1
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Nie Y, Lin T, Yang Y, Liu W, Hu Q, Chen G, Huang L, Wu H, Kong C, Lei Z, Guo J. The downregulation of tight junction proteins and pIgR in the colonic epithelium causes the susceptibility of EpCAM +/- mice to colitis and gut microbiota dysbiosis. Front Mol Biosci 2024; 11:1442611. [PMID: 39188786 PMCID: PMC11345229 DOI: 10.3389/fmolb.2024.1442611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background The genetic factors play important roles on the pathogenesis of inflammatory bowel disease (IBD). EpCAM is highly expressed in the intestinal epithelium. It is still unclear if the decrease or somatic mutation of EpCAM could cause IBD. Methods The WT and EpCAM+/- mice were administrated with DSS intermittently for nearly 8 weeks. The colon, liver and feces were harvested to check the morphological and histological changes, the expression of inflammatory genes and the gut microbiota via H&E staining, immunofluorescence, qPCR, western blot and 16S rDNA sequence assays. Results The DSS administration induced more serious inflammation in the colon of EpCAM+/- mice than WT mice. Compared to DSS-induced WT mice, the transcriptional levels of IL-6, F4/80, Ly6g, Ly6d and Igha were significantly higher in the colon of DSS-induced EpCAM+/- mice. The protein levels of MMP7 and MMP8 and the activation of JNK, ERK1/2 and p38 were significantly increased in the colon of DSS-induced EpCAM+/- mice. The protein levels of CLDN1, CLDN2, CLDN3, CLDN7, OCLD, ZO-1 and pIgR were significantly decreased in the colon of DSS-induced EpCAM+/- mice. The serum concentration of LPS was significantly higher in the DSS-induced EpCAM+/- mice which caused the acute inflammation in the liver of them. The expression of Pigr was significantly reduced in the liver of DSS-induced EpCAM+/- mice. The ratio of Firmicutes/Bacteroidetes at the phylum level was higher in the gut microbiota of EpCAM+/- mice than WT mice. Conclusion In conclusion, the heterozygous mutation of EpCAM increased the susceptibility to colitis, gut microbiota dysbiosis and liver injury.
Collapse
Affiliation(s)
- Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Cunjie Kong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Akanyibah FA, Zhu Y, Jin T, Ocansey DKW, Mao F, Qiu W. The Function of Necroptosis and Its Treatment Target in IBD. Mediators Inflamm 2024; 2024:7275309. [PMID: 39118979 PMCID: PMC11306684 DOI: 10.1155/2024/7275309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammatory bowel disease (IBD), which encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a complicated illness whose exact cause is yet unknown. Necroptosis is associated with IBD pathogenesis, leading to intestinal barrier abnormalities and uncontrolled inflammation. Molecules involved in necroptosis, however, exhibit different expression levels in IBD and its associated colorectal cancer. Multiple studies have shown that inhibiting these molecules alleviates necroptosis-induced IBD. Moreover, due to the severe scarcity of clinical medications for treating IBD caused by necroptosis, we review the various functions of crucial necroptosis molecules in IBD, the stimuli regulating necroptosis, and the current emerging therapeutic strategies for treating IBD-associated necroptosis. Eventually, understanding the pathogenesis of necroptosis in IBD will enable the development of additional therapeutic approaches for the illness.
Collapse
Affiliation(s)
- Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceDepartment of Laboratory MedicineSchool of MedicineJiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yi Zhu
- The People's Hospital of DanyangAffiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, China
| | - Tao Jin
- Department of Gastrointestinal and EndoscopyThe Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceDepartment of Laboratory MedicineSchool of MedicineJiangsu University, Zhenjiang 212013, Jiangsu, China
- Directorate of University Health ServicesUniversity of Cape Coast, Cape Coast CC0959347, Ghana
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceDepartment of Laboratory MedicineSchool of MedicineJiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wei Qiu
- Nanjing Jiangning Hospital, Nanjing 211100, Jiangsu, China
| |
Collapse
|
4
|
Zhang S, Liu S, Yue C, Liu Y, Zheng G, Zhang Y. Identification of necroptosis-associated miRNA signature for predicting prognosis and immune landscape in stomach adenocarcinoma. Exp Cell Res 2024; 436:113948. [PMID: 38307189 DOI: 10.1016/j.yexcr.2024.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE This study aims to identify the potential necroptosis related genes (NRGs)-associated miRNAs signature and explore the impact on the prognosis of stomach adenocarcinoma (STAD). METHODS Employing rigorous methodologies, we utilized univariate Cox, Lasso and multivariate Cox regression analyses to develop a prognostic signature. Kaplan-Meier (K-M) and ROC curves were applied to assess the prognostic value of signature in a training group and an independent test group. Furthermore, we conducted Gene Set Enrichment Analysis (GSEA) for enrichment of tumor-related pathways. The risk score was calculated for each patient based on the expression of miRNAs which were enrolled in the signature. Patients were stratified into high- and low-risk groups. The immune cell infiltration and immunotherapy were compared between the two groups. Finally, the diagnostic potential of the miRNA was explored by RT-qPCR. RESULTS We constructed a prognostic model based on 6 NRGs-associated miRNAs. K-M plots underscored superior survival outcomes in the low-risk group. GSEA results revealed the enrichment of several tumor-related pathways in the high-risk group. Notably, CD8+ T cells, Tregs and activated memory CD4+ T cells exhibited negative correlations with the risk score. Additionally, a few immune checkpoint genes, such as CTLA4, PD1 and PD-L1, were significantly upregulated in the low-risk group. Furthermore, the serum expression levels of all these 6 miRNAs were significantly elevated in STAD patients. CONCLUSIONS Our study identified a robust risk score derived from a signature of 6 NRGs-associated miRNAs, demonstrating high efficacy for prognosis of STAD. These results not only contributed to our understanding of STAD pathogenesis, but also held promise for potential clinical applications, particularly in the realm of personalized immunotherapy for STAD patients.
