1
|
Rapado-González Ó, Costa-Fraga N, Bao-Caamano A, López-Cedrún JL, Álvarez-Rodríguez R, Crujeiras AB, Muinelo-Romay L, López-López R, Díaz-Lagares Á, Suárez-Cunqueiro MM. Genome-wide DNA methylation profiling in tongue squamous cell carcinoma. Oral Dis 2024; 30:259-271. [PMID: 36398465 DOI: 10.1111/odi.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To provide a comprehensive characterization of DNA methylome of oral tongue squamous cell carcinoma (OTSCC) and identify novel tumor-specific DNA methylation markers for early detection using saliva. MATERIAL AND METHODS Genome-wide DNA methylation analysis including six OTSCC matched adjacent non-tumoral tissue and saliva was performed using Infinium MethylationEPIC array. Differentially methylated levels of selected genes in our OTSCC cohort were further validated using OTSCC methylation data from The Cancer Genome Atlas database (TCGA). The methylation levels of a set of tumor-specific hypermethylated genes associated with a downregulated expression were evaluated in saliva. Receiver operating characteristic (ROC) curves were performed to assess the diagnostic value of DNA methylation markers. RESULTS A total of 25,890 CpGs (20,505 hypomethylated and 5385 hypermethylated) were differentially methylated (DMCpGs) between OTSCC and adjacent non-tumoral tissue. Hypermethylation of 11 tumor-specific genes was validated in OTSCC TCGA cohort. Of these 11 genes, A2BP1, ANK1, ALDH1A2, GFRA1, TTYH1, and PDE4B were also hypermethylated in saliva. These six salivary methylated genes showed high diagnostic accuracy (≥0.800) for discriminating patients from controls. CONCLUSIONS This is the first largest genome-wide DNA methylation study on OTSCC that identifies a group of novel tumor-specific DNA methylation markers with diagnostic potential in saliva.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Nicolás Costa-Fraga
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - José Luis López-Cedrún
- Department of Oral and Maxillofacial Surgery, Complexo Hospitalario Universitario de A Coruña (CHUAC, SERGAS), A Coruña, Spain
| | - Roberto Álvarez-Rodríguez
- Department of Pathology, Complexo Hospitalario Universitario de A Coruña (CHUAC, SERGAS), A Coruña, Spain
| | - Ana Belén Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), Santiago de Compostela, Spain
| | - Ángel Díaz-Lagares
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
2
|
Zhao Y, Fan X, Wang Q, Zhen J, Li X, Zhou P, Lang Y, Sheng Q, Zhang T, Huang T, Zhao Y, Lv Z, Wang R. ROS promote hyper-methylation of NDRG2 promoters in a DNMTS-dependent manner: Contributes to the progression of renal fibrosis. Redox Biol 2023; 62:102674. [PMID: 36989575 PMCID: PMC10074964 DOI: 10.1016/j.redox.2023.102674] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Renal fibrosis is the common histopathological feature of chronic kidney diseases (CKD), and there is increasing evidence that epigenetic regulation is involved in the occurrence and progression of renal fibrosis. N-myc downstream-regulated gene 2 (NDRG2) is significantly down-regulated in renal fibrosis, the mechanism of which remains unclear. Previous studies have confirmed that the inhibition of NDRG2 expression in tumor cells is related to hyper-methylation, mainly regulated by DNA methyltransferases (DNMTS). Herein, we explored the expression of NDRG2 and its epigenetic regulatory mechanism in renal fibrosis. The results showed that the expression of NDRG2 was significantly inhibited in vivo and in vitro, while the overexpression of NDRG2 effectively alleviated renal fibrosis. Meanwhile, we found that the expression of DNMT1/3A/3B was significantly increased in hypoxia-induced HK2 cells and Unilateral Ureteral Obstruction (UUO) mice accompanied by hyper-methylation of the NDGR2 promoter. Methyltransferase inhibitor (5-AZA-dC) corrected the abnormal expression of DNMT1/3A/3B, reduced the methylation level of NDRG2 promoter and restored the expression of NDRG2. The upstream events that mediate changes in NDRG2 methylation were further explored. Reactive oxygen species (ROS) are important epigenetic regulators and have been shown to play a key role in renal injury due to various causes. Accordingly, we further explored whether ROS could induce DNA-epigenetic changes of the expression of NDRG2 and then participated in the development of renal fibrosis. Our results showed that mitochondria-targeted antioxidants (Mito-TEMPO) could reverse the epigenetic inhibition of NDRG2 in a DNMT-sensitive manner, showing strong ability of DNA demethylation, exhibiting epigenetic regulation and anti-fibrosis effects similar to 5-AZA-dC. More importantly, the anti-fibrotic effects of 5-AZA-dC and Mito-TEMPO were eliminated in HK2 cells with NDRG2 knockdown. These findings highlight that targeting ROS-mediated hyper-methylation of NDRG2 promoter is a potentially effective therapeutic strategy for renal fibrosis, which will provide new insights into the treatment of CKD.
Collapse
|
3
|
The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis. Int J Mol Sci 2022; 23:ijms23169365. [PMID: 36012631 PMCID: PMC9408851 DOI: 10.3390/ijms23169365] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-β-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3β which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.
