1
|
Baria E, Nesi G, Santi R, Maio V, Massi D, Pratesi C, Cicchi R, Pavone FS. Improved label-free diagnostics and pathological assessment of atherosclerotic plaques through nonlinear microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800106. [PMID: 29931805 DOI: 10.1002/jbio.201800106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Coronary heart disease is the most common type of heart disease caused by atherosclerosis. In fact, an arterial wall lesion centered on the accumulation of cholesterol-rich lipids and the accompanying inflammatory response generates a plaque, whose rupture may result in a thrombus with fatal consequences. Plaque characterization for assessing the severity of atherosclerosis is generally performed through standard histopathological examination based on hematoxylin/eosin staining, which is operator-dependent and requires relatively long procedures. In this framework, nonlinear optical microscopy is a valid, label-free alternative to standard diagnostic methods. We combined second-harmonic generation (SHG), two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy in a multimodal scheme for obtaining morphological and molecular information on human carotid ex vivo specimens affected by atherosclerosis. In this study, discrimination between different tissues within the atherosclerotic plaque was achieved based on both lifetime, TPEF-to-SHG ratio, and image pattern analysis. The presented methodology aims to be a starting point for future fully automated and fast characterization of atherosclerotic biopsies; moreover, it could be extended to the study of other tissues and pathologies. Combined TPEF/SHG mapping of a carotid specimen affected by atherosclerosis.
Collapse
Affiliation(s)
- Enrico Baria
- National Institute of Optics, National Research Council, Florence, Italy
| | - Gabriella Nesi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Raffaella Santi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Vincenza Maio
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Daniela Massi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Carlo Pratesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy
| | - Francesco S Pavone
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy
- Department of Physics, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Kiss N, Haluszka D, Lőrincz K, Kuroli E, Hársing J, Mayer B, Kárpáti S, Fekete G, Szipőcs R, Wikonkál N, Medvecz M. Ex vivo nonlinear microscopy imaging of Ehlers-Danlos syndrome-affected skin. Arch Dermatol Res 2018; 310:463-473. [PMID: 29725758 DOI: 10.1007/s00403-018-1835-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is the name for a heterogenous group of rare genetic connective tissue disorders with an overall incidence of 1 in 5000. The histological characteristics of EDS have been previously described in detail in the late 1970s and early 1980s. Since that time, the classification of EDS has undergone significant changes, yet the description of the histological features of collagen morphology in different EDS subtypes has endured the test of time. Nonlinear microscopy techniques can be utilized for non-invasive in vivo label-free imaging of the skin. Among these techniques, two-photon absorption fluorescence (TPF) microscopy can visualize endogenous fluorophores, such as elastin, while the morphology of collagen fibers can be assessed by second-harmonic generation (SHG) microscopy. In our present work, we performed TPF and SHG microscopy imaging on ex vivo skin samples of one patient with classical EDS and two patients with vascular EDS and two healthy controls. We detected irregular, loosely dispersed collagen fibers in a non-parallel arrangement in the dermis of the EDS patients, while as expected, there was no noticeable impairment in the elastin content. Based on further studies on a larger number of patients, in vivo nonlinear microscopic imaging could be utilized for the assessment of the skin status of EDS patients in the future.
Collapse
Affiliation(s)
- Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary.,Institute for Solid State Physics and Optics, Wigner RCP, Budapest, Hungary
| | - Dóra Haluszka
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary.,Institute for Solid State Physics and Optics, Wigner RCP, Budapest, Hungary
| | - Kende Lőrincz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Judit Hársing
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - György Fekete
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Róbert Szipőcs
- Institute for Solid State Physics and Optics, Wigner RCP, Budapest, Hungary.,R&D Ultrafast Lasers Ltd, P.O. Box 622, Budapest, 1539, Hungary
| | - Norbert Wikonkál
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary.
| |
Collapse
|