1
|
Hunziker EB, Nishii N, Shintani N, Lippuner K, Keel MJB, Vögelin E. The Chondrogenic Potential of the Bovine Tendon Sheath - a Novel Source of Stem Cells for Cartilage Repair. Stem Cells 2024:sxae071. [PMID: 39656905 DOI: 10.1093/stmcls/sxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2024] [Indexed: 12/17/2024]
Abstract
The human hand is traumatized more frequently than any other bodily part. Trauma and pathological processes (e.g., rheumatoid arthritis, osteoarthritis) commonly implicate the finger joints and specifically damage also the layer of articular cartilage. Endeavors are now being made to surgically repair such cartilage lesions biologically using tissue-engineering approaches that draw on donor cells and/or donor tissues. The tendon sheaths, particularly their inner layers, i.e., the peritendineum, surround the numerous tendons in the hand. The peritendineum is composed of mesenchymal tissue. We hypothesize that this tissue harbors pluripotent mesenchymal stem cells and thus could be used for cartilage repair, irrespective of the donor's age. Using a bovine model (young calves vs. adult cows), the pluripotentiality of the peritendineal stem cells, namely, their osteogenicity, chondrogenicity, and adipogenicity, was investigated by implementing conventional techniques. Subsequently, the chondrogenic potential of the peritendineal tissue itself was analyzed. Its differentiation into cartilage was induced by the application of specific growth factors (members of the TGF-β-superfamily). The characteristics of the tissue formed were evaluated structurally (immuno) histochemically, histomorphometrically, and biochemically (gene expression and protein level). Our data confirm that the bovine peritendineum contains stem cells whose pluripotentiality is independent of donor age. This tissue could also be induced to differentiate into cartilage, likewise, irrespective of the donor's age. Preliminary investigations with adult human peritendineal biopsy material derived from the hand's peritendineal flexor tendon sheaths revealed that this tissue can also be induced to differentiate into cartilage.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Naomi Nishii
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
| | - Marius J B Keel
- Trauma Center Hirslanden, Clinic Hirslanden, Zurich; Medical School, University, of Zurich, Zurich, Switzerland
| | - Esther Vögelin
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| |
Collapse
|
2
|
Sankova MV, Beeraka NM, Oganesyan MV, Rizaeva NA, Sankov AV, Shelestova OS, Bulygin KV, Vikram PR H, Barinov A, Khalimova A, Padmanabha Reddy Y, Basappa B, Nikolenko VN. Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine. J Orthop Translat 2024; 49:289-307. [PMID: 39559294 PMCID: PMC11570240 DOI: 10.1016/j.jot.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024] Open
Abstract
Background In recent years, many countries have actively implemented programs and strategies to promote physical education and sports. Despite these efforts, the increase in physical activity has been accompanied by a significant rise in muscle and tendon-ligament injuries, with Achilles tendon rupture being the most prevalent, accounting for 47 % of such injuries. This review aims to summarize all significant factors determining the predisposition of the Achilles tendon to rupture, to develop effective personalized prevention measures. Objective To identify and evaluate the risk factors contributing to Achilles tendon rupture and to develop strategies for personalized prevention. Methods This review utilized data from several databases, including Elsevier, Global Health, PubMed-NCBI, Embase, Medline, Scopus, ResearchGate, RSCI, Cochrane Library, Google Scholar, eLibrary.ru, and CyberLeninka. Both non-modifiable and modifiable risk factors for Achilles tendon injuries and ruptures were analyzed. Results The analysis identified several non-modifiable risk factors, such as genetic predisposition, anatomical and functional features of the Achilles tendon, sex, and age. These factors should be considered when selecting sports activities and designing training programs. Modifiable risk factors included imbalanced nutrition, improper exercise regimens, and inadequate monitoring of Achilles tendon conditions in athletes. Early treatment of musculoskeletal injuries, Achilles tendon diseases, foot deformities, and metabolic disorders is crucial. Long-term drug use and its risk assessment were also highlighted as important considerations. Furthermore, recent clinical advancements in both conventional and surgical methods to treat Achilles tendon injuries were described. The efficacy of these therapies in enhancing functional outcomes in individuals with Achilles injuries was compared. Advancements in cell-based and scaffold-based therapies aimed at enhancing cell regeneration and repairing Achilles injuries were also