Collapse
Affiliation(s)
- Shoucai Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University,Jinan, 250012, Shandong Province, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, China
| | - Shichao Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University,Jinan, 250012, Shandong Province, China
| | - Congbo Yue
- Clinical Laboratory of Qingdao Women and Children's Hospital Affiliated to Qingdao University, China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University,Jinan, 250012, Shandong Province, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University,Jinan, 250012, Shandong Province, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University,Jinan, 250012, Shandong Province, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, China.
| |
Collapse
|
5
|
Horvath C, Jarabicova I, Kura B, Kalocayova B, Faurobert E, Davidson SM, Adameova A. Novel, non-conventional pathways of necroptosis in the heart and other organs: Molecular mechanisms, regulation and inter-organelle interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119534. [PMID: 37399908 DOI: 10.1016/j.bbamcr.2023.119534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca2+/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death. However, the role and relationship between these novel non-conventional signalling and the well-accepted canonical pathway in terms of tissue- and/or disease-specific prioritisation is completely unknown. In this review, we provide current knowledge on some necroptotic pathways being not directly associated with RIPK3-MLKL execution and report studies showing the role of respective microRNAs in the regulation of necroptotic injury in the heart and in some other tissues having a high expression of the pro-necroptotic proteins.
Collapse
Affiliation(s)
- Csaba Horvath
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | - Izabela Jarabicova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Eva Faurobert
- French National Centre for Scientific Research, Institute for Advanced Biosciences, France.
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, United Kingdom.
| | - Adriana Adameova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovak Republic; Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Qian F, Kong W, Wang S, Wei K. Predicting the prognosis of hepatocellular carcinoma based on the interaction between pyroptosis, apoptosis, and necroptosis. Clin Exp Med 2023; 23:2087-2104. [PMID: 36271962 DOI: 10.1007/s10238-022-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
Multiple programmed cell death pathways (pyroptosis, apoptosis, and necroptosis) are closely related to the progression of hepatocellular carcinoma (HCC). Furthermore, molecular interactions among pyroptotic, apoptotic, and necroptotic components may be new targets for cancer therapy. However, the signature of the genes involved in the interaction between pyroptosis, apoptosis, and necroptosis (PANRGs), and their prognostic value, is still unclear in HCC. In this study, we used HCC clinical and expression data from TCGA and GEO to explore the relationship between PANRGs and HCC. First, we determined the copy number variation incidence of 41 PANRGs genes and explored the prognostic correlation of these genes in HCC. Based on PANRGs, two molecular subgroups of HCC associated with prognosis were identified. We also found significant differences in the overall survival time and the immune infiltration of HCC patients between the two subgroups. Finally, based on the nine PANRGs (CDC25B, EZH2, HMOX1, PLK1, SQSTM1, WEE1, TREM2, MYCN, and FLT3), we constructed a prognostic model using LASSO-Cox regression analysis. The prognostic model could predict OS of HCC patients in TCGA and GEO cohorts with high accuracy. Significant correlations were found between prognosis-related PANRGs and the tumor immune microenvironment (TIME), tumor mutational burden (TMB), and drug sensitivity. In conclusion, we explored the role of PANRGs in HCC and the association of these genes with TIME, TMB, and drug sensitivity.
Collapse
Affiliation(s)
- Fang Qian
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Li H, Ye XF, Su YS, He W, Zhang JB, Zhang Q, Zhan LB, Jing XH. Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis. Chin J Integr Med 2023; 29:847-856. [PMID: 35412218 DOI: 10.1007/s11655-022-3531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.
Collapse
Affiliation(s)
- Han Li
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Feng Ye
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian-Bin Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 211005, China
| | - Qi Zhang
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Liaoning University of Chinese Medicine, Shenyang, 116600, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Bi M, Li D, Zhang J. Research progress and insights on the role of ferroptosis in wound healing. Int Wound J 2023; 20:2473-2481. [PMID: 36788729 PMCID: PMC10333008 DOI: 10.1111/iwj.14102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Ferroptosis is a newly discovered cell death type which is different from apoptosis, autophagy, pyroptosis as well as necrosis in the following aspects: morphology, biochemistry, gene and regulatory mechanisms. Ferroptosis is regulated by multiples of mechanisms such as system Xc- mechanism, glutathione peroxidase 4 (GPX4) mechanism, iron metabolism and lipid metabolism. Currently, ferroptosis has been revealed to be significant in wound healing such as diabetic wound, irradiated wound and ultraviolet (UV)-driven wound. Hence, how to intervene in the pathogenesis as well as the development of wounds and promote the wound healing by the regulation of ferroptosis have become a research hotspot. This review systematically summarises the latest scientific advances of ferroptosis and wound healing fields, with hoping to propose a new insight and advance in the wound treatment.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| | - Danyi Li
- Department of OphthalmologyJiading Central Hospital University of Medicine & Health SciencesShanghaiChina
| | - Jin Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
9
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
10
|
Sun L, Li W, Zhao Z, Zuo Y, Han Z. Identification of a Necroptosis-Related Prognostic Signature and Associated Regulatory Axis in Lung Adenocarcinoma. Int J Genomics 2023; 2023:8766311. [PMID: 37965055 PMCID: PMC10643042 DOI: 10.1155/2023/8766311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 11/16/2023] Open
Abstract
Background Lung cancer is considered to be the second most aggressive and rapidly fatal cancer after breast cancer. Necroptosis, a novel discovered pattern of cell death, is mediated by Receptor-interacting serine/threonine-protein kinase 1 (RIPK1), Receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and Mixed Lineage Kinase Domain Like Pseudokinase (MLKL). Methods For the purpose of developing a prognostic model, Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted. Using Pearson's correlation analysis, we evaluated the correlation between necroptosis-related markers and tumor immune infiltration. A bioinformatics analysis was conducted to construct a necroptosis-related regulatory axis. Results There was a downregulation of most of necroptosis-related genes in lung adenocarcinoma (LUAD) versus lung tissues but an increase in PGAM5, HMGB1, TRAF2, EZH2 levels. We also summarized the Single Nucleotide Variant (SNV) and copy number variation (CNV) of necroptosis-related genes in LUAD. Consensus clustering identified two clusters in LUAD with distinct immune cell infiltration and ESTIMATEScore. Genes related to necroptosis were associated with necroptosis, Tumor necrosis factor (TNF) signaling pathway, and apoptosis according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Four prognostic genes (ALDH2, HMGB1, NDRG2, TLR2) were combined to develop a prognostic gene signature for LUAD patients, which was highly accurate in predicting prognosis. Univariate and multivariate analysis identified HMGB1, pT stage, and pN stage as independent factors impacting on LUAD patients' prognosis. A significant correlation was found between the level of TLR2 and NDRG2 and clinical stage, immunity infiltration, and drug resistance. Additionally, the progression of LUAD might be regulated by lncRNA C5orf64/miR-582-5p/NDRG2/TLR2. Conclusion The current bioinformatics analysis identified a necroptosis-related prognostic signature for LUAD and their relation to immunity infiltration. This result requires further investigation.
