1
|
Helicobacter pylori infection downregulates duodenal CFTR and SLC26A6 expressions through TGFβ signaling pathway. BMC Microbiol 2018; 18:87. [PMID: 30119655 PMCID: PMC6098588 DOI: 10.1186/s12866-018-1230-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The pathogenesis of Helicobacter pylori (H. pylori) infection-induced duodenal ulcer remains to be elucidated. Duodenal mucosal bicarbonate secretion is the most important protective factor against acid-induced mucosal injury. We previously revealed that H. pylori infection downregulated the expression and functional activity of duodenal mucosal cystic fibrosis transmembrane conductance regulator (CFTR) and solute linked carrier 26 gene family A6 (SLC26A6) which are the two key duodenal mucosal epithelial cellular bicarbonate transporters to mediate duodenal bicarbonate secretion. In this study, we investigated the mechanism of H. pylori infection-induced duodenal CFTR and SLC26A6 expression downregulation. RESULTS We found that H. pylori infection induced the increase of serum transforming growth factor β (TGFβ) level and duodenal mucosal TGFβ expression and the decrease of duodenal mucosal CFTR and SLC26A6 expressions in C57 BL/6 mice. The results from the experiments of human duodenal epithelial cells (SCBN) showed that H. pylori increased TGFβ production and decreased CFTR and SLC26A6 expressions in SCBN cells. TGFβ inhibitor SB431542 reversed the H. pylori-induced CFTR and SLC26A6 expression decreases. The further results showed that TGFβ directly decreased CFTR and SLC26A6 expressions in SCBN cells. TGFβ induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and P38 MAPK inhibitor SB203580 reversed the TGFβ-induced CFTR and SLC26A6 expression decreases. CONCLUSIONS H. pylori infection downregulates duodenal epithelial cellular CFTR and SLC26A6 expressions through TGFβ-mediated P38 MAPK signaling pathway, which contributes to further elucidating the pathogenesis of H. pylori-associated duodenal ulcer.
Collapse
|
2
|
Wen G, Jin H, Deng S, Xu J, Liu X, Xie R, Tuo B. Effects of Helicobacter pylori Infection on the Expressions and Functional Activities of Human Duodenal Mucosal Bicarbonate Transport Proteins. Helicobacter 2016; 21:536-547. [PMID: 27004488 DOI: 10.1111/hel.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The mechanisms for Helicobacter pylori (H. pylori)-induced duodenal ulcerogenesis are not fully understood. In this study, we investigated the effects of H. pylori infection on the expressions and functional activities of human duodenal mucosal bicarbonate transport proteins and hope to further clarify the pathogenesis of H. pylori-associated duodenal ulcer. MATERIALS AND METHODS The experiments were performed in the patients with H. pylori-associated duodenal ulcers, H. pylori-associated chronic gastritis, and H. pylori-negative healthy subjects. Duodenal mucosal bicarbonate secretion was measured by Ussing Chamber technology. RESULTS The expressions of duodenal mucosal bicarbonate transport proteins, CFTR (cystic fibrosis transmembrane conductance regulator) and SLC26A6 (solute-linked carrier 26 gene A6), in the patients with H. pylori-associated duodenal ulcers were markedly lower than those in healthy controls. Basal and both forskolin- and prostaglandin E2 -stimulated duodenal mucosal bicarbonate secretions in the patients with H. pylori-associated duodenal ulcers were also lower than those in healthy controls. After anti-H. pylori treatment for H. pylori-associated duodenal ulcers, duodenal mucosal bicarbonate secretion and CFTR and SLC26A6 expressions in H. pylori-eradicated patients recovered to levels comparable to healthy controls, but those were found to be not significantly altered in non-H. pylori-eradicated patients. The further results showed that decreases in the H. pylori-induced CFTR and SLC26A6 expression were related to the severity and virulent factors of H. pylori infection. CONCLUSION H. pylori infection impairs the expressions and functional activities of duodenal mucosal bicarbonate transport proteins, CFTR and SLC26A6, which contributes to the development of duodenal ulcer.
Collapse
Affiliation(s)
- Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Shili Deng
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| |
Collapse
|
3
|
Wu H, Nakano T, Matsuzaki Y, Ooi Y, Kohno T, Ishihara S, Sano K. A new type of intrabacterial nanotransportation system for VacA in Helicobacter pylori. Med Mol Morphol 2014; 47:224-32. [PMID: 24420644 DOI: 10.1007/s00795-013-0068-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation systems (ibNoTSs) for CagA and urease. Both systems are UreI-dependent and urea-independent, and activated by extrabacterial acid. The activation occurs/appears within 15 min after exposure to extrabacterial acid stimulation. Although it has been clarified that VacA is secreted via the type-V secretion machinery, it remains unclear how this toxin is transported toward the machinery. To clarify the intrabacterial nanotransportation system for H. pylori VacA, immunoelectron microscopic analysis was performed in this study. VacA shifted to the periphery of the bacterial cytoplasm at 30 min after the extracellular pH change, whereas CagA and urease did so within 15 min. Studies using an ureI-deletion mutant revealed that unlike CagA and urease transport, VacA transport was not UreI-dependent. VacA secretion was accelerated without an increase in the production of VacA 30 min after the exposure to extrabacterial acid. These findings indicated that H. pylori possesses a novel type of ibNoTS for VacA, which is different from that for CagA or urease, in response time and dependency of UreI.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan,
| | | | | | | | | | | | | |
Collapse
|
4
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
5
|
Tuo B, Song P, Wen G, Sewald X, Gebert-Vogl B, Haas R, Manns M, Seidler U. Helicobacter pylori vacuolating cytotoxin inhibits duodenal bicarbonate secretion by a histamine-dependent mechanism in mice. J Infect Dis 2009; 199:505-12. [PMID: 19099486 DOI: 10.1086/596318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The pathogenic mechanisms involved in Helicobacter pylori-induced duodenal mucosal injury are incompletely understood. In the present study, we sought to investigate the effect of H. pylori vacuolating cytotoxin (VacA) on duodenal mucosal bicarbonate (HCO3-) secretion. METHODS Concentrated bacterial culture supernatants from an H. pylori wild-type strain producing VacA with s1/m1 genotypes (P12) and from an isogenic mutant lacking VacA (P12DeltavacA) were used. HCO3- secretion by murine duodenal mucosa was examined in vitro in Ussing chambers. Duodenal mucosal histamine release was measured using enzyme-linked immunosorbent assay. The expression of histamine H2 receptor was examined by immunohistochemical analysis. RESULTS In a dose-dependent manner, the VacA-positive supernatant P12 reduced prostaglandin E2 (PGE2)-stimulated duodenal mucosal HCO3- secretion to a maximum of 49% (P<.0001), whereas P12DeltavacA did not result in significant inhibition (P>.05). Purified VacA had a similar effect. Histamine H2 receptor antagonists attenuated the effect of P12 on PGE2-induced HCO3- secretion. P12 stimulated duodenal histamine release in a dose-dependent manner, and exogenous histamine inhibited PGE2-stimulated duodenal HCO3- secretion. H2 receptor expression was found in duodenal epithelial cells, the enteric nerve plexus, and lymphocytes in Peyer's patch. CONCLUSIONS H. pylori VacA inhibits PGE2-stimulated duodenal epithelial HCO3- secretion by a histamine-dependent mechanism. This effect likely contributes to the damaging effect of H. pylori in the duodenal mucosa.
Collapse
Affiliation(s)
- Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, China.
| | | | | | | | | | | | | | | |
Collapse
|