1
|
Vo NDN, Gaßler N, Wolf G, Loeffler I. The Role of Collagen VIII in the Aging Mouse Kidney. Int J Mol Sci 2024; 25:4805. [PMID: 38732023 PMCID: PMC11084264 DOI: 10.3390/ijms25094805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The gradual loss of kidney function due to increasing age is accompanied by structural changes such as fibrosis of the tissue. The underlying molecular mechanisms are complex, but not yet fully understood. Non-fibrillar collagen type VIII (COL8) could be a potential factor in the fibrosis processes of the aging kidney. A pathophysiological significance of COL8 has already been demonstrated in the context of diabetic kidney disease, with studies showing that it directly influences both the development and progression of renal fibrosis occurring. The aim of this study was to investigate whether COL8 impacts age-related micro-anatomical and functional changes in a mouse model. The kidneys of wild-type (Col8-wt) and COL8-knockout (Col8-ko) mice of different age and sex were characterized with regard to the expression of molecular fibrosis markers, the development of nephrosclerosis and renal function. The age-dependent regulation of COL8 mRNA expression in the wild-type revealed sex-dependent effects that were not observed with collagen IV (COL4). Histochemical staining and protein analysis of profibrotic cytokines TGF-β1 (transforming growth factor) and CTGF (connective tissue growth factor) in mouse kidneys showed significant age effects as well as interactions of the factors age, sex and Col8 genotype. There were also significant age and Col8 genotype effects in the renal function data analyzed by urinary cystatin C. In summary, the present study shows, for the first time, that COL8 is regulated in an age- and sex-dependent manner in the mouse kidney and that the expression of COL8 influences the severity of age-induced renal fibrosis and function.
Collapse
Affiliation(s)
- Ngoc Dong Nhi Vo
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| | - Nikolaus Gaßler
- Institute of Forensic Medicine, Section Pathology, University Hospital Jena, 07745 Jena, Germany;
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| | - Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| |
Collapse
|
2
|
Bajwa S, Luebbe A, Vo NDN, Piskor EM, Kosan C, Wolf G, Loeffler I. RAGE is a critical factor of sex-based differences in age-induced kidney damage. Front Physiol 2023; 14:1154551. [PMID: 37064891 PMCID: PMC10090518 DOI: 10.3389/fphys.2023.1154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Advanced glycation end products (AGEs) are a heterogeneous group of molecules with potential pathophysiological effects on the kidneys. Fibrosis together with the accumulation of AGEs has been investigated for its contribution to age-related decline in renal function. AGEs mediate their effects in large parts through their interactions with the receptor for AGEs (RAGE). RAGE is a transmembrane protein that belongs to the immunoglobulin superfamily and has the ability to interact with multiple pro-inflammatory/pro-oxidative ligands. The role of RAGE in aging kidneys has not been fully characterized, especially for sex-based differences. Methods: Therefore, we analyzed constitutive RAGE knockout (KO) mice in an age- and sex-dependent manner. Paraffin-embedded kidney sections were used for histological analysis and protein expression of fibrosis and damage markers. RNA expression analysis from the kidney cortex was done by qPCR for AGE receptors, kidney damage, and early inflammation/fibrosis factors. FACS analysis was used for immune cell profiling of the kidneys. Results: Histological analysis revealed enhanced infiltration of immune cells (positive for B220) in aged (>70 weeks old) KO mice in both sexes. FACS analysis revealed a similar pattern of enhanced B-1a cells in aged KO mice. There was an age-based increase in pro-fibrotic and pro-inflammatory markers (IL-6, TNF, TGF-β1, and SNAIL1) in KO male mice that presumably contributed to renal fibrosis and renal damage (glomerular and tubular). In fact, in KO mice, there was an age-dependent increase in renal damage (assessed by NGAL and KIM1) that was accompanied by increased fibrosis (assessed by CTGF). This effect was more pronounced in male KO mice than in the female KO mice. In contrast to the KO animals, no significant increase in damage markers was detectable in wild-type animals at the age examined (>70 weeks old). Moreover, there is an age-based increase in AGEs and scavenger receptor MSR-A2 in the kidneys. Discussion: Our data suggest that the loss of the clearance receptor RAGE in male animals further accelerates age-dependent renal damage; this could be in part due to an increase in AGEs load during aging and the absence of protective female hormones. By contrast, in females, RAGE expression seems to play only a minor role when compared to tissue pathology.