discussed. Discussion The combination of several established factors significantly increases the risk of Achilles tendon rupture. Addressing these factors through personalized prevention strategies can effectively reduce the incidence of these injuries. Proper nutrition, regular monitoring, timely treatment, and the correction of metabolic disorders are essential components of a comprehensive prevention plan. Conclusion Early identification of Achilles tendon risk factors allows for the timely development of effective personalized prevention strategies. These measures can contribute significantly to public health preservation by reducing the incidence of Achilles tendon ruptures associated with physical activity and sports. Continued research and clinical advancements in treatment methods will further enhance the ability to prevent and manage Achilles tendon injuries. The translational potential of this article This study identifies key modifiable and non-modifiable risk factors for Achilles tendon injuries, paving the way for personalized prevention strategies. Emphasizing nutrition, exercise, and early treatment of musculoskeletal issues, along with advancements in cell-based therapies, offers promising avenues for improving recovery and outcomes. These findings can guide clinical practices in prevention and rehabilitation, ultimately reducing Achilles injuries and enhancing public health.
Collapse
Affiliation(s)
- Maria V. Sankova
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Marine V. Oganesyan
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Negoriya A. Rizaeva
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey V. Sankov
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga S. Shelestova
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V. Bulygin
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Hemanth Vikram PR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - A.N. Barinov
- Head of Neurology and Psychotherapy Chair of Medical Academy MEDSI Group, Moscow, Russia
| | - A.K. Khalimova
- International Medical Company “Prime Medical Group”, Almaty, Kazakhstan Asia Halimova Prime Medical Group Medical Center, Republic of Kazakhstan
| | - Y. Padmanabha Reddy
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N. Nikolenko
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Kolar M, Veber M, Girandon L, Drobnič M. A Biomimetic Osteochondral Scaffold Augmented With Filtered Bone Marrow Aspirate for the Treatment of Joint Surface Lesions in the Knee. Am J Sports Med 2024; 52:1826-1833. [PMID: 38767159 DOI: 10.1177/03635465241247788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Multilayered osteochondral scaffolds are becoming increasingly utilized for the repair of knee joint surface lesions (KJSLs). However, the literature on predictive factors is rather limited. PURPOSE To (1) evaluate the clinical outcomes and safety of a combined single-step approach using a biomimetic collagen-hydroxyapatite scaffold (CHAS) and filtered bone marrow aspirate (fBMA) for the treatment of KJSLs and (2) identify significant predictors of the treatment outcomes. STUDY DESIGN Case series; Level of evidence, 4. METHODS All patients who underwent surgery because of a KJSL (size ≥1.5 cm2; International Cartilage Regeneration & Joint Preservation Society grades 3-4) using the combination above were selected from a hospital registry database (100 patients; minimum 2-year follow-up). Patient characteristics, medical history, knee joint and lesion status, intraoperative details, and cellular parameters of the injected fBMA were collected. The arthroscopic evaluation of chondral and meniscal tissue quality in all knee compartments was performed using the Chondropenia Severity Score. Treatment outcomes were determined clinically using patient-reported outcome measures (Knee Injury and Osteoarthritis Outcome Score, EuroQol-5 Dimensions-3 Levels, EuroQol-Visual Analog Scale, and Tegner Activity Scale) and by assessing the occurrence of serious adverse events and graft failure. Multivariable regression analysis was performed to identify significant predictors of the treatment outcomes. RESULTS At a mean follow-up of 54.2 ± 19.4 months, 78 (87%) patients completed the questionnaires with significant improvements toward the baseline (P < .00625): KOOS Pain subscale from 62 ± 17 to 79 ± 18, KOOS Total score from 57 ± 16 to 70 ± 20, EuroQol-Visual Analog Scale from 61 ± 21 to 76 ± 16, EuroQol-5 Dimensions-3 Levels from 0.57 ± 0.20 to 0.80 ± 0.21, and Tegner Activity Scale from 2.8 ± 1.5 to 3.9 ± 1.9. The graft failure rate was 4%. A longer duration of preoperative symptoms, previous surgery, larger lesions, older age, and female sex were the main negative predictors for the treatment outcomes. The Chondropenia Severity Score and the number of fibroblast colony-forming units in fBMA positively influenced some of the clinical results and safety. CONCLUSION