water content were compared with animals treated during reperfusion with different concentrations of lupeol. Macroscopic parameters, cell viability, pro-inflammatory factors generation, as well as oxidative stress parameters and associated apoptotic signaling cascades were evaluated. Treatment with lupeol significantly reduced the cerebral infarct volume and water content and recovered neuro behavioral functions in affected rats. Lupeol treatment down-regulated the expression of oxidative stress and inflammation factors. In addition, lupeol activated Nrf2, suppressed caspase-3 activity, reduced BAX/Bcl-2 ratio and inhibited phosphorylation of p38 MAPK. The data suggest that lupeol may exert protective effects against cerebral ischemia by suppressing oxidative stress and reduction of inflammation factors possible via activation of nuclear transcription factors and inhibition of cell death pathways.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Chongfu Xu
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Zidong Wang
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Kai Lin
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Weidong Liu
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Qunlong Jiang
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Dan Wang
- Department of Ultrasound, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing City, 100853, People's Republic of China
| | - Huaiyu Tong
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing City, 100853, People's Republic of China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng people's hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, People's Republic of China.
| |
Collapse
|
10
|
Qin Y, Mi W, Huang C, Li J, Zhang Y, Fu Y. Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco Targets Ther 2020; 13:3667-3676. [PMID: 32431517 PMCID: PMC7200254 DOI: 10.2147/ott.s229614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Gallbladder cancer (GBC) is the most common biliary tract malignant cancer worldwide. It has been reported that microRNA-575 (miR-575) was involved in the tumorigenesis of many cancers. However, the role of miR-575 during the progression of GBC remains largely unknown. Methods The expression of miR-575 in GBC cells was detected by quantitative real-time polymerase chain reaction. The proliferation of GBC cells was examined by CCK-8 assay and Ki-67 staining. Apoptosis of GBC cells was measured by flow cytometry, and cell invasion was tested by transwell assay. Moreover, protein expressions in GBC cells were evaluated using Western blot. The target gene of miR-575 was predicted using Targetscan and miRDB. Finally, xenograft tumor model was established to verify the function of miR-575 in GBC in vivo. Results Our findings indicated that miR-575 antagonist decreased the proliferation and invasion of GBC cells. In addition, miR-575 antagonist significantly induced apoptosis of GBC cells via inducing G1 arrest. Meanwhile, p27 Kip1 was found to be a direct target of miR-575 with luciferase reporter assay. Moreover, miR-575 antagonist significantly decreased the expressions of CDK1 and cyclin E1 and upregulated the levels of cleaved caspase3 and p27 Kip1 in GBC cells. Finally, miR-575 antagonist notably suppressed GBC tumor growth in vivo. Conclusion Downregulation of miR-575 significantly inhibited the tumorigenesis of GBC via targeting p27 Kip1. Thus, miR-575 might be a potential novel target for the treatment of GBC.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, People's Republic of China
| | - Wunan Mi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, People's Republic of China
| | - Jian Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, People's Republic of China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
11
|
Maurya SK, Shadab G, Siddique HR. Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene. Curr Pharm Des 2020; 26:455-465. [DOI: 10.2174/1381612826666200122122804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
The resistance of cancer cells to different therapies is one of the major stumbling blocks
for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance
cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient
in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals
could be an excellent alternative to combat therapy-resistant cancers.
Objective:
To review the currently available literature on chemosensitization of therapy resistance cancers by
Lupeol for clinically approved drugs through targeting different cell signaling pathways.
Methods:
We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to
write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”,
“Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the
chemosensitization of Lupeol were compared and discussed.
Results:
Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in
combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression
of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS,
Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant
cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21,
and PCNA in different cancer types.
