1
|
Pallagi P, Tóth E, Görög M, Venglovecz V, Madácsy T, Varga Á, Molnár T, Papp N, Szabó V, Kúthy-Sutus E, Molnár R, Ördög A, Borka K, Schnúr A, Kéri A, Kajner G, Csekő K, Ritter E, Csupor D, Helyes Z, Galbács G, Szentesi A, Czakó L, Rakonczay Z, Takács T, Maléth J, Hegyi P. Heavy metals in cigarette smoke strongly inhibit pancreatic ductal function and promote development of chronic pancreatitis. Clin Transl Med 2024; 14:e1733. [PMID: 38877637 PMCID: PMC11178517 DOI: 10.1002/ctm2.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND AIMS Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.
Collapse
Affiliation(s)
- Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Theoretical and Integrative Health Sciences, University of Debrecen, Szeged, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Tünde Molnár
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Enikő Kúthy-Sutus
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Réka Molnár
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Schnúr
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Albert Kéri
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Gyula Kajner
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
| | - Emese Ritter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
| | - Dezső Csupor
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
- Eötvös Loránd Research Network Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Gábor Galbács
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - László Czakó
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Center of Translational Medicine and Institute of Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Wu D, Guo J, Qi B, Xiao H. TGF-β1 induced proliferation, migration, and ECM accumulation through the SNHG11/miR-34b/LIF pathway in human pancreatic stellate cells. Endocr J 2021; 68:1347-1357. [PMID: 34261825 DOI: 10.1507/endocrj.ej21-0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas, and activated pancreatic stellate cells (PSCs) play a vital role in the progression of pancreatic fibrosis in CP. It has been reported that long non-coding RNA small nucleolar RNA host gene 11 (SNHG11) is highly expressed in chronic pancreatitis (CP) patients. However, the role of SNHG11 in CP progression is unclear. The purport of the study was to survey the role of SNHG11 in CP. We employed transforming growth factor (TGF)-beta1 (TGF-β1) to activate human pancreatic stellate cells (PSCs). Expression of SNHG11 was assessed with qRT-PCR. Loss-of-function experiments were executed to evaluate the effects of SNHG11 on the proliferation and migration of TGF-β1-treated PSCs. Some protein levels were detected by western blotting. The regulatory mechanism of SNHG11 was verified by the dual-luciferase reporter and RIP assays. As a result, SNHG11 was upregulated in plasma of CP patients and TGF-β1-treated PSCs. Also, SNHG11 inhibition reduced TGF-β1-induced proliferation, migration, and ECM accumulation in PSCs. Mechanistically, SNHG11 regulated leukemia inhibitory factor (LIF) expression by sponging miR-34b. Furthermore, miR-34b inhibitor abolished SNHG11 silencing-mediated effects on TGF-β1-treated PSC proliferation, migration, and ECM accumulation. LIF overexpression counteracted the repressive influence of miR-34b mimic on proliferation, migration, and ECM accumulation of TGF-β1-treated PSCs. In conclusion, SNHG11 knockdown reduced TGF-β1-induced PSC proliferation, migration, and ECM accumulation by the miR-34b/LIF axis.
Collapse
Affiliation(s)
- Desheng Wu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Jin Guo
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Benquan Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Heng Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
3
|