A CHAS augmented with fBMA proved to be an adequate and safe approach for the treatment of KJSLs up to midterm follow-up. Based on the subanalysis of predictive factors, the surgical intervention should be performed in a timely and precise manner to prevent lesion enlargement, deterioration of the general knee cartilage status, and recurrent surgical procedures, especially in older and female patients. When a CHAS is used, the quantity of MSCs seems to play a role in augmentation. REGISTRATION NCT06078072 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Matic Kolar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Matej Drobnič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Leucht P, Mehta D. Technology Behind Cell Therapy Augmentation of Fracture Healing: Concentrated Bone Marrow Aspirate. J Am Acad Orthop Surg 2024; 32:e476-e481. [PMID: 38700858 DOI: 10.5435/jaaos-d-24-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/06/2025] Open
Abstract
With an aging population, and an anticipated increase in overall fracture incidence, a sound understanding of bone healing and how technology can optimize this process is crucial. Concentrated bone marrow aspirate (cBMA) is a technology that capitalizes on skeletal stem and progenitor cells (SSPCs) to enhance the regenerative capacity of bone. This overview highlights the science behind cBMA, discusses the role of SSPCs in bone homeostasis and fracture repair, and briefly details the clinical evidence supporting the use of cBMA in fracture healing. Despite promising early clinical results, a lack of standardization in harvest and processing techniques, coupled with patient variability, presents challenges in optimizing the use of cBMA. However, cBMA remains an emerging technology that may certainly play a crucial role in the future of fracture healing augmentation.
Collapse
Affiliation(s)
- Philipp Leucht
- From the Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| | | |
Collapse
|
5
|
Lana JF, Navani A, Jeyaraman M, Santos N, Pires L, Santos GS, Rodrigues IJ, Santos D, Mosaner T, Azzini G, da Fonseca LF, de Macedo AP, Huber SC, de Moraes Ferreira Jorge D, Purita J. Sacral Bioneuromodulation: The Role of Bone Marrow Aspirate in Spinal Cord Injuries. Bioengineering (Basel) 2024; 11:461. [PMID: 38790327 PMCID: PMC11118755 DOI: 10.3390/bioengineering11050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and resultant disabilities. Emerging research in the field of regenerative medicine has introduced innovative approaches such as autologous orthobiologic therapies, with bone marrow aspirate (BMA) being particularly notable for its regenerative and anti-inflammatory properties. This review focuses on the potential of BMA to modulate inflammatory pathways, enhance tissue regeneration, and restore neurological function disrupted by SCI. We hypothesize that BMA's bioactive components may stimulate reparative processes at the cellular level, particularly when applied at strategic sites like the sacral hiatus to influence lumbar centers and higher neurological structures. By exploring the mechanisms through which BMA influences spinal repair, this review aims to establish a foundation for its application in clinical settings, potentially offering a transformative approach to SCI management that extends beyond symptomatic relief to promoting functional recovery.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | - Annu Navani
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Comprehensive Spine & Sports Center, Campbell, CA 95008, USA
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Department of Orthopaedics, ACS Medical College and Hospital, Chennai 600077, Tamil Nadu, India
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Douglas Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Gabriel Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Federal University of São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | - Alex Pontes de Macedo
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Stephany Cares Huber
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Daniel de Moraes Ferreira Jorge
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| |
Collapse
|
6
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Hasson M, Fernandes LM, Solomon H, Pepper T, Huffman NL, Pucha SA, Bariteau JT, Kaiser JM, Patel JM. Considering the Cellular Landscape in Marrow Stimulation Techniques for Cartilage Repair. Cells Tissues Organs 2024; 213:523-537. [PMID: 38599194 PMCID: PMC11633897 DOI: 10.1159/000538530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY In this review, we accomplish three goals: (1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; (2) detail the cellular populations in bone marrow and their impact on healing; and (3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots," "elements," and "blood." Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.