Collapse
|
4
|
Cheng M, Zhan X, Xu Y, Wang S, Zhang H, Fang L, Jin H, Chen W. DNA methylation of RNA-binding protein for multiple splicing 2 functions as diagnosis biomarker in gastric cancer pathogenesis and its potential clinical significance. Bioengineered 2022; 13:4347-4360. [PMID: 35137653 PMCID: PMC8973754 DOI: 10.1080/21655979.2022.2032965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Higher methylation levels of RNA-binding protein for multiple splicing 2 (RBPMS2) was reported to be related with unfavorable outcome in gastric cancer (GC). However, molecular function and diagnostic significance of DNA methylation of RBPMS2 remains indistinct. Here we aimed to whether DNA methylation of RBPMS2 acts as a diagnosis biomarker in GC pathogenesis and its potential clinical significance. Western blot and immunochemistry assays were carried out to explore the level of RBPMS2. GC malignancy behaviors were determined by cell counting kit-8, Transwell, flow cytometry analysis and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. The inflammatory cell infiltration in xenograft model was observed by hematoxylin and eosin staining. CpG Islands was predicted by MethPrimer and the DNA methylation of RBPMS2 was evaluated by methylation-specific polymerase chain reaction. The results showed that RBPMS2 was downregulated in GC specimens. Poor survival rates were associated with low RBPMS2 expression. Overexpression of RBPMS2 inhibited GC growth while facilitated apoptosis in GC cells. In addition, level of DNA methylation of RBPMS2 in GC tissues was increased and DNA methylation of RBPMS2 was strongly associated with tumor invasion, Borrmann classification and TNM stage. We also observed that DNA methylation inhibitors counteracted the role of RBPMS2 in restraining GC development and tumorigenesis. To sum, our data demonstrated that DNA methylation of RBPMS2 was responsible for its downregulation in GC and promoted tumor progression, indicating DNA methylation of RBPMS2 might serve as a valuable potential parameter in GC pathogenesis.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Gastroenterology, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Xiaoan Zhan
- Department of Gastrointestinal Surgery, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Yi Xu
- Department of Gastroenterology, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Saishan Wang
- Department of Gastroenterology, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Hongcheng Zhang
- Department of Gastroenterology, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Limin Fang
- Department of Gastroenterology, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Hao Jin
- Department of Gastroenterology, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| | - Wei Chen
- Department of Cardiology, Jinhua Fifth Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Morishita K, Nakahata S, Ichikawa T. Pathophysiological significance of N-myc downstream-regulated gene 2 in cancer development through protein phosphatase 2A phosphorylation regulation. Cancer Sci 2021; 112:22-30. [PMID: 33128318 PMCID: PMC7780046 DOI: 10.1111/cas.14716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T-cell leukemia/lymphoma (ATLL). NDRG2, as a stress-responsive protein, is induced by several stress-related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress-induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2-deficient mice, including T-cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten-deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C-terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long-term stress-induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress-induced leukemia and other cancers and has become an important target for novel molecular therapies.
Collapse
Affiliation(s)
| | - Shingo Nakahata
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Tomonaga Ichikawa
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
6
|
Zou Z, Zhou X, Zhang R, Zhang Q, Jiang S, Xu C, Zhang R, Xie T, Zhu H, Gong P, Zhang D, Ma H, Liao L, Dong J. Lin28a up-regulation is associated with the formation of restenosis via promoting proliferation and migration of vascular smooth muscle cells. J Cell Mol Med 2020; 24:9682-9691. [PMID: 32710472 PMCID: PMC7520293 DOI: 10.1111/jcmm.15506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023] Open
Abstract
To explore the potential role of Lin28a in the development of restenosis after percutaneous transluminal angioplasty, double‐balloon injury surgery and mono‐balloon injury surgery were used to establish restenosis and atherosclerosis models, respectively, so as to better distinguish restenosis from atherosclerotic lesions. Immunohistochemical analysis revealed that significantly higher expression of Lin28a was observed in the iliac arteries of restenosis plaques than that of atherosclerosis plaques. Immunofluorescence studies showed the colocalization of Lin28a with α‐smooth muscle actin in restenosis plaques, rather than in atherosclerosis plaques, which suggested that Lin28a might be related to the unique behaviour of vascular smooth muscle cells (VSMCs) in restenosis. To further confirm above hypothesis, Lin28a expression was up‐regulated by transfection of Lenti‐Lin28a and inhibited by Lenti‐Lin28a‐shRNA transfection in cultured VSMCs, and then the proliferation and migration capability of VSMCs were detected by EdU and Transwell assays, respectively. Results showed that the proliferation and migration of VSMCs were significantly increased in accordance with the up‐regulation of Lin28a expression, while above behaviours of VSMCs were significantly suppressed after inhibiting the expression of Lin28a. In conclusion, the up‐regulation of Lin28a exerts its modulatory effect on VSMCs’ proliferation and migration, which may play a critical role in contributing to pathological formation of restenosis.
Collapse
Affiliation(s)
- Zhiwei Zou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruzhen Zhang
- Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Tianyue Xie
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huangao Zhu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Piyun Gong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Dongmei Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Huimei Ma
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| |
Collapse
|
7
|
Yu C, Hao X, Zhang S, Hu W, Li J, Sun J, Zheng M. Characterization of the prognostic values of the NDRG family in gastric cancer. Therap Adv Gastroenterol 2019; 12:1756284819858507. [PMID: 31384305 PMCID: PMC6647212 DOI: 10.1177/1756284819858507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The N-myc downstream-regulated gene (NDRG) family, NDRG1-4, has been involved in a wide spectrum of biological functions in multiple cancers. However, their prognostic values remain sparse in gastric cancer (GC). Therefore, it is crucial to systematically investigate the prognostic values of the NDRG family in GC. METHODS The prognostic values of the NDRG family were evaluated by Kaplan-Meier Plotter and SurvExpress. The mRNA of the NDRG family was investigated in The Cancer Genome Atlas (TCGA). Transcription factors (TFs) and miRNAs associated with the NDRG family were predicted by NetworkAnalysis. The prognostic values of DNA methylation levels were analyzed by MethSurv. The correlation between immune cells and the NDRG family was evaluated by the Tumor Immune Estimation Resource (TIMER) database. RESULTS High levels of mRNA expression of NDRG2 and NDRG3 were associated with a favorable prognosis in all GCs. In HER2 - GC, NDRG1 was significantly associated with a poor prognosis of GC [hazard ratio (HR) = 1.65, 95% confidence interval (CI) = 1.16-2.33, p = 0.0046]. In HER2 + GC, NDRG4 showed a poor prognosis (HR = 1.4, 95% CI: 1.06-1.85, p = 0.017). NDRG4 was an independent prognostic factor in recurrence-free survival by TCGA cohort. The low-risk NDRG-signature group displayed a significantly favorable survival outcome than the high-risk group (HR = 1.76, 95% CI: 1.2-2.59, p = 0.00385). The phosphorylated protein NDRG1 (NDRG1_pT346) displayed a favorable overall survival and was significantly associated with HER2 and phosphorylated HER2. Epidermis development was the top biological process (BP) for coexpressed genes associated with NDRG1 and NDRG4, while mitotic nuclear division and mitotic cell processes were the top BPs for NDRG2 and NDRG3, respectively. Overall, 6 CpGs of NDRG1, 4 CpGs of NDRG2, 3 CpGs of NDRG3 and 24 CpGs of NDRG4 were associated with significant prognosis. CD4+ T-cells showed the highest correlation with NDRG4 (correlation = 0.341, p = 2.14e-11). Furthermore, BCL6 in follicular helper T-cells (Tfh) cells showed the highest association with NDRG4 (correlation = 0.438, p = 00e+00). CONCLUSIONS This study analyzed the multilevel prognostic values and biological roles of the NDRG family in GC.