Collapse
Affiliation(s)
- Libo Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Li
- Department of Hematology, Qingdao Women and children's Hospital, Qingdao, China
| | - Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhua Zuo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Construction of a Necroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Response in Kidney Renal Clear Cell Carcinoma. Cells 2022; 12:cells12010066. [PMID: 36611858 PMCID: PMC9818734 DOI: 10.3390/cells12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Necroptosis is a new type of programmed cell death and involves the occurrence and development of various cancers. Moreover, the aberrantly expressed lncRNA can also affect tumorigenesis, migration, and invasion. However, there are few types of research on the necroptosis-related lncRNA (NRL), especially in kidney renal clear cell carcinoma (KIRC). In this study, we analyzed the sequencing data obtained from the TGCA-KIRC dataset, then applied the LASSO and COX analysis to identify 6 NRLs (AC124854.1, AL117336.1, DLGAP1-AS2, EPB41L4A-DT, HOXA-AS2, and LINC02100) to construct a risk model. Patients suffering from KIRC were divided into high- and low-risk groups according to the risk score, and the patients in the low-risk group had a longer OS. This signature can be used as an indicator to predict the prognosis of KIRC independent of other clinicopathological features. In addition, the gene set enrichment analysis showed that some tumor and immune-associated pathways were more enriched in a high-risk group. We also found significant differences between the high and low-risk groups in the infiltrating immune cells, immune functions, and expression of immune checkpoint molecules. Finally, we use the "pRRophetic" package to complete the drug sensitivity prediction, and the risk score could reflect patients' response to 8 small molecule compounds. In general, NRLs divided KIRC into two subtypes with different risk scores. Furthermore, this signature based on the 6 NRLs could provide a promising method to predict the prognosis and immune response of KIRC patients. To some extent, our findings helped give a reference for further research between NRLs and KIRC and find more effective therapeutic drugs for KIRC.
Collapse
|
12
|
Song Y, Zhang J, Fang L, Liu W. Prognostic necroptosis-related gene signature aids immunotherapy in lung adenocarcinoma. Front Genet 2022; 13:1027741. [PMID: 36506314 PMCID: PMC9732465 DOI: 10.3389/fgene.2022.1027741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Necroptosis is a phenomenon of cellular necrosis resulting from cell membrane rupture by the corresponding activation of Receptor Interacting Protein Kinase 3 (RIPK3) and Mixed Lineage Kinase domain-Like protein (MLKL) under programmed regulation. It is reported that necroptosis is closely related to the development of tumors, but the prognostic role and biological function of necroptosis in lung adenocarcinoma (LUAD), the most important cause of cancer-related deaths, is still obscure. Methods: In this study, we constructed a prognostic Necroptosis-related gene signature based on the RNA transcription data of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as well as the corresponding clinical information. Kaplan-Meier analysis, receiver operating characteristic (ROC), and Cox regression were made to validate and evaluate the model. We analyzed the immune landscape in LUAD and the relationship between the signature and immunotherapy regimens. Results: Five genes (RIPK3, MLKL, TLR2, TNFRSF1A, and ALDH2) were used to construct the prognostic signature, and patients were divided into high and low-risk groups in line with the risk score. Cox regression showed that risk score was an independent prognostic factor. Nomogram was created for predicting the survival rate of LUAD patients. Patients in high and low-risk groups have different tumor purity, tumor immunogenicity, and different sensitivity to common antitumor drugs. Conclusion: Our results highlight the association of necroptosis with LUAD and its potential use in guiding immunotherapy.
Collapse
Affiliation(s)
- Yuqi Song
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Jinming Zhang
- First Hospital of Jilin University, Changchun, China
| | - Linan Fang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| |
Collapse
|
13
|
Khan M, Lin J, Wang B, Chen C, Huang Z, Tian Y, Yuan Y, Bu J. A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma. Front Immunol 2022; 13:968165. [PMID: 36389725 PMCID: PMC9646549 DOI: 10.3389/fimmu.2022.968165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gastric cancer (GC) represents a major global clinical problem with very limited therapeutic options and poor prognosis. Necroptosis, a recently discovered inflammatory form of cell death, has been implicated in carcinogenesis and inducing necroptosis has also been considered as a therapeutic strategy. Objective We aim to evaluate the role of this pathway in gastric cancer development, prognosis and immune aspects of its tumor microenvironment. Methods and results In this study, we evaluated the gene expression of 55 necroptosis-related genes (NRGs) that were identified via carrying out a comprehensive review of the medical literature. Necroptosis pathway was deregulated in gastric cancer samples (n=375) as compared to adjacent normal tissues (n=32) obtained from the “The Cancer Genome Atlas (TCGA)”. Based on the expression of these NRGs, two molecular subtypes were obtained through consensus clustering that also showed significant prognostic difference. Differentially expressed genes between these two clusters were retrieved and subjected to prognostic evaluation via univariate cox regression analysis and LASSO cox regression analysis. A 13-gene risk signature, termed as necroptosis-related genes prognostic index (NRGPI), was constructed that comprehensively differentiated the gastric cancer patients into high- and low-risk subgroups. The prognostic significance of NRGPI was validated in the GEO cohort (GSE84437: n=408). The NRGPI-high subgroup was characterized by upregulation of 10 genes (CYTL1, PLCL1, CGB5, CNTN1, GRP, APOD, CST6, GPX3, FCN1, SERPINE1) and downregulation of 3 genes (EFNA3, E2F2, SOX14). Further dissection of these two risk groups by differential gene expression analysis indicated involvement of signaling pathways associated with cancer cell progression and immune suppression such as WNT and TGF-β signaling pathway. Para-inflammation and type-II interferon pathways were activated in NRGPI-high patients with an increased infiltration of Tregs and M2 macrophage indicating an exhausted immune phenotype of the tumor microenvironment. These molecular characteristics were mainly driven by the eight NRGPI oncogenes (CYTL1, PLCL1, CNTN1, GRP, APOD, GPX3, FCN1, SERPINE1) as validated in the gastric cancer cell lines and clinical samples. NRGPI-high patients showed sensitivity to a number of targeted agents, in particular, the tyrosine kinase inhibitors. Conclusions Necroptosis appears to play a critical role in the development of gastric cancer, prognosis and shaping of its tumor immune microenvironment. NRGPI can be used as a promising prognostic biomarker to identify gastric cancer patients with a cold tumor immune microenvironment and poor prognosis who may response to selected molecular targeted therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| | - Junguo Bu