Conclusion:
Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically
approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol
might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase
the effectiveness.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - G.G.H.A. Shadab
- Molecular Toxicology & Cytogenetics Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
12
|
Baichan P, Naicker P, Devar JWS, Smith M, Candy GP, Nweke E. Targeting gallbladder cancer: a pathway based perspective. Mol Biol Rep 2020; 47:2361-2369. [PMID: 32020429 DOI: 10.1007/s11033-020-05269-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Gallbladder cancer (GBC) has a poor prognosis with a 5-year survival rate suggesting the need for more effective treatment strategies. Studying the cross-talk of several pathways involved in crucial cellular and biological processes such as cell growth, proliferation, migration and apoptosis would prove beneficial in identifying key players of GBC progression and targeting them. This review highlights several pathways known to be dysregulated in GBC onset and progression and describes known and potential targets. Within these pathways, there are proteins involved in the signalling cascade, which may be targeted as potential biomarkers and drug targets. Furthermore, the cross-talk of these pathways is investigated in the context of GBC and the implications thereof. A better understanding of the pathways involved in GBC pathogenesis will aid clinicians in the prognosis, diagnosis and treatment of patients. There are significant clinical implications of GBC pathway-based studies as they permit the understanding of onset and progression of the disease.
Collapse
Affiliation(s)
- P Baichan
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa.
| | - P Naicker
- Department of Biosciences, Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, Pretoria, South Africa
| | - J W S Devar
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - M Smith
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - G P Candy
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - E Nweke
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| |
Collapse
|
13
|
Biswas T, Dwivedi UN. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. PROTOPLASMA 2019; 256:1463-1486. [PMID: 31297656 DOI: 10.1007/s00709-019-01411-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 05/26/2023]
Abstract
The saponins are a diverse class of natural products, with a broad scale distribution across different plant species. Chemically characterized as triterpenoid glycosides, they posses a 30C oxidosqualene precursor-based aglycone moiety (sapogenin), to which glycosyl residues are subsequently attached to yield the corresponding saponin. Based on the chemically distinct aglycone moieties, broadly, they are divided into triterpenoid saponins (dammaranes, ursanes, oleananes, lupanes, hopanes, etc.) and the sterol glycosides. This review aims to present in detail the biosynthesis patterns of the different aglycones from a common precursor and their glycosylation patterns to yield the functionally active glycoside. The review also presents recent advances in the pharmacological activities of these saponins, particularly as potent anti-neoplastic pharmacophores, antioxidants, or anti-viral/antibacterial agents. Since alternate production pedestals for these pharmacologically important triterpenes via cell and tissue cultures are an attractive option for their sustainable production, recent trends in the variety and scale of in vitro production of plant triterpenoids have also been discussed.
Collapse
Affiliation(s)
- Tanya Biswas
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
- Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
14
|
Hsu MJ, Peng SF, Chueh FS, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Huang WW, Chung JG. Lupeol suppresses migration and invasion via p38/MAPK and PI3K/Akt signaling pathways in human osteosarcoma U-2 OS cells. Biosci Biotechnol Biochem 2019; 83:1729-1739. [PMID: 31010399 DOI: 10.1080/09168451.2019.1606693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Lupeol, one of the common components from the fruits and natural foods, has been reported to exert antitumor activities in many human cancer cell lines; however, its effects on osteosarcoma cell metastasis were not elucidated. In the present study, lupeol at 10–25 μM induced cell morphological changes and decreased total viable cell number in U-2 OS cells. Lupeol (5–15 μM) suppressed cell mobility, migration, and invasion by wound healing and transwell chamber assays, respectively. Lupeol inhibited the activities of MMP-2 and −9 in U-2 OS cells by gelatin zymography assay. Lupeol significantly decreased PI3K, pAKT, β-catenin, and increased GSK3β. Furthermore, lupeol decreased the expressions of Ras, p-Raf-1, p-p38, and β-catenin. Lupeol also decreased uPA, MMP-2, MMP-9, and N-cadherin but increased VE-cadherin in U-2 OS cells. Based on these observations, we suggest that lupeol can be used in anti-metastasis of human osteosarcoma cells in the future.