Collapse
Affiliation(s)
- Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Tristan Pepper
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas L. Huffman
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Saitheja A. Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jason T. Bariteau
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jarred M. Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| |
Collapse
|
8
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Kolar M, Veber M, Girandon L, Drobnič M. Biomaterials augmented with filtered bone marrow aspirate for the treatment of talar osteochondral lesions. A comparison of clinical and cellular parameters. J Orthop Surg (Hong Kong) 2024; 32:10225536231219970. [PMID: 38214308 DOI: 10.1177/10225536231219970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Biomaterials augmented with Bone Marrow Aspirate Concentrate (BMAC) are becoming increasingly utilized in the cartilage treatment. However, the potential role of cellular parameters in the intraoperatively applied BMAC have yet to be elucidated. PURPOSE (A) To evaluate clinical outcomes and safety of a combined single-step approach with scaffolds (fibrin glues, collagen gels, collagen-hydroxyapatite membrane) and filtered Bone Marrow Aspirate (fBMA) for the treatment of osteochondral lesions of the talus (OLTs). (B) To identify significant factors for postoperative improvements, considering cellular parameters as potential predictors. METHODS All the patients operated on due to OLTs by the combination above were selected from the hospital registry database (35 pts, years 16-55, and minimally 1 year follow-up). Treatment outcomes were followed clinically with Patient-reported outcome measures (PROMs), and by pursuing serious adverse events (SAE) and graft failures (GF). Cellular parameters of the injected fBMA were determined. Pre- and postoperative PROMs values were compared to evaluate postoperative improvements. Multivariable regression models were applied to identify potential factors (demographics, medical history, joint and lesion characteristics, scaffold type, surgical and cellular parameters) that predict the treatment outcomes. RESULTS At the mean follow-up of 32.2 (12.5) months, all Foot and Ankle Outcome Score (FAOS) and European Quality of Life in Five Dimensions Three-Level (EQ-5D-3 L) values improved significantly. 4 (11%) SAE (3 arthrofibrosis, one hardware removal), and 3 (9%) GF occurred. Female gender and concomitant procedures were the main negative predictors for postoperative outcomes. The number of fibroblast colony forming units (CFU-F) or their proportion among total nucleated cells (CFU-F/TNC) were positively correlated with the improvements of some PROMs. CONCLUSIONS Scaffolds augmented with fBMA proved as an adequate and safe approach for OLTs treatment. Cellular parameters seem to influence the treatment outcomes, thus further attention should be given to the intraoperatively applied products. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Matic Kolar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Matej Drobnič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
11
|
Tian M, Han YB, Yang GY, Li JL, Shi CS, Tian D. The role of lactoferrin in bone remodeling: evaluation of its potential in targeted delivery and treatment of metabolic bone diseases and orthopedic conditions. Front Endocrinol (Lausanne) 2023; 14:1218148. [PMID: 37680888 PMCID: PMC10482240 DOI: 10.3389/fendo.2023.1218148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/06/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Lactoferrin (Lf) is a multifunctional protein that is synthesized endogenously and has various biological roles including immunological regulation, antibacterial, antiviral, and anticancer properties. Recently, research has uncovered Lf's critical functions in bone remodeling, where it regulates the function of osteoblasts, chondrocytes, osteoclasts, and mesenchymal stem cells. The signaling pathways involved in Lf's signaling in osteoblasts include (low density lipoprotein receptor-related protein - 1 (LRP-1), transforming growth factor β (TGF-β), and insulin-like growth factor - 1 (IGF-1), which activate downstream pathways such as ERK, PI3K/Akt, and NF-κB. These pathways collectively stimulate osteoblast proliferation, differentiation, and mineralization while inhibiting osteoclast differentiation and activity. Additionally, Lf's inhibitory effect on nuclear factor kappa B (NF-κB) suppresses the formation and activity of osteoclasts directly. Lf also promotes chondroprogenitor proliferation and differentiation to chondrocytes by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphoinositide 3-kinase/protein kinase B(PI3K/Akt)signaling pathways while inhibiting the expression of matrix-degrading enzymes through the suppression of the NF-κB pathway. Lf's ability to stimulate osteoblast and chondrocyte activity and inhibit osteoclast function accelerates fracture repair, as demonstrated by its effectiveness in animal models of critical-sized long bone defects. Moreover, studies have indicated that Lf can rescue dysregulated bone remodeling in osteoporotic conditions by stimulating bone formation and suppressing bone resorption. These beneficial effects of Lf on bone health have