Collapse
Affiliation(s)
- Chaoran Yu
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Xiaohui Hao
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Sen Zhang
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Wenjun Hu
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Jianwen Li
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Jing Sun
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | | |
Collapse
|
8
|
Ichikawa T, Nakahata S, Fujii M, Iha H, Shimoda K, Morishita K. The regulation of NDRG2 expression during ATLL development after HTLV-1 infection. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2633-2646. [PMID: 31295529 DOI: 10.1016/j.bbadis.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor that is frequently downregulated in adult T-cell leukemia/lymphoma (ATLL) and functions to negatively regulate several cellular signaling pathways as PP2A recruiter. To clarify the molecular mechanisms of suppression of NDRG2 expression, we initially determined the expression pattern of NDRG2 in various types of T-cells and ATLL cells. NDRG2 expression was significantly upregulated in HTLV-1/Tax-immortalized T-cells, which was mediated by NF-κB activation through Tax expression. On the other hand, NDRG2 expression was suppressed in HTLV-1-infected cell lines and various types of ATLL cells, which was dependent on the DNA methylation of the NDRG2 promoter. We found that the expression of enhancer of zeste homolog 2 (EZH2), a member of the polycomb family, is increased in ATLL, and that EZH2 directly binds to the NDRG2 promoter and induces DNA methylation of the NDRG2 promoter. Since the expression of EZH2 were anti-parallelly regulated with the NDRG2 expression, EZH2 might be one of the most important regulators of the downregulation of NDRG2, contributing to enhanced activation of signaling pathways during ATLL development.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Masahiro Fujii
- Division of Virology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Kazuya Shimoda
- Division of Gastroenterology and Hematology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
9
|
Hu W, Yang Y, Fan C, Ma Z, Deng C, Li T, Lv J, Yao W, Gao J. Clinical and pathological significance of N-Myc downstream-regulated gene 2 (NDRG2) in diverse human cancers. Apoptosis 2018; 21:675-82. [PMID: 27113371 DOI: 10.1007/s10495-016-1244-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human N-Myc downstream-regulated gene 2 (NDRG2), located at chromosome 14q11.2, has been reported to be down-regulated and associated with the progression and prognosis of diverse cancers. Collectively, previous studies suggest that NDRG2 functions as a candidate tumor-suppressor gene; thus, up-regulation of NDRG2 protein might act as a promising therapeutic strategy for malignant tumors. The aim of this review was to comprehensively present the clinical and pathological significance of NDRG2 in human cancers.
Collapse
Affiliation(s)
- Wei Hu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Weiwei Yao
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
10
|
Vaitkiene P, Valiulyte I, Glebauskiene B, Liutkeviciene R. N-myc downstream-regulated gene 2 (NDRG2) promoter methylation and expression in pituitary adenoma. Diagn Pathol 2017; 12:33. [PMID: 28390436 PMCID: PMC5385074 DOI: 10.1186/s13000-017-0622-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pituitary adenoma (PA) is a benign primary tumor that arises from the pituitary gland and is associated with ophthalmological, neurological and endocrinological abnormalities. However, causes that increase tumor progressing recurrence and invasiveness are still undetermined. Several studies have shown N-myc downstream regulated gene 2 (NDRG2) as a tumor suppressor gene, but the role of NDRG2 gene in pituitary adenoma pathogenesis has not been elucidated. The aim of our research has been to examine NDRG2 mRNA expression in PA and to determine the associations between the NDRG2 gene epigenetic changes and the development of recurrence or invasiveness of PA and patient clinical data. METHODS The MS-PCR was used for NDRG2 promoter methylation analysis and gene mRNA expression levels were evaluated by qRT-PCR in 68 non-functioning and 73 functioning adenomas. Invasiveness was evaluated using magnetic resonance imaging with Hardy's modified criteria. Statistical analysis was performed to find correlations between NDRG2 gene mRNA expression, promoter methylation and patient clinical characteristics and PA activity. RESULTS The NDRG2 mRNA expression was significantly lower in the case of acromegaly (GH and IGF-1 hypersecretion) than in other diagnoses of PAs (p < 0.05). Also, the NDRG2 expression was significantly higher in prolactinoma (PRL hypersecretion) than in in other diagnoses of PAs (p < 0.05). The promoter of NDRG2 was methylated in 22.69% (12/58 functioning and 15/61 non-functioning) of patients with PA. However, the NDRG2 gene mRNA expression was not significantly related to its methylation status. Clinical factors, such as: age, gender, relapse and diagnoses of Cushing syndrome were of no significance for NDRG2 promoter methylation and mRNA expression levels, as well as secreting or non-secreting PAs and the invasiveness of PAs. CONCLUSION The different NDRG2 promoter methylation and expression levels in PA samples showed tumor heterogeneity and indicates a potential role of this gene in pituitary adenoma pathogenesis, but the corresponding details require intensive research.
Collapse
Affiliation(s)
- Paulina Vaitkiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str.4, LT-50009, Kaunas, Lithuania.
| | - Indre Valiulyte
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str.4, LT-50009, Kaunas, Lithuania
| | - Brigita Glebauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str.4, LT-50009, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str.4, LT-50009, Kaunas, Lithuania
| |
Collapse
|
11
|
Lorentzen A, Mitchelmore C. NDRG2 gene copy number is not altered in colorectal carcinoma. World J Clin Oncol 2017; 8:67-74. [PMID: 28246586 PMCID: PMC5309715 DOI: 10.5306/wjco.v8.i1.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate if the down-regulation of N-myc Downstream Regulated Gene 2 (NDRG2) expression in colorectal carcinoma (CRC) is due to loss of the NDRG2 allele(s).
METHODS The following were investigated in the human colorectal cancer cell lines DLD-1, LoVo and SW-480: NDRG2 mRNA expression levels using quantitative reverse transcription-polymerase chain reaction (qRT-PCR); interaction of the MYC gene-regulatory protein with the NDRG2 promoter using chromatin immunoprecipitation; and NDRG2 promoter methylation using bisulfite sequencing. Furthermore, we performed qPCR to analyse the copy numbers of NDRG2 and MYC genes in the above three cell lines, 8 normal colorectal tissue samples and 40 CRC tissue samples.