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| |
Collapse
|
14
|
Yuan YS, Jin X, Chen L, Liao JM, Zhang Y, Yu KW, Li WK, Cao SW, Huang XZ, Kang CM. A novel model based on necroptosis-related genes for predicting immune status and prognosis in glioma. Front Immunol 2022; 13:1027794. [PMID: 36389690 PMCID: PMC9640834 DOI: 10.3389/fimmu.2022.1027794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND Glioma is a highly aggressive brain cancer with a poor prognosis. Necroptosis is a form of programmed cell death occurring during tumor development and in immune microenvironments. The prognostic value of necroptosis in glioma is unclear. This study aimed to develop a prognostic glioma model based on necroptosis. METHODS A necroptosis-related risk model was constructed by Cox regression analysis based on The Cancer Genome Atlas (TCGA) training set, validated in two Chinese Glioma Genome Atlas (CGGA) validation sets. We explored the differences in immune infiltration and immune checkpoint genes between low and high risk groups and constructed a nomogram. Moreover, we compiled a third validation cohort including 43 glioma patients. The expression of necroptosis-related genes was verified in matched tissues using immunochemical staining in the third cohort, and we analyzed their relationship to clinicopathological features. RESULTS Three necroptosis-related differentially expressed genes (EZH2, LEF1, and CASP1) were selected to construct the prognostic model. Glioma patients with a high risk score in the TCGA and CGGA cohorts had significantly shorter overall survival. The necroptosis-related risk model and nomogram exhibited good predictive performance in the TCGA training set and the CGGA validation sets. Furthermore, patients in the high risk group had higher immune infiltration status and higher expression of immune checkpoint genes, which was positively correlated with poorer outcomes. In the third validation cohort, the expression levels of the three proteins encoded by EZH2, LEF1, and CASP1 in glioma tissues were significantly higher than those from paracancerous tissues. They were also closely associated with disease severity and prognosis. CONCLUSIONS Our necroptosis-related risk model can be used to predict the prognosis of glioma patients and improve prognostic accuracy, which may provide potential therapeutic targets and a theoretical basis for treatment.
Collapse
Affiliation(s)
- Ying-Shi Yuan
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Jin
- Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou, Guangdong, China
| | - Lu Chen
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jia-Min Liao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Zhang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ke-Wei Yu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei-Kang Li
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shun-Wang Cao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Dai J, Fu Y. Identification of necroptosis‐related gene signature and characterization of tumour microenvironment infiltration in non‐small‐cell lung cancer. J Cell Mol Med 2022; 26:4698-4709. [PMID: 35871768 PMCID: PMC9443942 DOI: 10.1111/jcmm.17494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Necroptosis is a programmed necrosis in a caspase‐independent fashion. The role of necroptosis‐related genes (NRGs) in lung cancer remains unknow. Herein, we classified TCGA‐LUAD cohort into two necroptosis‐related subtypes (C1 and C2) by consensus clustering analysis. The result showed that subtype C1 had a favourable prognosis and higher infiltration levels of immune cells. Moreover, subtype C1 was more activated in immune‐associated pathways. Then, we established an NRG prognosis model (NRG score) composed of six NRGs (RIPK3, MLKL, TLR2, TLR4, TNFRSF1A, NDRG2) and divided the cohort into low‐ and high‐risk group. We found that the NRG score was associated with prognosis, tumour immune microenvironment and tumour mutation burden. We also constructed an accurate nomogram model to improve the clinical applicability of NRG score. The result indicated that NRG score may be an independent prognostic marker for lung cancer patients. Taken together, we established a prognosis model that may deepen the understanding of NRGs in lung cancer and provide a basis for developing more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Juji Dai
- Department of Colorectal and Anal Surgery the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yangyang Fu
- Division of Pulmonary Medicine The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung Wenzhou China
| |
Collapse
|
16
|
Identification of a Necroptosis-Related Prognostic Signature and Associated Regulatory Axis in Liver Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:3968303. [PMID: 35855852 PMCID: PMC9288334 DOI: 10.1155/2022/3968303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Background Liver hepatocellular carcinoma (LIHC) ranks the sixth in global cancer incidence with poor prognosis. Necroptosis is a kind of regulated cell death and has been proved to be of significance in cancer occurrence and progression. However, few studies comprehensively discuss the potential applications of necroptosis-related genes (NRGs) in the prognostic evaluation and immunotherapy of LIHC. Methods The prognostic signature in the present study was built up using LASSO Cox regression analysis. Integrated bioinformatics tools were utilized to explore the potential mRNA-miRNA-lncRNA regulatory axis in LIHC. Furthermore, qRT-PCR method was used to verify the EZH2 expression in LIHC tissues. Furthermore, prognostic performance of EZH2 in LIHC was assessed by Kaplan-Meier method. Results A total of 14 NRGs were differentially expressed in LIHC tissues. The overall genetic mutation status of these NRGs in LIHC was also shown. NRGs were significantly correlated with programmed necrotic cell death, as well as Toll-like receptor signaling pathway in GO and KEGG pathway analysis. Kaplan-Meier analysis revealed that ALDH2, EZH2, NDRG2, PGAM5, RIPK1, and TRAF2 were related to the prognosis. A prognostic signature was constructed by these six genes and showed medium to high accuracy in the prediction of LIHC patients' prognosis. Further analysis revealed that NRGs were correlated with pathological stage, immune infiltration, and drug resistance in LIHC. Moreover, we identified a potential lncRNA TUG1/miR-26b-5p/EZH2 regulatory axis in LIHC, which might affect the progression of LIHC. qRT-PCR suggested a higher mRNA level of EZH2 in LIHC tissues. And a poor overall survival rate was detected in LIHC patients with high EZH2 expression. Moreover, EZH2 expression and cancer stage were identified as the independent risk factors affecting LIHC patients' prognosis. Conclusion In the present study, we conducted comprehensive bioinformatic analyses and built up a necroptosis-related prognostic signature containing four genes (ALDH2, EZH2, NDRG2, and PGAM5) for patients with LIHC, and this prognostic signature showed a medium to high predictive accuracy. And our study also identified a lncRNA TUG1/miR-26b-5p/EZH2 regulatory axis, which might be of great significance in LIHC progression. In addition, based on the data from our center, the result of qRT-PCR and survival analysis showed a higher mRNA level of EZH2 in LIHC tissues and an unfavorable prognosis in high EZH2 expression group, respectively.