Thromboxane A2 receptor contributes to the activation of rat pancreatic stellate cells induced by 8-epi-prostaglandin F2α. Chin Med J (Engl) 2020; 133:1429-1435. [PMID: 32501828 PMCID: PMC7339349 DOI: 10.1097/cm9.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) activation plays a critical role in the development of chronic pancreatitis. Previous studies confirmed that thromboxane A2 receptor (TxA2r) was overexpressed in activated PSCs in rats. The purpose of this study was to investigate the role of TxA2r in the activation of PSCs induced by 8-epi-prostaglandin F2α (8-epi-PGF2α). METHODS TxA2r expression in both quiescent and activated PSCs was detected by immunocytochemistry and immunoblot assay. Isolated PSCs were treated with 8-epi-PGF2α (10, 10, 10 mol/L) for 48 h, and SQ29548 (10, 10, and 10 mol/L), a TxA2r-specific antagonist for 48 h, respectively, to identify the drug concentration with the best biological effect and the least cytotoxicity. Then isolated PSCs were treated with SQ29548 (10 mol/L) for 2 h, followed by 10 mol/L 8-epi-PGF2α for 48 h. Real-time polymerase chain reaction was performed to detect the messenger RNA (mRNA) levels of α-smooth muscle actin (α-SMA) and collagen I. Comparisons between the groups were performed using Student's t test. RESULTS TxA2r was up-regulated in activated PSCs in vitro compared with quiescent PSCs (all P < 0.001). Compared with the control group, different concentrations of 8-epi-PGF2α significantly increased mRNA levels of α-SMA (10 mol/L: 2.23 ± 0.18 vs. 1.00 ± 0.07, t = 10.70, P < 0.001; 10 mol/L: 2.91 ± 0.29 vs. 1.01 ± 0.08, t = 10.83, P < 0.001; 10 mol/L, 1.67 ± 0.07 vs. 1.00 ± 0.08, t = 11.40, P < 0.001) and collagen I (10 mol/L: 2.68 ± 0.09 vs. 1.00 ± 0.07, t = 24.94, P < 0.001; 10 mol/L: 2.12 ± 0.29 vs. 1.01 ± 0.12, t = 6.08, P < 0.001; 10 mol/L: 1.46 ± 0.15 vs. 1.00 ± 0.05, t = 4.93, P = 0.008). However, different concentrations of SQ29548 all significantly reduced the expression of collagen I (10 mol/L: 0.55 ± 0.07 vs. 1.00 ± 0.07, t = 10.47, P < 0.001; 10 mol/L: 0.56 ± 0.10 vs. 1.00 ± 0.07, t = 6.185, P < 0.001; 10 mol/L: 0.27 ± 0.04 vs. 1.00 ± 0.07, t = 15.41, P < 0.001) and α-SMA (10 mol/L: 0.06 ± 0.01 vs. 1.00 ± 0.11, t = 15.17, P < 0.001; 10 mol/L: 0.28 ± 0.03 vs. 1.00 ± 0.11, t = 11.29, P < 0.001; 10 mol/L: 0.14 ± 0.04 vs. 1.00 ± 0.11, t = 12.86, P < 0.001). After being treated with SQ29548 (10 mol/L) and then 8-epi-PGF2α (10 mol/L), the mRNA levels of α-SMA (0.20 ± 0.08 vs. 1.00 ± 0.00, t = 17.46, P < 0.001) and collagen I (0.69 ± 0.13 vs. 1.00 ± 0.00, t = 4.20, P = 0.014) in PSCs were significantly lower than those of the control group. CONCLUSIONS The results show that 8-epi-PGF2α promoted PSCs activation, while SQ29548 inhibited PSCs activation induced by 8-epi-PGF2α. The result indicated that TxA2r plays an important role during PSC activation and collagen synthesis induced by 8-epi-PGF2αin vitro. This receptor may provide a potential target for more effective antioxidant therapy for pancreatic fibrosis.
Collapse
|
4
|
An W, Zhu JW, Jiang F, Jiang H, Zhao JL, Liu MY, Li GX, Shi XG, Sun C, Li ZS. Fibromodulin is upregulated by oxidative stress through the MAPK/AP-1 pathway to promote pancreatic stellate cell activation. Pancreatology 2020; 20:278-287. [PMID: 31831391 DOI: 10.1016/j.pan.2019.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Fibromodulin (FMOD) expression in chronic pancreatitis (CP) tissues and its effect on PSC was unknown. Our aim was to investigate the role of FMOD in regulating PSC profibrogenic phenotype and the molecular mechanism of CP. METHODS Rat CP models were induced by dibutyltin dichloride. Pancreatic fibrosis was evaluated by Sirius Red staining. The expression of FMOD and α-SMA was measured, the correlation between FMOD expression and fibrosis was investigated in CP models and CP patients. The effects of FMOD on PSCs were examined by CCK-8 and migration assays. We investigated the mechanisms underlying FMOD expression using MND and a MAPK pathway inhibitor. Luciferase reporter and chromatin immunoprecipitation assays were used to investigate the effects of AP-1 on FMOD expression. RESULTS Sirius Red staining revealed high collagen deposition in model rats. Higher expression of FMOD and α-SMA was observed in fibrotic tissues, and the expression of FMOD was correlated with that of α-SMA and the areas of Sirius Red staining. Upregulation of FMOD increased the expression of collagen I and α-SMA and the proliferation and migration of PSCs. MND induced FMOD and α-SMA expression, and knockdown of FMOD abated α-SMA expression. ERK and JNK inhibitors attenuated FMOD expression as induced by MND. AP-1 upregulated the expression of FMOD. AP-1 binds to the FMOD promoter and transcriptionally regulates FMOD expression. CONCLUSION FMOD levels are upregulated in fibrosis tissues in CP and it is a critical downstream mediator of oxidative stress. FMOD induces PSC activation and maintains the fibrosis phenotype of PSCs.