Collapse
Affiliation(s)
- Ming-Jie Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children‘s Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children‘s Hospital, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Min TR, Park HJ, Ha KT, Chi GY, Choi YH, Park SH. Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non‑small cell lung cancer cells. Int J Oncol 2019; 55:320-330. [PMID: 31115519 DOI: 10.3892/ijo.2019.4799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the underlying mechanisms responsible for the anticancer effects of lupeol on human non‑small cell lung cancer (NSCLC). MTT assay and Trypan blue exclusion assay were used to evaluate the cell viability. DAPI staining and flow cytometric analysis were used to detect apoptosis. Molecular docking and western blot analysis were performed to determine the target of lupeol. We found that lupeol suppressed the proliferation and colony formation of NSCLC cells in a dose‑dependent manner. In addition, lupeol increased chromatin condensation, poly(ADP‑ribose) polymerase (PARP) cleavage, sub‑G1 cell populations, and the proportion of Annexin V‑positive cells, indicating that lupeol triggered the apoptosis of NSCLC cells. Notably, lupeol inhibited the phosphorylation of epithelial growth factor receptor (EGFR). A docking experiment revealed that lupeol directly bound to the tyrosine kinase domain of EGFR. We observed that the signal transducer and activator of transcription 3 (STAT3), a downstream molecule of EGFR, was also dephosphorylated by lupeol. Lupeol suppressed the nuclear translocation and transcriptional activity of STAT3 and downregulated the expression of STAT3 target genes. The constitutive activation of STAT3 by STAT3 Y705D overexpression suppressed lupeol‑induced apoptosis, demonstrating that the inhibition of STAT3 activity contributed to the induction of apoptosis. The anticancer effects of lupeol were consistently observed in EGFR tyrosine kinase inhibitor (TKI)‑resistant H1975 cells (EGFR L858R/T790M). Taken together, the findings of this study suggest that lupeol may be used, not only for EGFR TKI‑naïve NSCLC, but also for advanced NSCLC with acquired resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Tae-Rin Min
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Busan National University, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| |
Collapse
|
16
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
17
|
Liu Y, Bi T, Liu L, Gao Q, Shen G, Qin L. S-Adenosylmethionine synergistically enhances the antitumor effect of gemcitabine against pancreatic cancer through JAK2/STAT3 pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:615-622. [DOI: 10.1007/s00210-019-01617-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
|
18
|
Wang Y, Hong D, Qian Y, Tu X, Wang K, Yang X, Shao S, Kong X, Lou Z, Jin L. Lupeol inhibits growth and migration in two human colorectal cancer cell lines by suppression of Wnt-β-catenin pathway. Onco Targets Ther 2018; 11:7987-7999. [PMID: 30519040 PMCID: PMC6235339 DOI: 10.2147/ott.s183925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Lupeol, a triterpene isolated from various herbal plants, possesses an anti-inflammatory function and has been proposed as a candidate for anticancer agents. The purpose of this research was to investigate the effect of lupeol on the viability, apoptosis, cell-cycle distribution, and migration of colorectal cancer cell lines and its molecular mechanism. Methods Lupeol was assessed for its anticancer effect using two human colorectal cancer cell lines: SW480 and HCT116. These cells were treated with lupeol, and their viability, apoptosis, migration, and cycle distribution were detected by CCK8, flow cytometry, and the transwell method. Quantitative PCR, Western blot, and immunofluorescence were applied to detect the expressions of CTNNB1, TCF4, cMYC, CCND1, CLDN1, and CCNA2. Results Lupeol suppressed cell viability and migration and induced cellular apoptosis of both cell lines, with increased p53 and decreased Bcl2 protein levels (P<0.05). Cell cycles of both lupeol-treated cell lines were arrested in the S phase (P<0.05). Quantitative PCR and Western blot analyses showed significantly reduced expressions of CTNNB1, TCF4, and downstream genes of the Wnt–β-catenin pathway, including the cell-cycle-regulated genes of cMYC and CCND1 of both cell lines upon lupeol treatment (P<0.05). mRNA and protein levels of CLDN1 decreased in HCT116 cells, plus the expression of CCNA2 mRNA and protein decreased in SW480 cells (P<0.05). Immunofluorescence analysis confirmed decreased expression of Wnt–β-catenin signaling. Conclusion Our findings indicate that lupeol effectively inhibits proliferation and migration and induces apoptosis and cell-cycle arrest of two colorectal cell lines by inactivation of the Wnt–β-catenin signaling pathway and downregulation of cMYC, CCND1, CCNA2, and CLDN1, thereby making it a promising anticancer candidate.