Collapse
|
17
|
Jin X, Wang J. A Novel Prognostic Signature Associated with Immunotherapeutic Response for Hepatocellular Carcinoma. Front Surg 2022; 9:905897. [PMID: 35865037 PMCID: PMC9294469 DOI: 10.3389/fsurg.2022.905897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although accumulating literature has validated that necroptosis plays a prominent role in the tumorigenesis and progression of various malignant cancer, its mechanism in hepatocellular carcinoma (HCC) is poorly understood. Therefore, in the present study, we want to study the impact of necroptosis-related genes on the prognosis and microenvironment-infiltrating immunocytes and the effect of immunotherapy on patients with HCC. Methods The necroptosis-related genes were obtained by reviewing the available published literature; we then evaluated the effects of the prognostic genes on the relative abundance of microenvironment infiltrated immunocytes. After construction of the Risk Score Signature, we evaluated the prognostic value and the effects on immune cells infiltrating the tumor microenvironment (TME). Combining the available data on immunotherapy, we also investigated the impact on anti-PD-L1-based immunotherapy. Results A comprehensive study of the published literature confirmed that 22 genes are related to necroptosis. Among them, 10 genes were related to the prognosis of the HCC cohort in The Cancer Genome Atlas (TCGA) and had a multifaceted influence on TME. We obtained the Risk Score Signature by Lasso regression. Furthermore, we also corroborated the correlation between the Risk Score Signature and tumor-infiltrating immune cells in the TME. Next, in the study of the correlation between the Signature and immunotherapy, we found that the Signature was significantly correlated with the reactivity of anti-PD-L1 immunotherapy. We also confirmed that the Risk Score Signature is a reliable and efficient independent prognostic marker of HCC. Conclusion We established a novel and effective prognostic model for patients with HCC, which is markedly related to the TME and immune infiltration in HCC and can also predict immunotherapeutic response and prognosis.
Collapse
Affiliation(s)
- Xinmin Jin
- Department of Clinical Medical, Qingdao University Medical College, QingdaoChina
| | - Jinhuan Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, QingdaoChina
| |
Collapse
|
18
|
Li C, Song J, Guo Z, Gong Y, Zhang T, Huang J, Cheng R, Yu X, Li Y, Chen L, Ma X, Sun Y, Wang Y, Xue L. EZH2 Inhibitors Suppress Colorectal Cancer by Regulating Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022; 13:857808. [PMID: 35432300 PMCID: PMC9010515 DOI: 10.3389/fimmu.2022.857808] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
EZH2 inhibitors (EZH2i), a class of small-molecule inhibitors that target EZH2 to exert anti-tumor functions, have just been approved by the US Food and Drug Administration (FDA) in treatment of adults and adolescents with locally advanced or metastatic epithelioid sarcoma. The application of EZH2i in several solid tumors is still in different stages of clinical trials and needs to be further validated. As a key epigenetic regulator, besides its role in controlling the proliferation of tumor cells, EZH2 has been implicated in the regulation of various immune cells including macrophages. But there are still controversial research results at present. Colorectal cancer (CRC) is a common malignant tumor that highly expresses EZH2, which has the third highest incidence and is the second leading cause of cancer-related death worldwide. Studies have shown that the numbers of M2-type tumor-associated macrophages (TAMs) are highly associated with the progression and metastasis of CRC. In the current study, we aim to investigate how EZH2 modulates the polarization of macrophages in the tumor microenvironment (TME) of CRC, and compare the role of two different EZH2 inhibitors, EPZ6438 and GSK126. We applied a 3D culture method to demonstrate that EZH2i did indeed suppress the proliferation of CRC cells in vitro. In vivo, we found that the percentage of CD206+ macrophages of the TME was decreased under the treatment of EPZ6438, but it increased upon GSK126 treatment. Besides, in the co-culture system of macrophages and CRC cells, EPZ6438 led to significant elevation of M1 markers and reduction of M2 markers. Furthermore, mechanistic studies validated by ChIP-qPCR demonstrated that EZH2i inhibit EZH2-mediated H3K27me3 levels on the promoters of STAT3, an essential transcription factor for M1 macrophage polarization. Therefore, our data suggested that EZH2i not only suppress CRC cell proliferation directly, but also regulate macrophage by skewing M2 into effector M1 macrophage to exert a tumor suppressive effect. Moreover, our study provided new insight for better understanding of the role of two kinds of EZH2i: EPZ6438 and GSK126, which may pave the way in treating CRC by targeting cancer cells and immune cells via this epigenetic approach in the future.