RESULTS As expected, NDRG2 mRNA levels were low in the three colorectal cancer cell lines, compared to normal colon. Endogenous MYC protein interacted with the NDRG2 core promoter in all three cell lines. In addition, the NDRG2 promoter was heavily methylated in these cell lines, suggesting an epigenetic regulatory mechanism. Unaltered gene copy numbers of NDRG2 were observed in the three cell lines. In the colorectal tissues, one normal and three CRC samples showed partial or complete loss of one NDRG2 allele. In contrast, the MYC gene was amplified in one cell line and in more than 40% of the CRC cases.
CONCLUSION Our study suggests that the reduction in NDRG2 expression observed in CRC is due to transcriptional repression by MYC and promoter methylation, and is not due to allelic loss.
Collapse
|
12
|
Yamamura A, Miura K, Karasawa H, Motoi F, Mizuguchi Y, Saiki Y, Fukushige S, Sunamura M, Shibata C, Unno M, Horii A. NDRG2 , suppressed expression associates with poor prognosis in pancreatic cancer, is hypermethylated in the second promoter in human gastrointestinal cancers. Biochem Biophys Res Commun 2017; 484:138-143. [DOI: 10.1016/j.bbrc.2017.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/29/2022]
|
13
|
Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 2016; 7:209-23. [PMID: 26506239 PMCID: PMC4807993 DOI: 10.18632/oncotarget.6228] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor and cell stress-related gene. NDRG2 is associated with tumor incidence, progression, and metastasis. NDRG2 regulates tumor-associated genes and is regulated by multiple conditions, treatments, and protein/RNA entities, including hyperthermia, trichostatin A and 5-aza-2'-deoxycytidine, which are promising potential cancer therapeutics. In this review, we discuss the expression as well as the clinical and pathological significance of NDRG2 in cancer. The pathological processes and molecular pathways regulated by NDRG2 are also summarized. Moreover, mechanisms for increasing NDRG2 expression in tumors and the potential directions of future NDRG2 research are discussed. The information reviewed here should assist in experimental design and increase the potential of NDRG2 as a therapeutic target for cancer.
Collapse
|
14
|
Ling ZQ, Ge MH, Lu XX, Han J, Wu YC, Liu X, Zhu X, Hong LL. Ndrg2 promoter hypermethylation triggered by helicobacter pylori infection correlates with poor patients survival in human gastric carcinoma. Oncotarget 2016; 6:8210-25. [PMID: 25823664 PMCID: PMC4480746 DOI: 10.18632/oncotarget.3601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/03/2015] [Indexed: 12/26/2022] Open
Abstract
N-myc downstream regulated gene 2 (Ndrg2) is a candidate suppressor of cancer metastasis. We found that Ndrg2 promoter was frequently hypermethylated in gastric cancer cell lines and in 292 gastric tumor tissues. This resulted in down-regulation of Ndrg2 mRNA and protein. Ndrg2 promoter methylation was associated with H. pylori infection and worse prognosis of gastric cancer patients, which is an independent prognostic factor for the disease-free survival (DFS). We found that H. pylori silenced Ndrg2 by activating the NF-κB pathway and up-regulating DNMT3b, promoting gastric cancer progression. These findings uncover a previously unrecognized role for H. pylori infection in gastric cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Ming-Hua Ge
- Department of Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiao-Xiao Lu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Jin Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Lian-Lian Hong
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| |
Collapse
|
15
|
Verma M. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:59-80. [PMID: 26530360 DOI: 10.1007/978-94-017-7215-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Suite# 4E102. 9609 Medical Center Drive, MSC 9763, Bethesda, MD, 20892-9726, USA.
| |
Collapse
|
16
|
Hong SN, Kim SJ, Kim ER, Chang DK, Kim YH. Epigenetic silencing of NDRG2 promotes colorectal cancer proliferation and invasion. J Gastroenterol Hepatol 2016; 31:164-71. [PMID: 26250123 DOI: 10.1111/jgh.13068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Genome-wide methylation arrays have revealed aberrant methylation of N-Myc downstream-regulated gene 2 (NDRG2) promoter in colorectal cancer (CRC). This study investigated the role of NDRG2 in colorectal carcinogenesis. METHODS The aberrant promoter methylation, mRNA, and protein expression of NDRG2 were evaluated in 27 pairs of human CRC and adjacent normal tissues and seven human CRC-derived cell-lines. After stable NDRG2 over-expressed RKO and DLD-1 human CRC cell-lines were constructed, in vitro functional assays, including colony formation, cell viability, proliferation, invasion and migration assays, and in vivo xenograft models were performed. RESULTS The promoter of NDRG2 was methylated in 89% human CRC tissue compared to adjacent normal colonic mucosa (7.4%; P < 0.001). High-level methylation of NDRG2 promoter was more prevalent in proximal CRC (P = 0.022) and advanced T stage (P = 0.039). NDRG2 mRNA and protein expression was down-regulated in 89% and 100% human CRC tissue, respectively. In human CRC cell-lines, the promoter of NDRG2 was methylated aberrantly and mRNA, and protein expression of NDRG2 was down-regulated. NDRG2 mRNA expression was reactivated by 5-aza-2'-deoxycytidine. Colony formation of NDRG2 over-expressing RKO cells was inhibited (P = 0.012), as was the viability, proliferation, and invasion of NDRG2 over-expressing DLD-1 cells (P < 0.001, P = 0.003, and P = 0.044, respectively). Tumor volume in xenograft mice transplanted with NDRG2 over-expressing RKO and DLD-1 cells was smaller than that in controls (P = 0.002 and P = 0.001, respectively). CONCLUSIONS Epigenetic silencing of NDRG2 induces proliferation and invasion of CRC and may be associated with proximal CRC and advanced T stage. NDRG2 methylation might serve as novel biomarker of CRC.