Collapse
Affiliation(s)
- Yihao Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ; .,School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Dan Hong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Yuqin Qian
- School of the first Clinical Medical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Xuezi Tu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Keke Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Xianhong Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Sijia Shao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Xinlong Kong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Zhefeng Lou
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, People's Republic of China, ;
| |
Collapse
|
19
|
Liu Y, Qin L, Bi T, Dai W, Liu W, Gao Q, Shen G. Oxymatrine Synergistically Potentiates the Antitumor Effects of Cisplatin in Human Gastric Cancer Cells. J Cancer 2018; 9:4527-4535. [PMID: 30519359 PMCID: PMC6277667 DOI: 10.7150/jca.28532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/03/2018] [Indexed: 12/24/2022] Open
Abstract
Cisplatin (CDDP) has been extensively used for gastric cancer (GC) treatment but limited by drug resistance and severe toxicity. The chemo-sensitizers that enhance its efficiency and overcome its limitation are urgently needed. Oxymatrine (OMT), a primary active ingredient from the dry roots of Sophora favescens, has shown powerful anti-cancer property with little side-effect. In this study, we explored the chemo-sensitization of OMT to potentiate the anti-tumor effect of CDDP. GC cell lines were dealt with OMT and/or CDDP and then subjected to different experimental methods. We found that OMT could significantly potentiate the CDDP-caused BGC-823 and SGC7901 cells viability loss, and OMT acts synergistically with CDDP. The combinative treatment could arrest cell cycle in G0/G1 phase by increasing p21, p27 and decreasing cyclin D1, and induced apoptosis by ROS generation and AKT/ERK inactivation. Inhibition of ROS respectively reversed the cell death induced by OMT and/or CDDP, suggesting the pivotal roles of ROS in the process. Moreover, OMT enhanced the antitumor effects of CDDP in nude mice bearing BGC823 tumor xenografts in vivo. Taken together, this study highlights that the co-treatment with OMT and CDDP exerted synergistic antitumor effects in GC cells, and that these effects may be mediated by ROS generation and inactivation of the AKT/ERK pathways.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China.,Department of General Surgery, Hepatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, PR China
| | - Lei Qin
- Department of General Surgery, Hepatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, PR China
| | - Tingting Bi
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Wei Dai
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Wei Liu
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Quangen Gao
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Genhai Shen
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| |
Collapse
|
20
|
Wang W, Li Q, Yang T, Li D, Ding F, Sun H, Bai G. Anti-cancer effect of Aquaporin 5 silencing in colorectal cancer cells in association with inhibition of Wnt/β-catenin pathway. Cytotechnology 2018; 70:615-624. [PMID: 29455395 PMCID: PMC5851956 DOI: 10.1007/s10616-017-0147-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Aquaporin 5 (AQP5) is a water channel protein that is over-expressed in many tumors. Elevated expression of AQP5 is associated with poor prognosis of colorectal cancer. Yet, whether AQP5 plays a role in epithelial-mesenchymal transition (EMT) of colorectal cancer has not been reported until now. Here we aim to investigate the function of AQP5 in the EMT process of colorectal cancer. We transfected HCT116 and SW480 cells with AQP5-specific shRNA and verified the knockdown efficiency through western blotting and real-time PCR. Afterwards, scratch wound healing assay, invasion assay, gelatin zymography, immunofluorescence staining and immunoblotting were performed to assess the effect of AQP5 silencing in these two cells. The ability of migration and invasion of colorectal cancer cells was significantly impaired after AQP5 silencing. Correspondingly, the activity and expression of Matrix Metallopeptidase (MMP)-2 and MMP-9 were reduced. Moreover, the expression levels of EMT-related factors were altered: E-cadherin, Tissue Inhibitor Of Metalloproteinases (TIMP)-1 and TIMP-2 were upregulated, whereas Vimentin, N-cadherin, Plasminogen Activator, Urokinase (uPA) and Snail were downregulated following knockdown of AQP5 in colorectal cancer cells. Furthermore, the expression of Wnt1 and β-catenin was markedly decreased after AQP5 knockdown. Interestingly, the alteration of EMT-related factors mediated by AQP5 knockdown could be reversed by upregulation of β-catenin. Taken together, silencing of AQP5 restrained the migration and invasion of colorectal cancer cells, and regulated the expression of EMT-related molecules in them by inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Qing Li