Collapse
Affiliation(s)
- Chen Li
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jiagui Song
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Zhengyang Guo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yueqing Gong
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Tengrui Zhang
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jiaqi Huang
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Rui Cheng
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaotong Yu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yanfang Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Li Chen
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaojuan Ma
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Yan Wang,
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Yan Wang,
| |
Collapse
|
19
|
Su H, Huang J, Weng S, Zhang B, Zhang T, Xu Y. Glutathione synthesis primes monocytes metabolic and epigenetic pathway for β-glucan-trained immunity. Redox Biol 2021; 48:102206. [PMID: 34894475 PMCID: PMC8669111 DOI: 10.1016/j.redox.2021.102206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Trained monocytes and macrophages produce reactive oxygen species (ROS), which trigger antioxidative glutathione (GSH) response to buffer the rising ROS. However, whether and how the trained immunity is shaped by GSH synthesis remains unknown. Here, we report that β-glucan-trained macrophages from mice harboring a myeloid-specific deletion of the catalytic subunit of glutamate-cysteine ligase (Gclc) showed impaired GSH synthesis and decreased proinflammatory cytokine production in response to lipopolysaccharide challenge. Gclc deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of c-Myc transcription factors, abrogating the energy utilization and the metabolic reprogramming that allows β-glucan-trained macrophages to switch to glycolysis and glutaminolysis. Furthermore, Gclc deletion repressed effective H3K27me3 demethylation in the promoters of immunometabolic genes, such as Gls, Hk2, and Glut1, in β-glucan-trained macrophages by promoting the methyltransferase enhancer of zeste homolog 2 (EZH2). In vivo, myeloid-specific ablation of Gclc decreased the secretion of proinflammatory cytokines upon rechallenge with Candida albicans and these animals were less protected against the infection, compared with control littermates. Moreover, pharmacological inhibition of EZH2 enhanced the trained immunity response against Candida infection in Gclc-deficient mouse and human peripheral blood mononuclear cells treated with GCLC inhibitor buthionine sulfoximine (BSO). Thus, antioxidative GSH synthesis supports an environment conducive to β-glucan-induced metabolic and epigenetic reprogramming in trained immunity, allowing exploration of its functional consequences in autoimmune or inflammatory disease.
Collapse
Affiliation(s)
- Haibo Su
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China.
| | - Jiaxin Huang
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Baoying Zhang
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China
| | - Tianran Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
20
|
Li D, Liang Y, Lu J, Tan Y. An alternative splicing signature in human Crohn's disease. BMC Gastroenterol 2021; 21:420. [PMID: 34749666 PMCID: PMC8573860 DOI: 10.1186/s12876-021-02001-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although hundreds of risk loci for Crohn's disease (CD) have been identified, the underlying pathogenesis of CD remains unclear. Recently, evidence has shown that aberrant gene expression in colon tissues of CD patients is associated with the progression of CD. We reasoned that post-transcriptional regulation, especially alternative splicing (AS), may also play important roles in the pathogenesis of CD. METHODS We re-analyzed public mRNA-seq data from the NCBI GEO dataset (GSE66207) and identified approximately 3000 unique AS events in CD patients compared to healthy controls. RESULTS "Lysine degradation" and "Sphingolipid metabolism" were the two most enriched AS events in CD patients. In a validation study, we also sequenced eight subjects and demonstrated that key genes that were previously linked to CD, such as IRF1 and STAT3, also had significant AS events in CD. CONCLUSION Our study provided a landscape of AS events in CD, especially as the first study focused on a Chinese cohort. Our data suggest that dysregulation of AS may be a new mechanism that contributes to the pathogenesis of CD.
Collapse
Affiliation(s)
- Daowei Li
- Department of Radiology, The People's Hospital of China Medical University and The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Yuanzi Liang
- Department of Radiology, The People's Hospital of China Medical University and The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Jia Lu
- Department of Radiology, The People's Hospital of China Medical University and The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
| |
Collapse
|
21
|
Huang MY, Wan DW, Deng J, Guo WJ, Huang Y, Chen H, Xu DL, Jiang ZG, Xue Y, He YH. Downregulation of RIP3 Improves the Protective Effect of ATF6 in an Acute Liver Injury Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8717565. [PMID: 34778458 PMCID: PMC8589516 DOI: 10.1155/2021/8717565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) and receptor-interacting protein 3 (RIP3) are important signaling proteins in endoplasmic reticulum (ER) stress and necroptosis, respectively. However, their regulatory relationship and clinical significance are unknown. We investigate the impact of ATF6 on RIP3 expression, and its role in hepatocyte necroptosis in an acute liver injury model. METHODS In vivo and in vitro experiments were carried out. LO2 cells were treated with thapsigargin (TG). In vivo, male BALB/c mice were treated with carbon tetrachloride (CCl4, 1 mL/kg) or tunicamycin (TM, 2 mg/kg). Then, the impact of ATF6 or RIP3 silencing on liver injury, hepatocyte necroptosis, and ER stress-related protein expression was examined. RESULTS TG induced ER stress and necroptosis and ATF6 and RIP3 expression in LO2 cells. The knockdown of ATF6 significantly decreased RIP3 expression (p < 0.05) and increased ER stress and necroptosis. The downregulation of RIP3 significantly reduced necroptosis and ER stress (p < 0.05). Similar results were observed in CCl4 or the TM-induced mouse model. The knockdown of ATF6 significantly decreased CCl4-induced RIP3 expression and increased liver injury, necroptosis, and ER stress in mice livers (p < 0.05). In contrast, the downregulation of RIP3 significantly reduced liver injury, hepatocyte necroptosis, and ER stress. CONCLUSIONS Hepatocyte ATF6 has multiple roles in acute liver injury. It reduces hepatocyte necroptosis via negative feedback regulation of ER stress. In addition, ATF6 can upregulate the expression of RIP3, which is not helpful to the recovery process. However, downregulating RIP3 reduces hepatocyte necroptosis by promoting the alleviation of ER stress. The findings suggest that RIP3 could be a plausible target for the treatment of liver injury.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Dian-Wei Wan
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Jie Deng
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Wen-Jie Guo
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yue Huang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - De-Lin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099 Guizhou, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi, 563099 Guizhou, China
| | - Yuan Xue
- Department of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, 213000 Jiangsu Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| |
Collapse
|
22
|
Mirbagheri SZ, Bakhtiari R, Fakhre Yaseri H, Rahimi Foroushani A, Eshraghi SS, Alebouyeh M. Transcriptional alteration of genes linked to gastritis concerning Helicobacter pylori infection status and its virulence factors. Mol Biol Rep 2021; 48:6481-6489. [PMID: 34427890 DOI: 10.1007/s11033-021-06654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Helicobacter pylori infection and heterogeneity in its pathogenesis could describe diversity in the expression of inflammatory genes in the gastric tissue. We aimed to investigate transcriptional alteration of genes linked to gastritis concerning the H. pylori infection status and its virulence factors. METHODS AND RESULTS Biopsy samples of 12 infected and 12 non-infected patients with H. pylori that showed moderate chronic gastritis were selected for transcriptional analysis. Genotyping of H. pylori strains was done using PCR and relative expression of inflammatory genes was compared between the infected and non-infected patients using relative quantitative real-time PCR. Positive correlations between transcriptional changes of IL8 with TNF-α and Noxo1 in the infected and TNF-α with Noxo1, MMP7, and Atp4A in the non-infected patients were detected. Six distinct genotypes of H. pylori were detected that showed no correlation with gender, ethnicity, age, endoscopic findings, and transcriptional levels of host genes. Irrespective of the characterized genotypes, our results showed overexpression of TNF-α, MMP7, Noxo1, and ATP4A in the infected and IL-8, Noxo1, and ATP4A in the non-infected patients. CONCLUSIONS A complexity in transcription of genes respective to the characterized H. pylori genotypes in the infected patients was detected in our study. The observed difference in co-regulation of genes linked to gastritis in the infected and non-infected patients proposed involvement of different regulatory pathways in the inflammation of the gastric tissue in the studied groups.