Collapse
Affiliation(s)
- Sung Noh Hong
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Jin Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun-Ran Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Kyung Chang
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Ho Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Lee DG, Lee SH, Kim JS, Park J, Cho YL, Kim KS, Jo DY, Song IC, Kim N, Yun HJ, Park YJ, Lee SJ, Lee HG, Bae KH, Lee SC, Shim S, Kim YM, Kwon YG, Kim JM, Lee HJ, Min JK. Loss of NDRG2 promotes epithelial-mesenchymal transition of gallbladder carcinoma cells through MMP-19-mediated Slug expression. J Hepatol 2015; 63:1429-39. [PMID: 26292259 DOI: 10.1016/j.jhep.2015.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract and one of the most lethal forms of human cancer. However, there is limited information about the molecular pathogenesis of GBC. Here, we examined the functional role of the tumor suppressor N-myc downstream-regulated gene 2 (NDRG2) and the underlying molecular mechanisms of disease progression in GBC. METHODS Clinical correlations between NDRG2 expression and clinicopathological factors were determined by immunohistochemical analysis of tumor tissues from 86 GBC patients. Biological functions of NDRG2 and NDRG2-mediated signaling pathways were determined in GBC cell lines with NDRG2 knockdown or overexpression. RESULTS Loss of NDRG2 expression was an independent predictor of decreased survival and was significantly associated with a more advanced T stage, higher cellular grade, and lymphatic invasion in patients with GBC. GBC cells with loss of NDRG2 expression showed significantly enhanced proliferation, migration, and invasiveness in vitro, and tumor growth and metastasis in vivo. Loss of NDRG2 induced the expression of matrix metalloproteinase-19 (MMP-19), which regulated the expression of Slug at the transcriptional level. In addition, MMP-19-induced Slug, increased the expression of a receptor tyrosine kinase, Axl, which maintained Slug expression through a positive feedback loop, and stabilized epithelial-mesenchymal transition of GBC cells. CONCLUSIONS The results of our study help to explain why the loss of NDRG2 expression is closely correlated with malignancy of GBC. These results strongly suggest that NDRG2 could be a favorable prognostic indicator and promising target for therapeutic agents against GBC.
Collapse
Affiliation(s)
- Dong Gwang Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea
| | - Sang-Hyun Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jang-Seong Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jongjin Park
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea
| | - Young-Lai Cho
- Department of Chemistry, Dongguk University, Seoul, Republic of Korea
| | - Koon Soon Kim
- Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Deog Yeon Jo
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ik-Chan Song
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nayoung Kim
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hwan-Jung Yun
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Young-Jun Park
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Neuromarker Resource Bank, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Cancer Research Institute and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Hyo Jin Lee
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Jeong-Ki Min
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
18
|
Sachdeva M, Dodd RD, Huang Z, Grenier C, Ma Y, Lev DC, Cardona DM, Murphy SK, Kirsch DG. Epigenetic silencing of Kruppel like factor-3 increases expression of pro-metastatic miR-182. Cancer Lett 2015; 369:202-11. [PMID: 26314219 DOI: 10.1016/j.canlet.2015.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Accumulating evidence indicates that microRNAs (miRs) regulate cancer metastasis. We have shown that miR-182 drives sarcoma metastasis in vivo by coordinated regulation of multiple genes. Recently, we also demonstrated that in a subset of primary sarcomas that metastasize to the lung, miR-182 expression is elevated through binding of MyoD1 to the miR-182 promoter. However, it is not known if there are also transcription factors that inhibit miR-182 expression. Defining negative regulators of miR-182 expression may help explain why some sarcomas do not metastasize and may also identify pathways that can modulate miR-182 for therapeutic benefit. Here, we use an in silico screen, chromatin-immunoprecipitation, and luciferase reporter assays to discover that Kruppel like factor-3 (Klf-3) is a novel transcriptional repressor of miR-182. Knockdown of Klf-3 increases miR-182 expression, and stable overexpression of Klf-3, but not a DNA-binding mutant Klf-3, decreases miR-182 levels. Klf-3 expression is downregulated in both primary mouse and human metastatic sarcomas, and Klf-3 levels negatively correlate with miR-182 expression. Interestingly, Klf-3 also negatively regulates MyoD1, suggesting an alternative mechanism for Klf-3 to repress miR-182 expression in addition to direct binding of the miR-182 promoter. Using Methylation Specific PCR (MSP) and pyrosequencing assays, we found that Klf-3 is epigenetically silenced by DNA hypermethylation both in mouse and human sarcoma cells. Finally, we show the DNA methylation inhibitor 5'Azacytidine (Aza) restores Klf-3 expression while reducing miR-182 levels. Thus, our findings suggest that demethylating agents could potentially be used to modulate miR-182 levels as a therapeutic strategy.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca D Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dina C Lev
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Zhu X, Liu J, Xu X, Zhang C, Dai D. Genome-wide analysis of histone modifications by ChIP-chip to identify silenced genes in gastric cancer. Oncol Rep 2015; 33:2567-74. [PMID: 25738530 DOI: 10.3892/or.2015.3824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to identify novel histone modification markers in gastric cancer (GC) by chromatin immunoprecipitation microarray (ChIP-chip) analysis and to determine whether these markers were able to discriminate between normal and GC cells. We also tested for correlations with DNA methylation. We probed a human CpG island microarray with DNA from a GC cell line (MKN45) by chromatin immunoprecipitation (ChIP). ChIP-reverse-transcriptase quantitative polymerase chain reaction PCR (RT-qPCR) was used to validate the microarray results. Additionally, mRNA expression levels and the DNA methylation of potential target genes were evaluated by RT-qPCR and methylation-specific PCR (MSP). The moults showed that 134 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over acetylation and 46 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over H3-K4 trimethylation in MKN45 cells. The ChIP-qPCR results agreed with those obtained from the ChIP-chip analysis. Aberrant DNA methylation status and mRNA expression levels were also identified for selected genes (PSD, SMARCC1 and Vps37A) in the GC cell lines. The results suggest that CpG island microarray coupled with ChIP (ChIP-chip) can identify novel targets of gene silencing in GC. Additionally, ChIP-chip is the best approach for assessing the genome-wide status of epigenetic regulation, which may allow for a broader genomic understanding compared to the knowledge that has been accumulated from single-gene studies.
