1
|
Sakai T, Okuno Y, Murakami N, Shimoyama Y, Imagama S, Nishida Y. Case report: Novel NIPBL-BEND2 fusion gene identified in osteoblastoma-like phosphaturic mesenchymal tumor of the fibula. Front Oncol 2023; 12:956472. [PMID: 36686800 PMCID: PMC9850095 DOI: 10.3389/fonc.2022.956472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphaturic mesenchymal tumor (PMT) is a rare tumor that secretes fibroblast growth factor 23 (FGF23) and causes hypophosphatemia and tumor-induced osteomalacia (TIO). Fusion genes FN1-FGFR1 and FN1-FGF1 have been detected in some PMTs, but the pathogenesis of PMTs without these fusion genes remains unclear. Here, we report a 12-year-old boy with persistent muscle weakness and gait disturbance. Roentgenographic examination revealed a radiolucent lesion with endosteal scalloping in the left fibula, while his serum level of FGF23 was markedly increased. Combined with simple X-ray findings of other body parts, we suspected that TIO was caused by PMT, and resected the tumor. After resection, the serum level of FGF23 started to decrease immediately and normalized within 3 hours after resection, with this being earlier than normalization of the serum phosphorus level. In RNA sequencing, FN1-FGFR1 and FN1-FGF1 were not detected, but a novel NIPBL-BEND2 fusion gene was identified. When we forcedly expressed this fusion gene in HEK293T cells and MG63 cells, cell proliferation was enhanced in both cell lines. Furthermore, Gene set enrichment analysis of HEK293T cells showed significant upregulation of MYC-target genes. Our results suggest that this novel NIPBL-BEND2 fusion gene promotes cell proliferation possibly via the MYC pathway and might be one of the etiologies of PMTs other than FN1-FGFR1 or FN1-FGF1.
Collapse
Affiliation(s)
- Tomohisa Sakai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan,Rare Cancer Center, Nagoya University Hospital, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshie Shimoyama
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan,Rare Cancer Center, Nagoya University Hospital, Nagoya, Japan,Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan,*Correspondence: Yoshihiro Nishida,
| |
Collapse
|
2
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
3
|
Zhang S, Zhou Y, Wang Q, Donahue K, Feng J, Yao Y, Chen A, Li X, Hong L. Nipped-B-like Protein Sensitizes Esophageal Squamous Cell Carcinoma Cells to Cisplatin via Upregulation of PUMA. Technol Cancer Res Treat 2020; 19:1533033820960726. [PMID: 33034274 PMCID: PMC7592177 DOI: 10.1177/1533033820960726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nipped-B-like protein plays a pivotal role as a cohesin loading factor in the segregation of chromosomes when cells divide. Accumulating evidence indicates that alterations of this protein are involved in human carcinogenesis, especially in the regulation of chemotherapeutic drug response. However, the role of Nipped-B-like protein in esophageal squamous cell carcinoma remains unknown. In this study, we investigated the relevance of Nipped-B-like protein in the regulation of cisplatin sensitivity in esophageal squamous cell carcinoma. Ectopic expression of Nipped-B-like protein inhibited the growth of COLO-680N cells with low endogenous expression levels of Nipped-B-like protein, and increased sensitivity to cisplatin, a commonly used chemotherapy drug for patients with esophageal squamous cell carcinoma. In contrast, loss of Nipped-B-like protein stimulated the growth of EC9706 and Eca-109 cells with high levels of the protein, and resulted in resistance to cisplatin. P53-upregulated modulator of apoptosis, which is essential in the modulation of cisplatin sensitivity in a variety of cancers, acts as a downstream effector of Nipped-B-like protein. Restoration of this pro-apoptotic protein in Nipped-B-like protein-overexpressing esophageal squamous cell carcinoma cells effectively increased cisplatin sensitivity. Conversely, the silencing of P53-upregulated modulator of apoptosis in Nipped-B-like protein-depleted esophageal squamous cell carcinoma rendered cells resistant to cisplatin. Moreover, Nipped-B-like protein could bind directly to the promoter region of P53-upregulated modulator of apoptosis. In summary, our study addresses the involvement of Nipped-B-like protein in the development of esophageal squamous cell carcinoma, and the modulation of cisplatin sensitivity via regulation of P53-upregulated modulator of apoptosis.