led to its exploration in nutraceutical and pharmaceutical applications. However, due to the large size of Lf, small bioactive peptides are preferred for pharmaceutical applications. These peptides have been shown to promote bone fracture repair and reverse osteoporosis in animal studies, indicating their potential as therapeutic agents for bone-related diseases. Nonetheless, the active concentration of Lf in serum may not be sufficient at the site requiring bone regeneration, necessitating the development of various delivery strategies to enhance Lf's bioavailability and target its active concentration to the site requiring bone regeneration. This review provides a critical discussion of the issues mentioned above, providing insight into the roles of Lf in bone remodeling and the potential use of Lf as a therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Ying-bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Jin-long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Chang-sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Ramires LC, Jeyaraman M, Muthu S, Shankar A N, Santos GS, da Fonseca LF, Lana JF, Rajendran RL, Gangadaran P, Jogalekar MP, Cardoso AA, Eickhoff A. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life (Basel) 2022; 12:life12030399. [PMID: 35330150 PMCID: PMC8954398 DOI: 10.3390/life12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders. The biological potential of these materials can be harnessed and administered into injured tissues, particularly in areas where standard healing is disrupted, a typical feature of Achilles tendinopathy. These products contain a wide variety of cell populations, cytokines, and growth factors, which have been shown to modulate many other cells at local and distal sites in the body. Collectively, they can shift the state of escalated inflammation and degeneration to reestablish tissue homeostasis. The typical features of Achilles tendinopathy are failed healing responses, persistent inflammation, and predominant catabolic reactions. Therefore, the application of orthobiologic tools represents a viable solution, considering their demonstrated efficacy, safety, and relatively easy manipulation. Perhaps a synergistic approach regarding the combination of these orthobiologics may promote more significant clinical outcomes rather than individual application. Although numerous optimistic results have been registered in the literature, additional studies and clinical trials are still highly desired to further illuminate the clinical utility and efficacy of these therapeutic strategies in the management of tendinopathies.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Centro Clínico Mãe de Deus, Porto Alegre 90110-270, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Navaladi Shankar A
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Alfredo A. Cardoso
- Department of Oncology-Integrative Medicine-Pain Care, IAC—Instituto Ana Cardoso de Práticas Integrativas e Medicina Regenerative, Gramado 95670-000, Brazil;
| | - Alex Eickhoff
- Department of Orthopaedics, Centro Ortopédico Eickhoff, Três de Maio 98910-000, Brazil;
| |
Collapse
|
13
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Rennert W, Sobh L, Cormier K, Smith J, Gonzalez C. The impact of donor total estimated blood volume on nucleated cell yield in bone marrow harvests for hematopoietic stem cell transplantation. Transfusion 2021; 61:1533-1541. [PMID: 33768535 DOI: 10.1111/trf.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nucleated cell yields of marrow harvests depend on factors related to donors, the procedure itself, and the volume of marrow harvested. Few attempts have been made to relate donor characteristics to harvest volume. We hypothesize that the percentage of total donor blood volume accessed for harvesting impacts the nucleated cell yield per ml of marrow collected. METHODS AND MATERIALS We investigated 481 consecutive unrelated marrow harvests from a single center. Donor characteristics including weight, body mass index (BMI), white blood cells (WBCs), hemoglobin (Hgb), and platelet counts, as well as estimated total blood volume, were recorded and compared with nucleated cell yields and harvest volumes. RESULTS The percentage of donor blood volume accessed for marrow harvesting was inversely related to nucleated cell yields (r = -0.57). The donor-recipient weight differential impacted cell yields as well (r = 0.35), with heavier recipients requiring increased marrow volumes from smaller donors to satisfy their nucleated cell needs. 3.73 × 108 /kg of recipient weight could be collected with 95% certainty when harvest volumes did not exceed 16.1% of donor total blood volume. In a stepwise multiple regression analysis, 45.4% of cell yield variance was explained by blood volume percentage accessed for harvesting, donor weight, and WBC. Donor sex, BMI, and platelet counts did not contribute further to cell yield variance. Smokers had higher cell yields than nonsmokers (20.4 vs. 18.3 × 106 /ml; 95% confidence interval 0.62, 3.47) independent of other parameters. CONCLUSION Establishing the relationship between percentage of estimated donor total blood volume and recipient cell needs can facilitate donor selection for successful hematopoietic cell (HPC) transplants.