Collapse
Affiliation(s)
- Seyedeh Zohre Mirbagheri
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hashem Fakhre Yaseri
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Gastroenterology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Saeed Eshraghi
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Centre, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Zhou J, Yang Y, Wang YL, Zhao Y, Ye WJ, Deng SY, Lang JY, Lu S. Enhancer of zeste homolog 2 contributes to apoptosis by inactivating janus kinase 2/ signal transducer and activator of transcription signaling in inflammatory bowel disease. World J Gastroenterol 2021; 27:3073-3084. [PMID: 34168409 PMCID: PMC8192283 DOI: 10.3748/wjg.v27.i22.3073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a prevalent worldwide health problem featured by relapsing, chronic gastrointestinal inflammation. Enhancer of zeste homolog 2 (EZH2) is a critical epigenetic regulator in different pathological models, such as cancer and inflammation. However, the role of EZH2 in the IBD development is still obscure.
AIM To explore the effect of EZH2 on IBD progression and the underlying mechanism.
METHODS The IBD mouse model was conducted by adding dextran sodium sulfate (DSS), and the effect of EZH2 on DSS-induced colitis was assessed in the model. The function of EZH2 in regulating apoptosis and permeability was evaluated by Annexin V-FITC Apoptosis Detection Kit, transepithelial electrical resistance analysis, and Western blot analysis of related markers, including Zona occludens 1, claudin-5, and occludin, in NCM460 and fetal human colon (FHC) cells. The mechanical investigation was performed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and chromatin immunoprecipitation assays.
RESULTS The colon length was inhibited in the DSS-treated mice and was enhanced by the EZH2 depletion in the system. DSS treatment caused a decreased histological score in the mice, which was reversed by EZH2 depletion. The inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were induced in the DSS-treated mice, in which the depletion of EZH2 could reverse this effect. Moreover, the tumor necrosis factor-α treatment induced the apoptosis of NCM460 and FHC cells, in which EZH2 depletion could reverse this effect in the cells. Moreover, the depletion of EZH2 attenuated permeability of colonic epithelial cells. Mechanically, the depletion of EZH2 or EZH2 inhibitor GSK343 was able to enhance the expression and the phosphorylation of janus kinase 2 (JK2) and signal transducer and activator of transcription in the NCM460 and FHC cells. Specifically, EZH2 inactivated JAK2 expression by regulating histone H3K27me3. JAK2 inhibitor TG101348 was able to reverse EZH2 knockdown-mediated colonic epithelial cell permeability and apoptosis.
CONCLUSION Thus, we concluded that EZH2 contributed to apoptosis and inflammatory response by inactivating JAK2/ signal transducer and activator of transcription signaling in IBD. EZH2 may be applied as a potential target for IBD therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Yang Yang
- Department of Oncology, The Third People's Hospital of Chengdu, Chengdu 255415, Sichuan Province, China
| | - Yi-Ling Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Yue Zhao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
| | - Wen-Jing Ye
- Department of School of Medicine, University of Electronic Science and Technology of China, Chengdu 397992, Sichuan Province, China
| | - Si-Yao Deng
- Department of School of Medicine, University of Electronic Science and Technology of China, Chengdu 397992, Sichuan Province, China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
- Department of Radiological Protection, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 229717, Sichuan Province, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, Sichuan Province, China
- Department of Radiological Protection, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 229717, Sichuan Province, China
| |
Collapse
|
24
|
Su Y, Song X, Teng J, Zhou X, Dong Z, Li P, Sun Y. Mesenchymal stem cells-derived extracellular vesicles carrying microRNA-17 inhibits macrophage apoptosis in lipopolysaccharide-induced sepsis. Int Immunopharmacol 2021; 95:107408. [PMID: 33915488 DOI: 10.1016/j.intimp.2021.107408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Sepsis, as a disease affecting the microcirculation and tissue perfusion, results in tissue hypoxia and multiple organ dysfunctions. Bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated to transfer trivial molecules (proteins/peptides, mRNA, microRNA and lipids) to alleviate sepsis. We sought to define the function of microRNA (miR)-17 carried in BMSC-EVs in sepsis. METHODS The purity of the extracted BMSCs was identified and confirmed by detection of the surface markers by flow cytometry, followed by osteoblastic, adipogenic, and chondrocyte differentiation experiments. Subsequently, EVs were collected from the medium of BMSCs. The uptake of PKH-67-labeled BMSC-EVs or EVs carrying cy3-miR-17 by RAW264.7 cells was observed under laser confocal microscopy. Furthermore, a series of gain- and loss-of-function approaches were conducted to test the effects of LPS, miR-17 and BRD4 on the inflammatory factors (IL-1β, IL-6 and TNF-α), number of M1 macrophages and M2 macrophages, inflammatory-related signal pathway factors (EZH2, c-MYC and TRAIL), macrophage proliferation, and apoptosis in sepsis. The survival rates were measured in vivo. RESULTS BMSC-EVs was internalized by the RAW264.7 cells. BDR4 was verified as a target of miR-17, while the expression pattern of miR-17 was upregulated in BMSC-EVs. MiR-17 carried by BMSC-EVs inhibited LPS-induced inflammation and apoptosis of RAW264.7 cells, but improved the viability of RAW264.7 cells. Next, in vitro experiments supported that miR-17 inhibited LPS-induced inflammation in RAW264.7 cells through BRD4/EZH2/TRAIL axis. BRD4 overexpression reversed the effects of miR-17. Moreover, the therapeutic function of BMSC-EVs carried miR-17 was verified by in vivo experiments. CONCLUSIONS MiR-17 derived from BMSCs-EVs regulates BRD4-mediated EZH2/TRAIL axis to essentially inhibit LPS-induced macrophages inflammation.