Collapse
Affiliation(s)
- Shengjie Zhang
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Yun Zhou
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianguo Feng
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Yinli Yao
- Department of Medicine, The Children's Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Aiping Chen
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Xia Li
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| | - Lianlian Hong
- Experimental Research Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Liu C, Zhao Z, Ji Z, Jiang Y, Zheng J. MiR-187-3p Enhances Propranolol Sensitivity of Hemangioma Stem Cells. Cell Struct Funct 2019; 44:41-50. [PMID: 30713220 DOI: 10.1247/csf.18041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Infantile hemangioma is the most common soft tissue tumors in childhood. In clinic, propranolol is widely used for infantile hemangioma therapy. However, some of the infantile hemangioma patients display resistance to propranolol treatment. Previous studies show that miR-187-3p is inhibited in hepatocellular carcinoma and lung cancer, while the role of miR-187-3p in infantile hemangioma remains unclear. In the present study, we explore the biological role of miR-187-3p in infantile hemangioma. The mRNA and protein levels of related genes were detected by real-time PCR and Western blotting. CCK8 assay was used to detect cell viability and IC50 values of propranolol. Cell apoptosis was detected by Caspase-3 Activity assay. Luciferase reporter assay and biotin RNA pull down assay were used to detect the interaction between miR-187-3p and the targeted gene. MiR-187-3p was down-regulated in infantile hemangioma tissues and promoted propranolol sensitivity of HemSCs. Mechanically, NIPBL was the direct target of miR-187-3p in HemSCs. NIPBL downregulation inhibited propranolol resistance of HemSCs. Re-introduction of NIPBL reversed miR-187-3p-meidated higher propranolol sensitivity of HemSCs. MiR-187-3p enhanced propranolol sensitivity of hemangioma stem cells via targeting NIPBL. MiR-187-3p may serve as a novel prognostic indicator and potential target for infantile hemangioma therapy.Key words: MiR-187-3p, infantile hemangioma, propranolol, resistance, NIPBL.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Zeliang Zhao
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine
| | | | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
5
|
DNA replication stress and its impact on chromosome segregation and tumorigenesis. Semin Cancer Biol 2018; 55:61-69. [PMID: 29692334 DOI: 10.1016/j.semcancer.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023]
Abstract
Genome instability and cell cycle dysregulation are commonly associated with cancer. DNA replication stress driven by oncogene activation during tumorigenesis is now well established as a source of genome instability. Replication stress generates DNA damage not only during S phase, but also in the subsequent mitosis, where it impacts adversely on chromosome segregation. Some regions of the genome seem particularly sensitive to replication stress-induced instability; most notably, chromosome fragile sites. In this article, we review some of the important issues that have emerged in recent years concerning DNA replication stress and fragile site expression, as well as how chromosome instability is minimized by a family of ring-shaped protein complexes known as SMC proteins. Understanding how replication stress impacts on S phase and mitosis in cancer should provide opportunities for the development of novel and tumour-specific treatments.
Collapse
|
6
|
Zhou H, Zheng L, Lu K, Gao Y, Guo L, Xu W, Wang X. Downregulation of Cohesin Loading Factor Nipped-B-Like Protein (NIPBL) Induces Cell Cycle Arrest, Apoptosis, and Autophagy of Breast Cancer Cell Lines. Med Sci Monit 2017; 23:4817-4825. [PMID: 28987049 PMCID: PMC5642644 DOI: 10.12659/msm.906583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cohesin loading factor, nipped-B-like protein (NIPBL), is also known as the sister chromatid cohesion 2 (SCC2) human homolog. Recently, we have studied the role of expression levels of NIPBL in cell proliferation and chemotherapy resistance of non-small cell lung cancer (NSCLC) cells in vitro. The aim of this study was to investigate the effects of expression of the cohesin loading factor, NIPBL, on the cell cycle, apoptosis, and autophagy of breast cancer cell lines in vitro. MATERIAL AND METHODS Expression levels of the NIPBL in the breast cancer cell lines, MCF7, Bcap37, MDA-MB 453 and MDA-MB 231, were measured using Western blot and flow cytometry. Small interfering RNA (si-RNA) was used to study the biological functions of NIPBL. The cell counting kit-8 (CCK-8) assay and the colony formation assay were used to measure cell proliferation; the wound scratching assay and transwell chamber assay were used to investigate cell invasion and migration. RESULTS NIPBL gene and protein expression were upregulated in the MCF7 and Bcap37 cells; si-NIPBL transfection inhibited cell proliferation, invasion, and migration of breast cancer cells. Downregulation of NIPBL arrested cells in the G0/G1 phase of the cell cycle and induced apoptosis and autophagy of breast cancer cells through the caspase3 and mammalian target of rapamycin (mTOR) signaling pathways. CONCLUSIONS [color=black]Downregulation of cohesin loading factor NIPBL arrested breast cancer cells in vitro in the G0/G1 phase of the cell cycle and induced apoptosis and autophagy. [/color].
Collapse
Affiliation(s)
- Huanhuan Zhou
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Lei Zheng
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Kongbeng Lu
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Yun Gao
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Liwei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Weizhen Xu
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Xiaojia Wang
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
7
|
Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016; 22:1342-1350. [PMID: 27694933 DOI: 10.1038/nm.4191] [Citation(s) in RCA: 648] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
Microsatellite instability (MSI), the spontaneous loss or gain of nucleotides from repetitive DNA tracts, is a diagnostic phenotype for gastrointestinal, endometrial, and colorectal tumors, yet the landscape of instability events across a wider variety of cancer types remains poorly understood. To explore MSI across malignancies, we examined 5,930 cancer exomes from 18 cancer types at more than 200,000 microsatellite loci and constructed a genomic classifier for MSI. We identified MSI-positive tumors in 14 of the 18 cancer types. We also identified loci that were more likely to be unstable in particular cancer types, resulting in specific instability signatures that involved cancer-associated genes, suggesting that instability patterns reflect selective pressures and can potentially identify novel cancer drivers. We also observed a correlation between survival outcomes and the overall burden of unstable microsatellites, suggesting that MSI may be a continuous, rather than discrete, phenotype that is informative across cancer types. These analyses offer insight into conserved and cancer-specific properties of MSI and reveal opportunities for improved methods of clinical MSI diagnosis and cancer gene discovery.
