1
|
Preechasuk L, Luksameejaroenchai C, Tangjittipokin W, Kunavisarut T. Short-term effects of allulose consumption on glucose homeostasis, metabolic parameters, incretin levels, and inflammatory markers in patients with type 2 diabetes: a double-blind, randomized, controlled crossover clinical trial. Eur J Nutr 2023; 62:2939-2948. [PMID: 37432472 DOI: 10.1007/s00394-023-03205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Allulose is a rare monosaccharide with almost zero calories. There is no study of short-term allulose consumption in patients with type 2 diabetes (T2D). Thus, we aimed to study the effect of allulose consumption for 12 weeks on glucose homeostasis, lipid profile, body composition, incretin levels, and inflammatory markers in patients with T2D. METHODS A double-blind, randomized, controlled crossover study was conducted on sixteen patients with T2D. Patients were randomly assigned to allulose 7 g twice daily or aspartame 0.03 g twice daily for 12 weeks. After a 2-week washout, patients were crossed over to the other sweetener for an additional 12 weeks. Oral glucose tolerance tests, laboratory measurements, and dual-energy X-ray absorptiometry were conducted before and after each phase. RESULTS This study revealed that short-term allulose consumption exerted no significant effect on glucose homeostasis, incretin levels, or body composition but significantly increased MCP-1 levels (259 ± 101 pg/ml at baseline vs. 297 ± 108 pg/mL after 12 weeks of allulose, p = 0.002). High-density lipoprotein cholesterol (HDL-C) significantly decreased from 51 ± 13 mg/dl at baseline to 41 ± 12 mg/dL after 12 weeks of allulose, p < 0.001. CONCLUSION Twelve weeks of allulose consumption had a neutral effect on glucose homeostasis, body composition, and incretin levels. Additionally, it decreased HDL-C levels and increased MCP-1 levels. TRIAL REGISTRATION This trial was retrospectively registered on the Thai Clinical Trials Registry (TCTR20220516006) on December 5, 2022.
Collapse
Affiliation(s)
- Lukana Preechasuk
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanoknan Luksameejaroenchai
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tada Kunavisarut
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Haas MJ, Parekh S, Kalidas P, Richter A, Warda F, Wong NCW, Tokuda M, Mooradian AD. Insulin mimetic effect of D-allulose on apolipoprotein A-I gene. J Food Biochem 2022; 46:e14064. [PMID: 34984676 DOI: 10.1111/jfbc.14064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/07/2022]
Abstract
Several nutrients modulate the transcriptional activity of the apolipoprotein A-I (apo A-I) gene. To determine the influence of rare sugars on apo A-I expression in hepatic (HepG2) and intestinal derived (Caco-2) cell lines, apo A-I, albumin, and SP1 were quantified with enzyme immunoassay and Western blots while mRNA levels were quantified with real-time polymerase chain reaction. The promoter activity was measured using transient transfection assays with plasmids containing various segments and mutations in the promoter. D-allulose and D-tagatose, increased apo A-I concentration in culture media while D-sorbose and D-allose did not have any measurable effects. D-allulose did not increase apo A-I levels in Caco-2 cells. These changes paralleled the increased mRNA levels and promoter activity. D-allulose-response was mapped at the insulin response core element (IRCE). Mutation of the IRCE decreased the ability of D-allulose and insulin to activate the promoter. Treatment of HepG2 cells, but not Caco-2 cells, with D-alluose and insulin increased SP1 expression relative to control cells. D-allulose augmented the expression and IRCE binding of SP1, an essential transcription factor for the insulin on apo A-I promoter activity. D-allulose can modulate some insulin-responsive genes and may have anti-atherogenic properties, in part due to increasing apo A-I production. PRACTICAL APPLICATIONS: Coronary artery disease (CAD) is the number one cause of mortality in industrialized countries. A risk factor associated with CAD is low high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apo A-I) concentrations in plasma. Thus, novel therapeutic agents or nutrients that upregulate apo A-I production should be identified. D-allulose and D-tagatose are used as sweeteners and may have favorable effects on insulin resistance and diabetes. This study shows that D-allulose and D-tagatose increases apo A-I production through increased transcription factor SP1-binding to insulin response element of the promoter. These sweeteners modulate some insulin responsive genes, increase the production of apo-A-I, and therefore may have anti-atherogenic properties.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Shrina Parekh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Poonam Kalidas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Angela Richter
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Firas Warda
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| | | | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
3