- Department of Internal Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Tao Yang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Dongsheng Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Feng Ding
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Hongzhi Sun
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Guang Bai
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121001, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
He YM, Zhang ZL, Liu QY, Xiao YS, Wei L, Xi C, Nan X. Effect of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer cells. J Cell Mol Med 2018. [PMID: 29516682 PMCID: PMC5908121 DOI: 10.1111/jcmm.13499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to explore the effects of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer (GBC). GBC and normal gallbladder tissues were extracted for the detection of mRNA and protein expressions of CLIC1. GBC‐SD and NOZ cells in the logarithmic growth phase were selected to conduct the experiment. Three different siRNA recombined expression vectors were established using CLIC1 as a target at different sites. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and Western blotting were, respectively, used to detect the CLIC1 mRNA and protein expressions. MTT assay was performed to detect the cell proliferation. Flow cytometry was applied to measure the cell apoptosis and cell cycle distribution. The variations of cell migration and invasion were evaluated using Transwell assay. GBC tissues showed higher CLIC1 mRNA and protein expressions than normal gallbladder tissues. The CLIC1 mRNA and protein expressions in the CLIC1 siRNA group were significantly lower than those in the NC and blank groups. Compared with the NC and blank groups, the CLIC1 siRNA group showed a significant decrease in cell proliferation but an obvious increase in apoptosis rate in GBC cells. Besides, in the CLIC1 siRNA group, cell percentage in G0/G1 and G2/M phase was gradually increased but decreased in S phases. The migration and invasion abilities in GBC cells were significantly lower than those in the NC and blank groups. Our study demonstrates that CLIC1 gene silencing could promote apoptosis and inhibit proliferation migration and invasion of GBC cells.
Collapse
Affiliation(s)
- Yue-Ming He
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Lin Zhang
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Quan-Yan Liu
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Sha Xiao
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xi
- College of Life Science, Wuhan University, Wuhan, China
| | - Xiang Nan
- College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Metformin synergistically enhances antitumor activity of cisplatin in gallbladder cancer via the PI3K/AKT/ERK pathway. Cytotechnology 2017; 70:439-448. [PMID: 29110119 DOI: 10.1007/s10616-017-0160-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Metformin (Met) is a widely used antidiabetic drug and has demonstrated interesting anticancer effects in various cancer models, alone or in combination with chemotherapeutic drugs. The aim of the present study is to investigate the synergistic effect of Met with cisplatin (Cis) on the tumor growth inhibition of gallbladder cancer cells (GBC-SD and SGC-996) and explore the underlying mechanism. Cells were treated with Met and/or Cis and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that Met and Cis inhibited the proliferation of gallbladder cancer cells, and combination treatment with Met and Cis resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with Met and Cis caused G0/G1 phase arrest by upregulating P21, P27 and downregulating CyclinD1, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, and p-ERK. In addition, pretreatment with a specific AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of Met + Cis, suggesting the key role of AKT in this process. More importantly, in nude mice model, Met and Cis in combination displayed more efficient inhibition of tumor weight and volume in the SGC-996 xenograft mouse model than Met or Cis alone. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which is consistent with our in vitro results. In conclusion, our findings indicate that the combination therapy with Met and Cis exerted synergistic antitumor effects in gallbladder cancer cells through PI3K/AKT/ERK pathway, and combination treatment with Met and Cis would be a promising therapeutic strategy for gallbladder cancer patients.