Collapse
Affiliation(s)
- Xinjiang Zhu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jian Liu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Xiaoyang Xu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chundong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dongqiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
20
|
Yang J, Zhu XB, He LX, Gu ZW, Jin MZ, Ji WY. Clinical significance of epigenetic silencing and re-expression of O6-methylguanine-DNA methyltransferase using epigenetic agents in laryngeal carcinoma. Oncol Lett 2014; 9:35-42. [PMID: 25452816 PMCID: PMC4247240 DOI: 10.3892/ol.2014.2662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/16/2014] [Indexed: 02/01/2023] Open
Abstract
The aim of the present study was to investigate the association between O6-methylguanine-DNA methyltransferase (MGMT) gene expression levels, and DNA methylation status and histone modifications in laryngeal squamous cell carcinoma (LSCC). Chromatin immunoprecipitation, methylation-specific polymerase chain reaction (PCR), and reverse transcription-quantitative PCR were performed to analyze histone modifications, DNA methylation status and mRNA expression levels in the promoter region of the MGMT gene in laryngeal carcinoma HEp-2 cells, as well as in 50 paired healthy and LSCC tissue samples. The present study demonstrated that treatment of HEp-2 cells with 5-aza-2′-deoxycytidine (Aza), a DNA methyltransferase inhibitor, significantly upregulated MGMT mRNA expression levels, reduced MGMT DNA methylation, reduced MGMT histone H3 lysine 9 (H3K9) di-methylation, and increased MGMT histone H3 lysine 4 di-methylation without a significant change in H3K9 acetylation. Trichostatin A (TSA), a histone deacetylase inhibitor, marginally upregulated MGMT mRNA expression levels without affecting the DNA methylation status, or H3K9 or H3K4 di-methylation, however, TSA treatment caused a significant increase in H3K9 acetylation. Furthermore, Aza and TSA combination treatment produced a synergistic effect. In the LSCC samples, the rate of DNA methylation in the MGMT gene was 54%, compared with 24% in the healthy control group (P<0.05). Therefore, data from the present study indicates that MGMT may serve as a novel therapeutic target in the treatment of LSCC.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otorhinolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin-Bing Zhu
- Department of General Sugery, General Hospital of Liaohe Oil Field, Panjin, Liaoning 124010, P.R. China
| | - Li-Xia He
- Department of Otorhinolaryngology, Fushun Second Hospital, Fushun, Liaoning 113001, P.R. China
| | - Zhao-Wei Gu
- Department of Otorhinolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ming-Zhu Jin
- Department of Otorhinolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wen-Yue Ji
- Department of Otorhinolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
21
|
Shi J, Qu YP, Hou P. Pathogenetic mechanisms in gastric cancer. World J Gastroenterol 2014; 20:13804-13819. [PMID: 25320518 PMCID: PMC4194564 DOI: 10.3748/wjg.v20.i38.13804] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/15/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major public health issue as the fourth most common cancer and the second leading cause of cancer-related death. Recent advances have improved our understanding of its molecular pathogenesis, as best exemplified by elucidating the fundamental role of several major signaling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these signaling pathways, such as gene mutations, copy number variants, aberrant gene methylation and histone modification, nucleosome positioning, and microRNAs. Some of these genetic/epigenetic alterations represent effective diagnostic and prognostic biomarkers and therapeutic targets for GC. This information has now opened unprecedented opportunities for better understanding of the molecular mechanisms of gastric carcinogenesis and the development of novel therapeutic strategies for this cancer. The pathogenetic mechanisms of GC are the focus of this review.
Collapse
|
22
|
Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K. Methylation-mediated gene silencing as biomarkers of gastric cancer: A review. World J Gastroenterol 2014; 20:11991-12006. [PMID: 25232236 PMCID: PMC4161787 DOI: 10.3748/wjg.v20.i34.11991] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Despite a decline in the overall incidence of gastric cancer (GC), the disease remains the second most common cause of cancer-related death worldwide and is thus a significant global health problem. The best means of improving the survival of GC patients is to screen for and treat early lesions. However, GC is often diagnosed at an advanced stage and is associated with a poor prognosis. Current diagnostic and therapeutic strategies have not been successful in decreasing the global burden of the disease; therefore, the identification of reliable biomarkers for an early diagnosis, predictive markers of recurrence and survival and markers of drug sensitivity and/or resistance is urgently needed. The initiation and progression of GC depends not only on genetic alterations but also epigenetic changes, such as DNA methylation and histone modification. Aberrant DNA methylation is the most well-defined epigenetic change in human cancers and is associated with inappropriate gene silencing. Therefore, an increasing number of genes methylated at the promoter region have been targeted as possible biomarkers for different purposes, including early detection, classification, the assessment of the tumor prognosis, the development of therapeutic strategies and patient follow-up. This review article summarizes the current understanding and recent evidence regarding DNA methylation markers in GC with a focus on the clinical potential of these markers.
Collapse
|
23
|
Kang C, Song JJ, Lee J, Kim MY. Epigenetics: An emerging player in gastric cancer. World J Gastroenterol 2014; 20:6433-6447. [PMID: 24914365 PMCID: PMC4047329 DOI: 10.3748/wjg.v20.i21.6433] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cancers, like other diseases, arise from gene mutations and/or altered gene expression, which eventually cause dysregulation of numerous proteins and noncoding RNAs. Changes in gene expression, i.e., upregulation of oncogenes and/or downregulation of tumor suppressor genes, can be generated not only by genetic and environmental factors but also by epigenetic factors, which are inheritable but nongenetic modifications of cellular chromosome components. Identification of the factors that contribute to individual cancers is a prerequisite to a full understanding of cancer mechanisms and the development of customized cancer therapies. The search for genetic and environmental factors has a long history in cancer research, but epigenetic factors only recently began to be associated with cancer formation, progression, and metastasis. Epigenetic alterations of chromatin include DNA methylation and histone modifications, which can affect gene-expression profiles. Recent studies have revealed diverse mechanisms by which chromatin modifiers, including writers, erasers and readers of the aforementioned modifications, contribute to the formation and progression of cancer. Furthermore, functional RNAs, such as microRNAs and long noncoding RNAs, have also been identified as key players in these processes. This review highlights recent findings concerning the epigenetic alterations associated with cancers, especially gastric cancer.