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Chen D, Chen J, Liu X, Guang C, Zhang W, Mu W. Biochemical identification of a hyperthermostable l-ribulose 3-epimerase from Labedella endophytica and its application for d-allulose bioconversion. Int J Biol Macromol 2021; 189:214-222. [PMID: 34428486 DOI: 10.1016/j.ijbiomac.2021.08.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Currently, low sugar and low energy have become an important trend in the food industries. Therefore, the bioconversion of the functional low-calorie rare sugars attracts more and more attention. l-Ribulose 3-epimerase (LREase) belongs to the ketose 3-epimerase (KEase) family, which could not only efficiently catalyze the reversible C-3 epimerization between l-ribulose and l-xylulose but also between d-fructose and d-allulose. In this paper, a hyperthermostable LREase from Labedella endophytica was identified and characterized. It exhibited maximum catalytic activity at pH 6.0 and 80 °C with 1 mM Ni2+. In the presence of Co2+, the t1/2 values at 60, 65, and 70 °C were 37.7, 9.0, and 4.6 h, respectively, and Tm value was 80.9 °C. From 500 g/L d-fructose, it could produce 154.2 g/L d-allulose with a conversion rate of 30.8% in 10 h. In view of its strong thermostability and high catalytic efficiency, L. endophytica LREase might be a good potential alternative for d-allulose industrial production.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Investigation of d-allulose effects on high-sucrose diet-induced insulin resistance via hyperinsulinemic-euglycemic clamps in rats. Heliyon 2021; 7:e08013. [PMID: 34589631 PMCID: PMC8461346 DOI: 10.1016/j.heliyon.2021.e08013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
d-Allulose, a C-3 epimer of d-fructose, is a rare sugar that has no calories. Although d-allulose has been reported to have several health benefits, such as anti-obesity and anti-diabetic effects, there have been no reports evaluating the effects of d-allulose on insulin resistance using a hyperinsulinemic-euglycemic clamp (HE-clamp). Therefore, we investigated the effects of d-allulose on a high-sucrose diet (HSD)-induced insulin resistance model. Wistar rats were randomly divided into three dietary groups: HSD containing 5% cellulose (HSC), 5% d-allulose (HSA), and a commercial diet. The insulin tolerance test (ITT) and HE-clamp were performed after administration of the diets for 4 and 7 weeks. After 7 weeks, the muscle and adipose tissues of rats were obtained to analyze Akt signaling via western blotting, and plasma adipocytokine levels were measured. ITT revealed that d-allulose ameliorated systemic insulin resistance. Furthermore, the results of the 2-step HE-clamp procedure indicated that d-allulose reversed systemic and muscular insulin resistance. d-Allulose reversed the insulin-induced suppression of Akt phosphorylation in the soleus muscle and epididymal fat tissues and reduced plasma TNF-α levels. This study is the first to show that d-allulose improves systemic and muscle insulin sensitivity in conscious rats.
Collapse
|
6
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Kanasaki A, Niibo M, Iida T. Effect of D-allulose feeding on the hepatic metabolomics profile in male Wistar rats. Food Funct 2021; 12:3931-3938. [PMID: 33977954 DOI: 10.1039/d0fo03024d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rare sugar d-allulose is a C-3 epimer of d-fructose and is known to have several health benefits such as anti-obesity and anti-diabetic effects through the alteration of enzymatic and genetic expressions in each organ. Most of the ingested d-allulose is absorbed in the small intestine and then rapidly excreted in the urine. As d-allulose was reported to be present in the liver before it is excreted, d-allulose may modulate some hepatic metabolites including glucose and lipid metabolism. Therefore, we investigated the hepatic metabolomics profile in rats after feeding d-allulose to study the overall alteration of hepatic metabolism. Wistar rats were fed an AIN-93G diet with/without 3% d-allulose for 4 weeks. Their liver samples were then collected and subjected to metabolomics analysis using CE-TOFMS and LC-TOFMS. The results showed that d-allulose induced significant increases in 42 metabolites and significant decreases in 21 metabolites. In particular, we found at the substance levels that d-allulose regulated metabolites involved in the metabolic pathways of fatty acid β-oxidation, cholesterol, and bile acid. In addition, this study newly showed the possibility that d-allulose alters glucuronic acid/xylulose pathways. In the future, we need more detailed research on the metabolomics profile of other organs related to these pathways for a comprehensive understanding of d-allulose functions.
Collapse
Affiliation(s)
- Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd, 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| | - Misato Niibo
- Research and Development, Matsutani Chemical Industry Co., Ltd, 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd, 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| |
Collapse
|