1
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Šket R, Treichel N, Kublik S, Debevec T, Eiken O, Mekjavić I, Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevoršek Z, Likar M, Stres B. Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: The PlanHab randomized trial pilot study. PLoS One 2017; 12:e0188556. [PMID: 29211803 PMCID: PMC5718606 DOI: 10.1371/journal.pone.0188556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
We explored the assembly of intestinal microbiota in healthy male participants during the randomized crossover design of run-in (5 day) and experimental phases (21-day normoxic bed rest (NBR), hypoxic bed rest (HBR) and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, with balanced fluid and dietary intakes, controlled circadian rhythm, microbial ambiental burden and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4000 m simulated altitude), respectively. A number of parameters linked to intestinal environment such as defecation frequency, intestinal electrical conductivity (IEC), sterol and polyphenol content and diversity, indole, aromaticity and spectral characteristics of dissolved organic matter (DOM) were measured (64 variables). The structure and diversity of bacterial microbial community was assessed using 16S rRNA amplicon sequencing. Inactivity negatively affected frequency of defecation and in combination with hypoxia increased IEC (p < 0.05). In contrast, sterol and polyphenol diversity and content, various characteristics of DOM and aromatic compounds, the structure and diversity of bacterial microbial community were not significantly affected over time. A new in-house PlanHab database was established to integrate all measured variables on host physiology, diet, experiment, immune and metabolic markers (n = 231). The observed progressive decrease in defecation frequency and concomitant increase in IEC suggested that the transition from healthy physiological state towards the developed symptoms of low magnitude obesity-related syndromes was dose dependent on the extent of time spent in inactivity and preceded or took place in absence of significant rearrangements in bacterial microbial community. Species B. thetaiotamicron, B. fragilis, B. dorei and other Bacteroides with reported relevance for dysbiotic medical conditions were significantly enriched in HBR, characterized with most severe inflammation symptoms, indicating a shift towards host mucin degradation and proinflammatory immune crosstalk.
Collapse
Affiliation(s)
- Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Treichel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Sport, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Igor Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Marius Vital
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jenna Chandler
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Boštjan Murovec
- Laboratory for Artificial Sight and Automation, Faculty of Electrical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Prevoršek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Center for Clinical Neurophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
3
|
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:179-197. [PMID: 30356594 PMCID: PMC6188999 DOI: 10.1016/j.jshs.2016.05.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation, redox reactions, and hydration status. METHODS A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, ClinicalTrials.gov, ScienceDirect, Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response", "microbiota", "nutrition", and "probiotics". RESULTS Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels. CONCLUSION The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.
Collapse
Affiliation(s)
- Núria Mach
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, Jouy-en-Josas 78350, France
- Corresponding author.
| | - Dolors Fuster-Botella
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
| |
Collapse
|
4
|
Kang DW, DiBaise JK, Ilhan ZE, Crowell MD, Rideout JR, Caporaso JG, Rittmann BE, Krajmalnik-Brown R. Gut microbial and short-chain fatty acid profiles in adults with chronic constipation before and after treatment with lubiprostone. Anaerobe 2015; 33:33-41. [PMID: 25617726 DOI: 10.1016/j.anaerobe.2015.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/06/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Identifying specific gut microorganisms associated with chronic constipation may be useful for diagnostic and therapeutic purposes. The objective of this study was to evaluate whether or not the gut microbial community of constipated subjects had specific microbial signatures and to assess the effects of lubiprostone treatment on the gut microbial community. Stool diaries, breath H2 and CH4 levels, and stool samples were collected from ten healthy subjects and nine patients meeting the Rome III criteria for chronic functional constipation. Constipated subjects received lubiprostone for four weeks, during which stool diaries were maintained. Stool samples were evaluated for gut microbial communities using pyrosequencing and quantitative real-time PCR (qPCR) targeting 16S-rRNA gene, along with concentrations of short-chain fatty acids (SCFAs) using high-performance liquid chromatography. Prior to treatment, gut microbial profiles were similar between constipated subjects and healthy subjects, while iso-butyrate levels were significantly higher in constipated subjects compared with healthy subjects. Despite increases in stool frequency and improvements in consistency after lubiprostone treatment, gut microbial profiles and community diversity after treatment showed no significant change compared to before treatment. While we did not observe a significant difference in either breath methane or archaeal abundance between the stool samples of healthy and constipated subjects, we confirmed a strong correlation between archaeal abundance measured by qPCR and the amount of methane gas exhaled in the fasting breath. Butyrate levels, however, were significantly higher in the stool samples of constipated subjects after lubiprostone treatment, suggesting that lubiprostone treatment had an effect on the net accumulation of SCFAs in the gut. In conclusion, lubiprostone treatment improved constipation symptoms and increased levels of butyrate without substantial modification of the gut microbial structure.
Collapse
Affiliation(s)
- Dae-Wook Kang
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 727 East Tyler Road, Tempe, AZ 85287-5701, USA
| | - John K DiBaise
- Division of Gastroenterology, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA.
| | - Zehra Esra Ilhan
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 727 East Tyler Road, Tempe, AZ 85287-5701, USA
| | - Michael D Crowell
- Division of Gastroenterology, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | - Jai Ram Rideout
- Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 South Knoles Dr., Flagstaff, AZ 86011, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl., New York, NY 10029, USA
| | - J Gregory Caporaso
- Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 South Knoles Dr., Flagstaff, AZ 86011, USA; Department of Biological Sciences, Northern Arizona University, 617 South Beaver St., Flagstaff, AZ 86011, USA
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 727 East Tyler Road, Tempe, AZ 85287-5701, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 727 East Tyler Road, Tempe, AZ 85287-5701, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA.
| |
Collapse
|
5
|
Raschi E, De Ponti F. Lubiprostone: pharmacokinetic, pharmacodynamic, safety and regulatory aspects in the treatment of constipation-predominant irritable bowel syndrome. Expert Opin Drug Metab Toxicol 2014; 10:293-305. [PMID: 24387275 DOI: 10.1517/17425255.2013.876410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Lubiprostone acts locally (apical membrane of human intestinal epithelial cells) as a highly selective type-2 chloride channel activator. It was approved in the USA for chronic idiopathic constipation (January 2006) and in women aged ≥ 18 years suffering from irritable bowel syndrome with constipation (IBS-C) (April 2008). So far, the only other pro-secretory medication approved in IBS-C and currently available in USA and Europe (since August and November 2012, respectively) is linaclotide. AREAS COVERED This review outlines the regulatory history, pharmacokinetic, pharmacodynamic and safety data in the treatment of IBS-C with a European perspective. It is based on publicly available data, namely, published literature, drug labels and the FDA's spontaneous reporting system. EXPERT OPINION Although interesting pharmacodynamic data suggest that lubiprostone may have additional mechanisms of action, its beneficial effects in IBS-C must be confirmed in the actual clinical scenario taking into account the new version of European Medicines Agency's guideline. This is especially important with regard to duration of studies (recommended to be at least 6 months) to adequately assess long-term sustained efficacy, withdrawal, rebound and safety. Further research is warranted in uncertain areas (i.e., males, pediatric and elderly patients). On the basis of current data, it is still too early to draw definite conclusions on the overall risk-benefit balance for IBS-C.
Collapse
Affiliation(s)
- Emanuel Raschi
- University of Bologna, Department of Medical and Surgical Sciences, Pharmacology Unit, Alma Mater Studiorum , Via Irnerio, 48, I-40126 Bologna BO , Italy
| | | |
Collapse
|