Collapse
|
24
|
Cao H, Hu X, Zhang Q, Wang J, Li J, Liu B, Shao Y, Li X, Zhang J, Xin S. Upregulation of let-7a inhibits vascular smooth muscle cell proliferation in vitro and in vein graft intimal hyperplasia in rats. J Surg Res 2014; 192:223-33. [PMID: 24953987 DOI: 10.1016/j.jss.2014.05.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Proliferation of vascular smooth muscle cells (VSMCs) is a crucial event in the pathogenesis of intimal hyperplasia, which is the main cause of restenosis after vascular reconstruction. In this study, we assessed the impact of let-7a microRNA (miRNA) on the proliferation of VSMCs. METHODS Using miRNA microarrays analysis for miRNA expression in the vein graft model. Lentiviral vector-mediated let-7a was transfected into the vein grafts. In situ hybridization was performed to detect let-7a. Cultured rat VSMCs were transfected with let-7a mimics for different periods of time. Cell proliferation, migration and cell cycle activity were monitored following transfection of the let-7a mimics. Immunohistochemical and Western blotting analysis the expression levels of c-myc and K-ras. RESULTS We found that let-7a was the most downregulated miRNA in the vein graft model. In vivo proliferation of VSMCs was assessed in a rat model of venous graft intimal hyperplasia. Let-7a was found to localize mainly to the VSMCs. Let-7a miRNA expression was increased in VSMCs in the neointima of the let-7a treated group. Intimal hyperplasia was suppressed by upregulation of let-7a via lentiviral vector-mediated mimics. In cultured VSMCs, the expression of let-7a increased upon starving, and the upregulation of let-7a miRNA significantly decreased cell proliferation and migration. Immunohistochemical and Western blotting analysis demonstrated that treatment with let-7a mimics resulted in decreased expression levels of c-myc and K-ras. CONCLUSIONS The results indicate that let-7a miRNA is a novel regulator of VSMC proliferation in intimal hyperplasia. These findings suggest that let-7a miRNA is a promising therapeutic target for the prevention of intimal hyperplasia.
Collapse
Affiliation(s)
- Hui Cao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinhua Hu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Qiang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Junpeng Wang
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yang Shao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Skiriutė D, Steponaitis G, Vaitkienė P, Mikučiūnas M, Skauminas K, Tamašauskas A, Kazlauskas A. Glioma Malignancy-Dependent NDRG2 Gene Methylation and Downregulation Correlates with Poor Patient Outcome. J Cancer 2014; 5:446-56. [PMID: 24847385 PMCID: PMC4026998 DOI: 10.7150/jca.9140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022] Open
Abstract
Aims: NDRG2 (N-myc downstream regulated gene 2) gene is involved in important biological processes: cell differentiation, growth and apoptosis. Several molecular studies have shown NDRG2 as a promising diagnostic marker involved in brain tumor pathology. The aim of the study was to investigate how changes in epigenetic modification and activity of NDRG2 reflect on glioma malignancy and patient outcome. Methods: 137 different malignancy grade gliomas were used as the study material: 14 pilocytic astrocytomas grade I, 45 diffuse astrocytomas grade II, 29 anaplastic astrocytomas grade III, and 49 grade IV astrocytomas (glioblastomas). Promoter methylation analysis has been carried out by using methylation-specific PCR, whereas RT-PCR and Western-blot analyses were used to measure NDRG2 expression levels. Results: We demonstrated that NDRG2 gene methylation frequency increased whereas expression at both mRNA and protein levels markedly decreased in glioblastoma specimens compared to the lower grade astrocytomas. NDRG2 transcript and protein levels did not correlate with the promoter methylation state, suggesting the presence of alternative regulatory gene expression mechanisms that may operate in a tissue-specific manner in gliomas. Kaplan-Meier analyses revealed significant differences in survival time in gliomas stratified by NDRG2 methylation status and mRNA and protein expression levels. Conclusions: Our findings highlight the usefulness of combining epigenetic data to gene expression patterns at mRNA and protein level in tumor biomarker studies, and suggest that NDRG2 downregulation might bear influence on glioma tumor progression while being associated with higher malignancy grade.
Collapse
Affiliation(s)
- Daina Skiriutė
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Giedrius Steponaitis
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Paulina Vaitkienė
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Mykolas Mikučiūnas
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Kęstutis Skauminas
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Arimantas Tamašauskas
- 2. 2 Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009, Kaunas, Lithuania
| | - Arunas Kazlauskas
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| |
Collapse
|
26
|
ZHU XINJIANG, LIU JIAN, XU XIAOYANG, ZHANG CHUNDONG, DAI DONGQIU. Novel tumor-suppressor gene epidermal growth factor-containing fibulin-like extracellular matrix protein 1 is epigenetically silenced and associated with invasion and metastasis in human gastric cancer. Mol Med Rep 2014; 9:2283-92. [DOI: 10.3892/mmr.2014.2135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/12/2014] [Indexed: 11/06/2022] Open
|
27
|
Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, Manachai N, Yamakawa N, Hamasaki M, Kitabayashi I, Arai Y, Kanai Y, Taki T, Abe T, Kiyonari H, Shimoda K, Ohshima K, Horii A, Shima H, Taniwaki M, Yamaguchi R, Morishita K. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun 2014; 5:3393. [PMID: 24569712 PMCID: PMC3948061 DOI: 10.1038/ncomms4393] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
Abstract
Constitutive phosphatidylinositol 3-kinase (PI3K)-AKT activation has a causal role in adult T-cell leukaemia-lymphoma (ATLL) and other cancers. ATLL cells do not harbour genetic alterations in PTEN and PI3KCA but express high levels of PTEN that is highly phosphorylated at its C-terminal tail. Here we report a mechanism for the N-myc downstream-regulated gene 2 (NDRG2)-dependent regulation of PTEN phosphatase activity via the dephosphorylation of PTEN at the Ser380, Thr382 and Thr383 cluster within the C-terminal tail. We show that NDRG2 is a PTEN-binding protein that recruits protein phosphatase 2A (PP2A) to PTEN. The expression of NDRG2 is frequently downregulated in ATLL, resulting in enhanced phosphorylation of PTEN at the Ser380/Thr382/Thr383 cluster and enhanced activation of the PI3K-AKT pathway. Given the high incidence of T-cell lymphoma and other cancers in NDRG2-deficient mice, PI3K-AKT activation via enhanced PTEN phosphorylation may be critical for the development of cancer.
Collapse
Affiliation(s)
- Shingo Nakahata
- 1] Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan [2]
| | - Tomonaga Ichikawa
- 1] Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan [2]
| | - Phudit Maneesaay
- Department of Veterinary Pathology, University of Miyazaki, Nishi 1-1, Gakuen Kibana Dai, Miyazaki 889-2192, Japan
| | - Yusuke Saito
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kentaro Nagai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tomohiro Tamura
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Nawin Manachai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Norio Yamakawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Hamasaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, 67 Asahimati, Kurume 830-0011, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293, Japan
| | - Masafumi Taniwaki
- Department of Molecular Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, University of Miyazaki, Nishi 1-1, Gakuen Kibana Dai, Miyazaki 889-2192, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
28
|
Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta 2013; 424:53-65. [PMID: 23669186 DOI: 10.1016/j.cca.2013.05.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.