Collapse
Affiliation(s)
- Wolfgang Rennert
- Blood and Marrow Collection Program, Georgetown University Medical Center, Washington, DC, USA
| | - Lina Sobh
- Blood and Marrow Collection Program, Georgetown University Medical Center, Washington, DC, USA
| | - Katie Cormier
- Blood and Marrow Collection Program, Georgetown University Medical Center, Washington, DC, USA
| | - Jenna Smith
- Blood and Marrow Collection Program, Georgetown University Medical Center, Washington, DC, USA
| | - Corina Gonzalez
- Blood and Marrow Collection Program, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
15
|
Lana JF, da Fonseca LF, Azzini G, Santos G, Braga M, Cardoso Junior AM, Murrell WD, Gobbi A, Purita J, Percope de Andrade MA. Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22052762. [PMID: 33803231 PMCID: PMC7963152 DOI: 10.3390/ijms22052762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in musculoskeletal disorders has prompted medical experts to devise novel effective alternatives to treat complicated orthopedic conditions. The ever-expanding field of regenerative medicine has allowed researchers to appreciate the therapeutic value of bone marrow-derived biological products, such as the bone marrow aspirate (BMA) clot, a potent orthobiologic which has often been dismissed and regarded as a technical complication. Numerous in vitro and in vivo studies have contributed to the expansion of medical knowledge, revealing optimistic results concerning the application of autologous bone marrow towards various impactful disorders. The bone marrow accommodates a diverse family of cell populations and a rich secretome; therefore, autologous BMA-derived products such as the “BMA Matrix”, may represent a safe and viable approach, able to reduce the costs and some drawbacks linked to the expansion of bone marrow. BMA provides —it eliminates many hurdles associated with its preparation, especially in regards to regulatory compliance. The BMA Matrix represents a suitable alternative, indicated for the enhancement of tissue repair mechanisms by modulating inflammation and acting as a natural biological scaffold as well as a reservoir of cytokines and growth factors that support cell activity. Although promising, more clinical studies are warranted in order to further clarify the efficacy of this strategy.