Collapse
Affiliation(s)
- Wei An
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jian-Wei Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215008, China
| | - Fei Jiang
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jiu-Long Zhao
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Mu-Yun Liu
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Gui-Xiang Li
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xin-Gang Shi
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Kwon CI, Cho JH, Choi SH, Ko KH, Tirkes T, Gromski MA, Lehman GA. Recent advances in the diagnosis and management of chronic pancreatitis. Korean J Intern Med 2019; 34:242-260. [PMID: 30840807 PMCID: PMC6406102 DOI: 10.3904/kjim.2019.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic pancreatitis is a chronic condition characterized by pancreatic inflammation that causes fibrosis and the destruction of exocrine and endocrine tissues. Chronic pancreatitis is a progressive disease, and no physiological treatment is available to reverse its course. However, with advances in medical technology, the existing diagnostic and treatment methods for chronic pancreatitis are evolving. Managing patients with chronic pancreatitis is challenging and necessitates a multidisciplinary approach. In this review, we discuss the recent advances in the diagnosis and management of chronic pancreatitis and introduce future alternative modalities.
Collapse
Affiliation(s)
- Chang-Il Kwon
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jae Hee Cho
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Sung Hoon Choi
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Kwang Hyun Ko
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Temel Tirkes
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark A. Gromski
- Division of Gastroenterology/Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Glen A. Lehman
- Division of Gastroenterology/Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Abu-El-Haija M, Lowe ME. Pediatric Pancreatitis-Molecular Mechanisms and Management. Gastroenterol Clin North Am 2018; 47:741-753. [PMID: 30337030 DOI: 10.1016/j.gtc.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pediatric pancreatitis is an emerging field with an increasing incidence of disease. Management of pediatric pancreatitis is understudied and, therefore, extrapolated from adult studies (although the etiologies are different). There is evidence that feeding is safe in mild acute pancreatitis in children without increased pain or length of stay. Studies are needed to predict course of the disease, disease severity, and risk of chronic pancreatitis in children.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 2010, Cincinnati, Ohio 45229, USA
| | - Mark E Lowe
- Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, 660 South Euclid Avenue, MPRB 4th Floor, Campus Box 8208, St Louis, MO 63110, USA.
| |
Collapse
|
7
|
Chen L, Yu B, Luo D, Lin M. Enteric motor dysfunctions in experimental chronic pancreatitis: Alterations of myenteric neurons regulating colonic motility in rats. Neurogastroenterol Motil 2018. [PMID: 29520975 DOI: 10.1111/nmo.13301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanism underlying gastrointestinal (GI) dysmotility associated with chronic pancreatitis (CP) has not been fully elucidated, and enteric nervous system (ENS) has an important regulatory role in gastrointestinal motor function. The aim of this study is to investigate the effect of ENS in the colonic hypomotility induced by trinitrobenzene sulfonic acid (TNBS) infusion which mimics CP. METHODS Male Sprague-Dawley rats were submitted to CP which was induced by pancreatic infusion of 2% TNBS, or sham group with treatment of equal saline. Three weeks after induction of CP, we pathologically examined the inflammation of pancreas and counted the number of withdrawal events stimulated by Von Frey filaments to evaluate hyperalgesia. The gastrointestinal transit rate was measured using Carbon inkl driving test, and the contraction activities of colonic muscle strip were studied in an organ bath system. The expression of choline acetyltransferase (ChAT) and nitric oxide synthase (NOS) in colonic myenteric plexus (MP) of ENS were investigated by Western blotting and double immunofluorescence staining. KEY RESULTS In TNBS-treated group, rats had the signs of chronic pancreatitis 3 weeks after intraductal infusion and had increased sensitivity to mechanical stimulation of the abdomen. For rats with CP, the gastrointestinal transit rate was reduced; in addition, the contractile activities of longitudinal muscle (LM) and circular muscle (CM) strips of distal colon in TNBS group were lower than those in sham group. Immunofluorescence demonstrated that the percentage of ChAT-immunoreactive (IR) neurons in the MP was decreased, but the proportion of NOS-IR neurons in the MP was increased when compared with sham-operated group. Western blotting proved that TNBS infusion down-regulated ChAT but up-regulated NOS expression in the colon MP. CONCLUSIONS & INFERENCES Decreased ChAT-IR neurons and increased NOS-IR in the MP of colon ENS may contribute to the pathogenesis of colonic dysmotility in CP.
Collapse
Affiliation(s)
- L Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - B Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - D Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - M Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| |
Collapse
|