Collapse
|
8
|
Choi EJ, Yoo NJ, Kim MS, An CH, Lee SH. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. Oncology 2016; 91:289-294. [PMID: 27677186 DOI: 10.1159/000450616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The transcription factor-encoding EGR1 and the kinase-encoding BRSK1 are considered putative tumor suppressor genes (TSGs). However, EGR1 and BRSK1 mutations that could inactivate their functions are not reported in colorectal (CRC) and gastric (GC) cancers. METHODS There are mononucleotide repeats in EGR1 and BRSK1, which could be mutated in cancers with defects in mismatch repair, resulting in microsatellite instability (MSI). We analyzed 124 CRCs and 79 GCs for mutations and their intratumoral heterogeneities (ITHs). RESULTS Twenty-one out of 79 CRCs (26.6%) and 5 out of 34 GCs (14.7%) carrying high MSI (MSI-H) exhibited frameshift mutations. However, we found no such mutations in cancers with microsatellite stability. In addition, we studied ITH for these mutations in 16 cases of CRCs and observed that EGR1 and BRSK1 mutations exhibited ITH in 3 (18.8%) and 2 (12.5%) cases, respectively. CONCLUSION Our data in this study reveal that the TSG genes EGR1 and BRSK1 carry mutational ITH as well as frameshift mutations in MSI-H CRC and GC, which together may be features of GC and CRC with MSI-H. These results suggest that frameshift mutations of EGR1 and BRSK1 might play a role in tumorigenesis through TSG inactivation in CRC and GC.
Collapse
Affiliation(s)
- Eun Ji Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
Markus MA, Yang YHJ, Morris BJ. Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer. Genomics 2016; 107:138-44. [PMID: 26898347 DOI: 10.1016/j.ygeno.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 10/25/2022]
Abstract
This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4.
Collapse
Affiliation(s)
- M Andrea Markus
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.
| | - Yee Hwa J Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia.
| | - Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Xu W, Ying Y, Shan L, Feng J, Zhang S, Gao Y, Xu X, Yao Y, Zhu C, Mao W. Enhanced expression of cohesin loading factor NIPBL confers poor prognosis and chemotherapy resistance in non-small cell lung cancer. J Transl Med 2015; 13:153. [PMID: 25963978 PMCID: PMC4438579 DOI: 10.1186/s12967-015-0503-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND NIPBL, the sister chromatid cohesion 2 (SCC2) human homolog, is a cohesin loading factor which is essential for deposition of cohesin onto the sister chromatid. Recent studies have shown that NIPBL contribute to sister chromatid cohesion and plays a critical role in development, DNA repair, and gene regulation. In this study, we measured the expression of NIPBL in clinical non-small cell lung cancer specimens, and determined its effects on cellular processes and chemosensitivity in vitro. METHODS NIPBL immunohistochemistry was performed on 123 lung adenocarcinoma samples. Through knockdown of NIPBL protein expression, non-small cell lung cancer cell lines were used to test the potential involvement of NIPBL silencing on cell proliferation, migration, invasion, and apoptosis. Chemosensitivity was assessed with clonogenic assays, and chromatin immunoprecipitation assays were performed to analyze the relationship between NIPBL and signal transducers and activators of transcription 3 (STAT3). RESULTS Immunohistochemical analysis showed that high expression of NIPBL was strongly correlated with poor prognosis, tumor differentiation, and lymph node metastasis. Survival analysis further indicated that NIPBL expression was a potential prognostic factor for non-small cell lung cancer. Knockdown of NIPBL in non-small cell lung cancer cell lines significantly reduced cellular proliferation, migration, and invasion, and enhanced cellular apoptosis and sensitivity to cisplatin, paclitaxel, and gemcitabine hydrochloride. NIPBL bound to the promoter region of the STAT3 gene, directly regulating the expression of STAT3. CONCLUSIONS These data suggested that NIPBL played a significant role in lung carcinogenesis. NIPBL expression conferred poor prognosis and resistance to chemotherapy in non-small cell lung cancer, suggesting that NIPBL may be a novel therapeutic target.
Collapse
Affiliation(s)
- Weizhen Xu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Yinyin Ying
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Lihong Shan
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Jianguo Feng
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Shengjie Zhang
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Yun Gao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Xiaoling Xu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Yinli Yao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Chihong Zhu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Weimin Mao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|