Collapse
Affiliation(s)
- José Fábio Lana
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | | | - Gabriel Azzini
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | - Gabriel Santos
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
- Correspondence:
| | - Marcelo Braga
- Hospital São Judas Tadeu, 150 Cel. João Notini St, Divinópolis 35500-017, Brazil;
| | - Alvaro Motta Cardoso Junior
- Núcleo Avançado de Estudos em Ortopedia e Neurocirurgia, 2144 Ibirapuera Avenue, São Paulo 04028-001, Brazil;
| | - William D. Murrell
- Abu Dhabi Knee and Sports Medicine, Healthpoint Hospital, Zayed Sports City, Between Gate 1 and 6, Abu Dhabi 00000 (P. O. Box No. 112308), United Arab Emirates;
- 411th Hospital Center, Bldg 938, Birmingham Ave, Naval Air Station, Jacksonville, FL 32212, USA
| | - Alberto Gobbi
- O.A.S.I. Bioresearch Foundation Gobbi Onlus, 20133 Milano, Italy;
| | - Joseph Purita
- Institute of Regenerative Medicine, Boca Raton, FL 33432, USA;
| | | |
Collapse
|
16
|
|
17
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
18
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Quantification and Comprehensive Analysis of Mesenchymal Stromal Cells in Bone Marrow Samples from Sickle Cell Disease Patients with Osteonecrosis. Stem Cells Int 2020; 2020:8841191. [PMID: 33299424 PMCID: PMC7710439 DOI: 10.1155/2020/8841191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The potential use of bone marrow mesenchymal stromal cells (BM-MSCs) for the treatment of osteonecrosis in sickle cell disease (SCD) patients is increasing. However, convenient BM-MSC quantification and functional property assays are critical factors for cell-based therapies yet to be optimized. This study was designed to quantify the MSC population in bone marrow (BM) samples from SCD patients with osteonecrosis (SCD group) and patients with osteoarticular complications not related to SCD (NS group), using flow cytometry for CD271+CD45-/low cell phenotype and CFU-F assay. We also compared expanded BM-MSC osteogenic differentiation, migration, and cytokine secretion potential between these groups. The mean total cell number, CFU-F count, and CD271+CD45-/low cells in BM mononuclear concentrate were significantly higher in SCD than in NS patients. A significant correlation between CD271+CD45-/low cell number and CFU-F counts was found in SCD (r = 0.7483; p = 0.0070) and NS (r = 0.7167; p = 0.0370) BM concentrates. An age-related quantitative reduction of CFU-F counts and CD271+CD45-/low cell number was noted. Furthermore, no significant differences in the morphology, replicative capacity, expression of surface markers, multidifferentiation potential, and secretion of cytokines were found in expanded BM-MSCs from SCD and NS groups after in vitro culturing. Collectively, this work provides important data for the suitable measurement and expansion of BM-MSC in support to advanced cell-based therapies for SCD patients with osteonecrosis.
Collapse
|
20
|
Abstract
Musculoskeletal disorders are one of the major health burdens and a leading source of disability worldwide, affecting both juvenile and elderly populations either as a consequence of ageing or extrinsic factors such as physical injuries. This condition often involves a group of locomotor structures such as the bones, joints and muscles and may therefore cause significant economic and emotional impact. Some pharmacological and non-pharmacological treatments have been considered as potential solutions, however, these alternatives have provided quite limited efficacy due to the short-term effect on pain management and inability to restore damaged tissue. The emergence of novel therapeutic alternatives such as the application of orthobiologics, particularly bone marrow aspirate (BMA) clot, have bestowed medical experts with considerable optimism as evidenced by the significant results found in numerous studies addressed in this manuscript. Although other products have been proposed for the treatment of musculoskeletal injuries, the peculiar interest in BMA, fibrin clot and associated fibrinolytic mechanisms continues to expand. BMA is a rich source of various cellular and molecular components which have demonstrated positive effects on tissue regeneration in many in vitro and in vivo models of musculoskeletal injuries. In addition to being able to undergo self-renewal and differentiation, the hematopoietic and mesenchymal stem cells present in this orthobiologic elicit key immunomodulatory and paracrine roles in inflammatory responses in tissue injury and drive the coagulation cascade towards tissue repair via different mechanisms. Although promising, these complex regenerative mechanisms have not yet been fully elucidated.