Collapse
Affiliation(s)
- Seerat Bajwa
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Alexander Luebbe
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ngoc Dong Nhi Vo
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Eva-Maria Piskor
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
MORG1—A Negative Modulator of Renal Lipid Metabolism in Murine Diabetes. Biomedicines 2021; 10:biomedicines10010030. [PMID: 35052710 PMCID: PMC8772719 DOI: 10.3390/biomedicines10010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Renal fatty acid (FA) metabolism is severely altered in type 1 and 2 diabetes mellitus (T1DM and T2DM). Increasing evidence suggests that altered lipid metabolism is linked to tubulointerstitial fibrosis (TIF). Our previous work has demonstrated that mice with reduced MORG1 expression, a scaffold protein in HIF and ERK signaling, are protected against TIF in the db/db mouse model. Renal TGF-ß1 expression and EMT-like changes were reduced in mice with single-allele deficiency of MORG1. Given the well-known role of HIF and ERK signaling in metabolic regulation, here we examined whether protection was also associated with a restoration of lipid metabolism. Despite similar features of TIF in T1DM and T2DM, diabetes-associated changes in renal lipid metabolism differ between both diseases. We found that de novo synthesis of FA/cholesterol and β-oxidation were more strongly disrupted in T1DM, whereas pathological fat uptake into tubular cells mediates lipotoxicity in T2DM. Thus, diminished MORG1 expression exerts renoprotection in the diabetic nephropathy by modulating important factors of TIF and lipid dysregulation to a variable extent in T1DM and T2DM. Prospectively, targeting MORG1 appears to be a promising strategy to reduce lipid metabolic alterations in diabetic nephropathy.
Collapse
|
4
|
Ziller N, Kotolloshi R, Esmaeili M, Liebisch M, Mrowka R, Baniahmad A, Liehr T, Wolf G, Loeffler I. Sex Differences in Diabetes- and TGF-β1-Induced Renal Damage. Cells 2020; 9:E2236. [PMID: 33023010 PMCID: PMC7600610 DOI: 10.3390/cells9102236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
While females are less affected by non-diabetic kidney diseases compared to males, available data on sex differences in diabetic nephropathy (DN) are controversial. Although there is evidence for an imbalance of sex hormones in diabetes and hormone-dependent mechanisms in transforming growth factor β1 (TGF-β1) signaling, causes and consequences are still incompletely understood. Here we investigated the influence of sex hormones and sex-specific gene signatures in diabetes- and TGF-β1-induced renal damage using various complementary approaches (a db/db diabetes mouse model, ex vivo experiments on murine renal tissue, and experiments with a proximal tubular cell line TKPTS). Our results show that: (i) diabetes affects sex hormone concentrations and renal expression of their receptors in a sex-specific manner; (ii) sex, sex hormones and diabetic conditions influence differences in expression of TGF-β1, its receptor and bone morphogenetic protein 7 (BMP7); (iii) the sex and sex hormones, in combination with variable TGF-β1 doses, determine the net outcome in TGF-β1-induced expression of connective tissue growth factor (CTGF), a profibrotic cytokine. Altogether, these results suggest complex crosstalk between sex hormones, sex-dependent expression pattern and profibrotic signals for the precise course of DN development. Our data may help to better understand previous contradictory findings regarding sex differences in DN.
Collapse
Affiliation(s)
- Nadja Ziller
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Roland Kotolloshi
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Mohsen Esmaeili
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Marita Liebisch
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Ralf Mrowka
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| |
Collapse
|
5
|
Saito M, Kaburagi M, Otokuni K, Takahashi G. Functional role of natural killer T cells in non-obese pre-diabetes model mice. Cytotechnology 2017; 70:423-430. [PMID: 29098499 DOI: 10.1007/s10616-017-0157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022] Open
Abstract
Pre-diabetic patients have a high risk of developing diabetes as well as other associated diseases. From the viewpoint of risk assessment and to assist the development of protective therapies, we focused on the functional role of natural killer T (NKT) cells in pre-diabetes. We found that the expression of an NKT cell marker gene, Va14-Ja18, was significantly lower in specific tissues/organs such as adipose tissue and pancreas in non-obese pre-diabetes model mice than in their normal littermates. Subsequently, in the pre-diabetes model mice, Va14-Ja18 was activated with α-galactosylceramide (α-GalCer) and its effect on glucose tolerance was estimated. The simultaneous injection of α-GalCer and lymphocytes improved glucose tolerance with its maximum effect on the 3rd day. An analysis of circulating cytokine levels revealed that interferon-γ, which is a pro-inflammatory cytokine, was secreted only on the 1st day after treatment with α-GalCer and that interleukin (IL)-4, which is an anti-inflammatory cytokine, was secreted from the 1st to the 4th day. The prolonged secretion of IL-4 was thought to substantially contribute to the improvement of glucose tolerance. Based on these results, the functional role of NKT cells in pre-diabetes is to improve metabolic dysfunctions.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Koganei Bioresource Laboratories, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Misako Kaburagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiko Otokuni
- Koganei Bioresource Laboratories, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Genu Takahashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|