Collapse
Key Words
- 5-hmC
- 5-hydroxymethylcytosine
- 5-mC
- 5-methylcytosine
- ADAM metallopeptidase domain 23
- ADAM metallopeptidase with thrombospondin type 1 motif, 9
- ADAM23
- ADAMTS9
- AML
- APC
- ARID1A
- AT motif-binding factor 1
- AT rich interactive domain 1A (SWI-like)
- ATBF1
- Acute myelocytic leukemia
- Adenomatosis polyposis coli
- B-cell translocation gene 4
- BCL2/adenovirus E1B 19kDa interacting protein 3
- BMP-2
- BNIP3
- BS
- BTG4
- Biomarkers
- Bisulfite sequencing
- Bone morphogenetic protein 2
- C-MET
- CACNA1G
- CACNA2D3
- CD44
- CD44 molecule (Indian blood group)
- CDH1
- CDK4
- CDK6
- CDKN1C
- CDKN2A
- CDX2
- CGI
- CHD5
- CHFR
- CKLF-like MARVEL transmembrane domain containing 3
- CMTM3
- CNS
- CRBP1
- Cadherin 1 or E-cadherin
- Calcium channel, voltage-dependent, T type, alpha 1G subunit
- Calcium channel, voltage-dependent, alpha 2/delta subunit 3
- Caudal type homeobox 2
- Central nervous system
- Checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase
- Chromodomain helicase DNA binding protein 5
- Chromosome 2 open reading frame 40
- Clinical outcomes
- CpG islands
- Cyclin-dependent kinase 4
- Cyclin-dependent kinase 6
- Cyclin-dependent kinase inhibitor 1A
- Cyclin-dependent kinase inhibitor 1B
- Cyclin-dependent kinase inhibitor 1C
- Cyclin-dependent kinase inhibitor 2A
- Cyclin-dependent kinase inhibitor 2B
- DAB2 interacting protein
- DACT1
- DAPK
- DNA
- DNA methylatransferases
- DNA mismatch repair
- DNMT
- Dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)
- Death-associated protein kinase
- Deoxyribose Nucleic Acid
- Dickkopf 3 homolog (Xenopus laevis)
- Dkk-3
- EBV
- ECRG4
- EDNRB
- EGCG
- ERBB4
- Endothelin receptor type B
- Epigallocatechin gallate
- Epigenetics
- Epstein–Barr Virus
- FDA
- FLNc
- Filamin C
- Food and Drug Administration
- GC
- GDNF
- GI endoscopy
- GPX3
- GRIK2
- GSTP1
- Gastric cancer
- Gene methylation
- Glutamate receptor, ionotropic, kainate 2
- Glutathione S-transferase pi 1
- Glutathione peroxidase 3 (plasma)
- H. pylori
- HACE1
- HAI-2/SPINT2
- HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1
- HGFA
- HLTF
- HOXA1
- HOXA10
- HRAS-like suppressor
- HRASLS
- Helicase-like transcription factor
- Helicobacter pylori
- Homeobox A1
- Homeobox A10
- Homeobox D10
- HoxD10
- IGF-1
- IGF-1R
- IGFBP3
- IL-1β
- ITGA4
- Insulin-like growth factor 1 (somatomedin C)
- Insulin-like growth factor I receptor
- Insulin-like growth factor binding protein 3
- Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
- Interleukin 1, beta
- KL
- KRAS
- Klotho
- LL3
- LMP2A
- LOX
- LRP1B
- Low density lipoprotein receptor-related protein 1B
- Lysyl oxidase
- MAPK
- MBPs
- MDS
- MGMT
- MINT25
- MLF1
- MLL
- MMR
- MSI
- MSP
- Matrix metallopeptidase 24 (membrane-inserted)
- Met proto-oncogene (hepatocyte growth factor receptor)
- Methyl-CpG binding proteins
- Methylation-specific PCR
- Microsatellite instability
- Myeloid leukemia factor 1
- Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
- Myeloid/lymphoid or mixed-lineage leukemia 3
- NDRG family member 2
- NDRG2
- NPR1
- NR3C1
- Natriuretic peptide receptor A/guanylate cyclase A
- Notch 1
- Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
- O-6-methylguanine-DNA methyltransferase
- PCDH10
- PCDH17
- PI3K/Akt
- PIK3CA
- PR domain containing 5
- PRDM5
- PTCH1
- Patched 1
- Phosphatidylethanolamine binding protein 1
- Protein tyrosine phosphatase, non-receptor type 6
- Protocadherin 10
- Protocadherin 17
- Q-MSP
- Quantitative methylation-specific PCR
- RAR-related orphan receptor A
- RARRES1
- RARß
- RAS/RAF/MEK/ERK
- RASSF1A
- RASSF2
- RBP1
- RKIP
- RORA
- ROS
- RUNX3
- Ras association (RalGDS/AF-6) domain family member 1
- Ras association (RalGDS/AF-6) domain family member 2
- Rb
- Retinoic acid receptor responder (tazarotene induced) 1
- Retinoic acid receptor, beta
- Retinol binding protein 1, cellular
- Runt-related transcription factor 3
- S-adenosylmethionine
- SAM
- SFRP2
- SFRP5
- SHP1
- SOCS-1
- STAT3
- SYK
- Secreted frizzled-related protein 2
- Secreted frizzled-related protein 5
- Serine peptidase inhibitor, Kunitz type, 2
- Spleen tyrosine kinase
- Suppressor of cytokine signaling 1
- TCF4
- TET
- TFPI2
- TGF-β
- TIMP metallopeptidase inhibitor 3
- TIMP3
- TNM
- TP73
- TSP1
- Thrombospondin 1
- Tissue factor pathway inhibitor 2
- Transcription factor 4
- Tumor Node Metastasis
- Tumor protein p73
- V-erb-a erythroblastic leukemia viral oncogene homolog 4
- ZFP82 zinc finger protein
- ZIC1
- ZNF545
- Zinc finger protein of the cerebellum 1
- gastrointestinal endoscopy
- glial cell derived neurotrophic factor
- hDAB2IP
- hMLH1
- hepatocyte growth factor activator
- latent membrane protein
- mutL homolog 1
- myelodysplastic syndromes
- p15
- p16
- p21
- p27
- p53
- p73
- phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
- phosphoinositide 3-kinase (PI3K)/Akt
- reactive oxygen species
- retinoblastoma
- signal transducer and activator of transcription-3
- ten-eleven translocation
- transforming growth factor-β
- tumor protein p53
- tumor protein p73
- v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
Collapse
Affiliation(s)
- Yiping Qu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | |
Collapse
|