Collapse
|
23
|
Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS. Molecules 2017; 22:molecules22111886. [PMID: 29099789 PMCID: PMC6150195 DOI: 10.3390/molecules22111886] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8) assay, morphological changes, flow cytometry, wound healing assay and Western blot analysis were used to investigate the effects of AT-II on cell proliferation, apoptosis and motility of human gastric carcinoma cell lines HGC-27 and AGS. Our results indicated that AT-II could significantly inhibit cell proliferation, motility and induce apoptosis in a dose and time-dependent manner. Western blot analysis showed that the expression level of Bax was upregulated and the expression levels of B-cell lymphoma-2 (Bcl-2), phosphorylated-protein kinase B (p-Akt) and phosphorylated-ERK (p-ERK) were downregulated compared to control group. In conclusion, the findings suggested that AT-II exerted significant anti-tumor effects on gastric carcinoma cells by modulating Akt/ERK signaling pathway, which might shed light on therapy of gastric carcinoma.
Collapse
|
24
|
Shih YL, Au MK, Liu KL, Yeh MY, Lee CH, Lee MH, Lu HF, Yang JL, Wu RSC, Chung JG. Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2400-2413. [PMID: 28795476 DOI: 10.1002/tox.22453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Ouabain, the specific Na+ /K+ -ATPase blocker, has biological activity including anti-proliferative and anti-metastasis effects in cancer cell. There is no study to show ouabain inhibiting cell migration and invasion in human osteosarcoma U-2 OS cells. Thus, we investigated the effect of ouabain on the cell migration and invasion of human osteosarcoma U-2 OS cells. Results indicated that ouabain significantly decreased the percentage of viable cells at 2.5-5.0 μM, thus, we selected 0.25-1.0 μM for inhibiting studies. Ouabain inhibited cell migration, invasion and the enzymatic activities of MMP-2, and also affected the expression of metastasis-associated protein in U-2 OS cells. The cDNA microarray assay indicated that CDH1, TGFBR3, SHC3 and MAP2K6 metastasis-related genes were increased, but CCND1, JUN, CDKN1A, TGFB1, 2 and 3, SMAD4, MMP13, MMP2 and FN1 genes were decreased. These findings provide more information regarding ouabain inhibited cell migration and invasion and associated gene expressions in U-2 OS cells after exposed to ouabain.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ko-Lin Liu
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Yang Yeh
- Office of Director, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jiun-Long Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | | | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
25
|
Tsai FS, Lin LW, Wu CR. Lupeol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 929:145-175. [PMID: 27771924 DOI: 10.1007/978-3-319-41342-6_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lupeol belongs to pentacyclic lupane-type triterpenes and exhibits in edible vegetables, fruits and many plants. Many researches indicated that lupeol possesses many beneficial pharmacological activities including antioxidant, anti-inflammatory, anti-hyperglycemic, anti-dyslipidemic and anti-mutagenic effects. From various disease-targeted animal models, these reports indicated that lupeol has anti-diabetic, anti-asthma, anti-arthritic, cardioprotective, hepatoprotective, nephroprotective, neuroprotective and anticancer efficiency under various routes of administration such as topical, oral, subcutaneous, intraperitoneal and intravenous. It is worth mentioning that clinical trials of lupeol were performed to treat canine oral malignant melanoma and human moderate skin acne in Japan and Korea. The detailed mechanism of anti-inflammatory, anti-diabetic, hepatoprotective and anticancer activities was further reviewed from published papers. These evidence indicate that lupeol is a multi-target agent to exert diverse pharmacological potency with many potential targeting proteins such as α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP 1B) and TCA cycle enzymes and targeting pathway such as IL-1 receptor-associated kinase-mediated toll-like receptor 4 (IRAK-TLR4), Bcl-2 family, nuclear factor kappa B (NF-kB), phosphatidylinositol-3-kinase (PI3-K)/Akt and Wnt/β-catenin signaling pathways. This review also provides suggestion that lupeol might be a valuable and potential lead compound to develop as anti-inflammatory, anti-diabetic, hepatoprotective and anticancer drugs.