Collapse
|
21
|
Peregud-Pogorzelska M, Przybycień K, Baumert B, Kotowski M, Pius-Sadowska E, Safranow K, Peregud-Pogorzelski J, Kornacewicz-Jach Z, Paczkowska E, Machaliński B. The Effect of Intracoronary Infusion of Autologous Bone Marrow-Derived Lineage-Negative Stem/Progenitor Cells on Remodeling of Post-Infarcted Heart in Patient with Acute Myocardial Infarction. Int J Med Sci 2020; 17:985-994. [PMID: 32410827 PMCID: PMC7211150 DOI: 10.7150/ijms.42561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Regenerative capacity of the heart is limited, and the post-infarct left ventricle (LV) dysfunction is associated with poor prognosis. Administration of stem/progenitor cells (SPCs) is a promising approach for cardiac regeneration. Objectives: In the study, we assessed LV function and post-infarcted remodeling in patients with ST-elevated myocardial infarct (STEMI) who received autologous lineage-negative (LIN-) SPCs. Patients and methods: Patients with STEMI and one-vessel coronary artery disease treated with percutaneous revascularisation were divided into study group (LIN- group, 15 patients) that received standard therapy and autologous BM-derived LIN- SPCs and control group (standard therapy group, 19 patients). The cells were administered intracoronary 24 hours after STEMI. The follow-up was 12 months with subsequent non-invasive tests and laboratory parameter evaluation on days 1st, 3rd, and 7th as well as at 1st, 3rd, 6th and 12th month after STEMI. Results: All procedures related to SPCs administration were well tolerated by the patients. In 12-month follow-up, there were no major adverse cardiac events connected with LIN- SPCs administration. During 12-month follow-up, 9 patients from LIN- group (Responders) achieved an improvement in LV ejection fraction (>10% after 12 months) with no signs of unfavorable LV remodeling. Laboratory parameters analysis showed that Troponin T levels were significantly lower until day 7th in the Responders group, while brain natriuretic peptide (BNP) level remained significantly lower from day 3rd to 12th month respectively. Conclusions: Intracoronary infusion of autologous BM-derived LIN- stem/progenitor cells is feasible and safe for patient. Improvement in LV function and prevention of unfavorable remodeling in the 60% of study group seems relatively promising. Stem cell-based therapy for cardiac regeneration still needs more accurate and extensive investigations to estimate and improve their efficacy.
Collapse
Affiliation(s)
| | - Krzysztof Przybycień
- Department of Cardiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Kotowski
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | | | | | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
22
|
El-Jawhari JJ, Ganguly P, Churchman S, Jones E, Giannoudis PV. The Biological Fitness of Bone Progenitor Cells in Reamer/Irrigator/Aspirator Waste. J Bone Joint Surg Am 2019; 101:2111-2119. [PMID: 31800424 DOI: 10.2106/jbjs.19.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The biological waste collected during use of the Reamer/Irrigator/Aspirator (RIA; DePuy Synthes) has been described as an abundant source of bone progenitor cells with a comparable osteogenic gene profile to donor-matched iliac crest bone marrow (IC-BM). However, it is not clear whether these RIA-waste (RIA-W) cells are biologically fit. We aimed to evaluate the stress levels and functions of RIA-W progenitor cells. METHODS Reactive oxygen species (ROS) levels were tested in freshly collected bone progenitor cells (defined as CD45CD271 cells) using flow cytometry. ROS levels induced in these cells by hypoxia and/or oxidative stress as well as by an experimental simulation of the RIA procedure were also measured. Furthermore, the alkaline phosphatase (ALP) expression levels, proliferation, and senescence of culture-expanded RIA-W and IC-BM mesenchymal stromal cells (MSCs) were compared. RESULTS RIA-W and donor-matched IC-BM CD45CD271 cells were 97% and 98% viable, but the ROS levels were significantly higher for RIA-W cells than for IC-BM cells (p = 0.0020). Also, ROS induced by hypoxia, oxidative stress, and both were higher for RIA-W cells (p = 0.0312, 0.0156, and 0.0703, respectively). Dilution with saline solution, suction pressure, and irrigation reduced cell viability, with a positive correlation with the ROS level (p = 0.0035). The RIA-W and IC-BM colony-forming cells (average, 96,100 and 11,500, respectively) showed comparable ALP levels. Furthermore, culture-expanded RIA-W and IC-BM MSCs showed comparable ROS levels, ALP levels, susceptibility to death, and proliferation. CONCLUSIONS Although freshly collected RIA-W bone progenitor cells appeared to be transiently stressed, these cells were as viable as IC-BM cells and present in greater numbers. The proliferation and osteogenesis of both cell types were comparable. CLINICAL RELEVANCE The RIA waste bag contains bone progenitor cells with promising potential for regenerative applications, and should not be wasted.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Clinical Pathology Department, Mansoura University, Mansoura, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Sarah Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Academic Unit of Trauma and Orthopaedic Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|