Collapse
Affiliation(s)
- Fan-Shiu Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Li-Wei Lin
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
26
|
Chen S, Tan Y, Deng H, Shen Z, Liu Y, Wu P, Tan C, Jiang Y. UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget 2017; 8:71736-71749. [PMID: 29069742 PMCID: PMC5641085 DOI: 10.18632/oncotarget.17601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 J2 (UBE2J2) is an ubiquitin proteasome component that responds to proteotoxic stress. We found that UBE2J2 was highly expressed in cellular protrusions of HCCLM3 metastatic hepatocellular carcinoma (HC) cells. Immunohistochemical analyses showed that UBE2J2 was expressed at higher levels in HC patient tissues than in corresponding non-tumor tissues. Because cellular protrusions are important for cell invasion, we hypothesized that UBE2J2 promotes HC cell invasion. We used chip-based surface plasmon resonance (SPR) to assess possible mechanisms of UBE2J2-regulated HCCLM3 cell invasion. We found that p-EGFR interacted with UBE2J2, and this finding was confirmed by co-immunoprecipitation analysis. UBE2J2 overexpression activated endothelial-mesenchymal transition in the non-invasive SMMC7721 HC cell line, and promoted invasion. UBE2J2 silencing reduced HCCLM3 cell invasion and endocytosis, and downregulated p-EGFR expression. p-EGFR inhibition by lapatinib reduced UBE2J2-promoted cell invasion, suggesting p-EGFR is important for UBE2J2-mediated HCCLM3 cell invasion. These findings demonstrate that endocytosis by HC cells is closely related to invasion, and may provide new anti-HC therapeutic targets. UBE2J2 may also be a novel biomarker for clinical HC diagnosis.
Collapse
Affiliation(s)
- Shaopeng Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ying Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | | | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanhong Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Pan Wu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Cai Q, Wang Z, Wang S, Weng M, Zhou D, Li C, Wang J, Chen E, Quan Z. Long non-coding RNA LINC00152 promotes gallbladder cancer metastasis and epithelial-mesenchymal transition by regulating HIF-1α via miR-138. Open Biol 2017; 7:160247. [PMID: 28077595 PMCID: PMC5303272 DOI: 10.1098/rsob.160247] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNA LINC00152 had been reported as an oncogene in gastric and hepatocellular cancer. In this study, we show that LINC00152 is overexpressed in gallbladder cancer (GBC) tissue samples and cell lines. The high LINC00152 levels correlated negatively with the overall survival time in GBC patients. Functionally, LINC00152 dramatically promoted cell migration, invasion and epithelial-mesenchymal transition (EMT) progression in vitro. In vivo, LINC00152 overexpression significantly promoted tumour peritoneal spreading and metastasis. Mechanistic analyses indicated that LINC00152 functions as a molecular sponge for miR-138, which directly suppresses the expression of hypoxia inducible factor-1α (HIF-1α). We revealed that miR-138 is a suppressor of GBC cell metastasis and EMT progression, and a similar phenomenon was observed in HIF-1α knockdown NOZ cells. Through binding to miR-138, LINC00152 has an oncogenic effect on GBC. Overall, our study suggested that the LINC00152/miR-138/HIF-1α pathway potentiates the progression of GBC, and LINC00152 may be a novel therapeutic target.
Collapse
Affiliation(s)
- Qiang Cai
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Zhenqiang Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Shouhua Wang
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Mingzhe Weng
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Di Zhou
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jiandong Wang
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiwei Quan
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
28
|
Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:477-84. [PMID: 26892272 DOI: 10.1007/s00210-016-1221-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/09/2016] [Indexed: 01/11/2023]
Abstract
Lupeol, a dietary triterpene present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects in vitro and in vivo. Here, we investigated the anti-cancer efficacy and adjuvant chemotherapy action of lupeol in gastric cancer (GC) cells (SGC7901 and BGC823) and explored the underlying mechanisms. Cells were treated with lupeol and/or 5-fluorouracil (5-Fu) and subjected to cell viability, colony formation, apoptosis, western blot, semiquantitative RT-PCR, and xenograft tumorigenicity assay. Our results showed that lupeol and 5-Fu inhibited the proliferation of SGC7901 and BGC823 cells, and combination treatment with lupeol and 5-Fu resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with lupeol and 5-Fu induced apoptosis through up-regulating the expressions of Bax and p53 and down-regulating the expressions of survivin and Bcl-2. Furthermore, co-treatment displayed more efficient inhibition of tumor weight and volume on BGC823 xenograft mouse model than single-agent treatment with 5-Fu or lupeol. Taken together, our findings highlight that lupeol sensitizes GC to 5-Fu treatment, and combination treatment with lupeol and 5-Fu would be a promising therapeutic strategy for human GC treatment.
Collapse
|
29
|
El-Far AH, Badria FA, Shaheen HM. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery. Curr Drug Discov Technol 2016; 13:123-143. [PMID: 27515456 PMCID: PMC5086671 DOI: 10.2174/1570163813666160802154403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 04/23/2023]
Abstract
Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Faried A. Badria
- Departments of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| |
Collapse
|
30
|
Xu T, Jing C, Shi Y, Miao R, Peng L, Kong S, Ma Y, Li L. microRNA-20a enhances the epithelial-to-mesenchymal transition of colorectal cancer cells by modulating matrix metalloproteinases. Exp Ther Med 2015; 10:683-688. [PMID: 26622375 DOI: 10.3892/etm.2015.2538] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The mortality rates associated with colorectal cancer (CRC) are high due to metastasis. Epithelial-to-mesenchymal transition (EMT) is a key step in tumor metastasis. The aim of the present study was to investigate the function of microRNA-20a (miR-20a) in EMT. The expression of miR-20a was analyzed in CRC tissues and cell lines using the reverse transcription-quantitative polymerase chain reaction. Plasmids containing miR-20a short hairpin RNA and miR-20a mimics were transfected into SW620 and LS174T cell lines, respectively. Cell counting kit-8, Transwell® and wound healing assays were performed to assess the effects of miR-20a on cell proliferation, invasion and migration. EMT markers and matrix metalloproteinases (MMPs) were identified using western blotting. The results showed that increased expression of miR-20a in CRC tissues was associated with tumor invasion and lymph node metastasis (P<0.05). Further experiments indicated that miR-20a-knockdown inhibited the proliferation, invasion and migration of CRC cells, upregulated the expression of vimentin and tissue inhibitor of metalloproteinases-2 (TIMP-2) and downregulated the expression of E-cadherin, MMP-2 and MMP-9. The opposite effects were observed in CRC cell lines overexpressing miR-20a. In conclusion, these results have shown that the upregulation of miR-20a suppresses TIMP-2 expression, which subsequently increases the expression of MMP-2 and MMP-9, thereby promoting the EMT of CRC cells. These findings suggest that miR-20a represents a potential therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ruizheng Miao
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Leping Li
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
31
|
Liu Y, Bi T, Wang G, Dai W, Wu G, Qian L, Gao Q, Shen G. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:295-304. [PMID: 25418891 DOI: 10.1007/s00210-014-1071-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023]
Abstract
Lupeol, a dietary triterpene, present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including anti-cancer activities both in vitro and in vivo. However, the precise mechanism involved remains largely unknown. The present study is conducted to investigate the anti-cancer activity and the underlying mechanisms of lupeol on human pancreatic cancer proliferating cell nuclear antigen 1 (PCNA-1) cells in vitro and in vivo. Lupeol significantly inhibited the proliferation of the cells in dose- and time-dependent manners and induced apoptosis as well as cell cycle arrest in G0/G1 phase by upregulating P21 and P27 and downregulating cyclin D1. The expression of apoptosis-related proteins in cells was evaluated by western blot analysis, and we found that lupeol induced cell apoptosis by decreasing the levels of p-AKT and p-ERK. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of lupeol in PCNA-1 cells, demonstrating the important role of AKT in this process. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated the downregulation of p-AKT and p-ERK in tumor tissues following lupeol treatment, consistent with the in vitro results. Therefore, these findings indicate that lupeol can inhibit cell proliferation and induce apoptosis as well as cell cycle arrest of PCNA-1 cells and might offer a therapeutic potential advantage for human pancreatic cancer chemoprevention or chemotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | | | | | | | | | | | | | | |
Collapse
|