Collapse
Affiliation(s)
- Yuan Su
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Xiaoxia Song
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Jinlong Teng
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Xinbei Zhou
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Zehua Dong
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Ping Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
25
|
Fernández-Ponce C, Navarro Quiroz R, Díaz Perez A, Aroca Martinez G, Cadena Bonfanti A, Acosta Hoyos A, Gómez Escorcia L, Hernández Agudelo S, Orozco Sánchez C, Villarreal Camacho J, Atencio Ibarra L, Consuegra Machado J, Espinoza Garavito A, García-Cózar F, Navarro Quiroz E. MicroRNAs overexpressed in Crohn's disease and their interactions with mechanisms of epigenetic regulation explain novel aspects of Crohn's disease pathogenesis. Clin Epigenetics 2021; 13:39. [PMID: 33602320 PMCID: PMC7890887 DOI: 10.1186/s13148-021-01022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background In this review, we were interested to identify the wide universe of enzymes associated with epigenetic modifications, whose gene expression is regulated by miRNAs with a high relative abundance in Crohn's disease (CD) affected tissues, with the aim to determine their impact in the pathogenesis and evolution of the disease. Methods We used HMDD and Bibliometrix R-package in order to identify the miRNAs overexpressed in CD. The identified enzymes associated with epigenetic mechanisms and post-translational modifications, regulated by miRNAs upregulated in CD, were analyzed using String v11 database. Results We found 190 miRNAs with great abundance in patients with CD, of which 26 miRNAs regulate the gene expression of enzymes known to catalyze epigenetic modifications involved in essentials pathophysiological processes, such as chromatin architecture reorganization, immune response regulation including CD4+ T cells polarization, integrity of gut mucosa, gut microbiota composition and tumorigenesis. Conclusion The integrated analysis of miRNAs with a high relative abundance in patients with CD showed a combined and superimposed gene expression regulation of enzymes associated with relevant epigenetic mechanisms and that could explain, in part, the pathogenesis of CD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01022-8.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain
| | - Roberto Navarro Quiroz
- CMCC-Centro de Matemática, Computação E Cognição, Laboratório do Biología Computacional e Bioinformática-LBCB, Universidade Federal Do ABC, Sao Paulo, 01023, Brazil
| | - Anderson Díaz Perez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Universidad Rafael Nuñez, 130001, Cartagena, Colombia
| | - Gustavo Aroca Martinez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Andrés Cadena Bonfanti
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Antonio Acosta Hoyos
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | - Lorena Gómez Escorcia
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Universidad Rafael Nuñez, 130001, Cartagena, Colombia
| | - Sandra Hernández Agudelo
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Christian Orozco Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | | | | | | | - Alberto Espinoza Garavito
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain
| | - Elkin Navarro Quiroz
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia. .,Centro de Investigación E Innovación en Biomoléculas, C4U S.A.S, 080001, Barranquilla, Colombia.
| |
Collapse
|
26
|
Wang N, Liu D. Identification and Validation a Necroptosis‑related Prognostic Signature and Associated Regulatory Axis in Stomach Adenocarcinoma. Onco Targets Ther 2021; 14:5373-5383. [PMID: 34880629 PMCID: PMC8648279 DOI: 10.2147/ott.s342613] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fifth in global cancer incidence and third in cancer-related mortality. The prognosis of GC patients was poor. Necroptosis is a type of regulated cell death mediated by RIP1, RIP3, and MLKL. Necroptosis was found to be involved in antitumor immunity in the cancer immunotherapy. METHODS LASSO Cox regression analysis was performed to construct a prognostic signature. Bioinformatics analysis was performed to construct a lncRNA-miRNA-mRNA regulatory axis. qRT-PCR was performed to verify the expression and prognosis of hub gene in STAD. RESULTS Most of necroptosis regulators were upregulated, while the mRNA level of TLR3, ALDH2, and NDRG2 was downregulated in STAD versus gastric tissues. The genetic mutation and copy number variation of necroptosis regulator in STAD were also summarized. GO and KEGG pathways analysis revealed that these necroptosis regulators were mainly involved in programmed necrotic cell death and TNF signaling pathway. A necroptosis‑related prognostic signature based on four genes (EZH2, PGAM5, TLR4, and TRAF2) had a good performance in predicting the prognosis of STAD patients. We also identified lncRNA SNHG1/miR-21-5p/TLR4 regulatory axis in the progression in STAD. Verification study suggested that the hub gene TLR4 upregulated in STAD and correlated with a poor overall survival. Moreover, Cox regression analysis revealed that TLR4 expression and clinical stage were independent factors affecting the prognosis of STAD patients. CONCLUSION We performed a comprehensive bioinformatics analysis and identified a necroptosis‑related prognostic signature and a lncRNA SNHG1/miR-21-5p/TLR4 regulatory axis in STAD. Further study should be performed to confirm our result.
Collapse
Affiliation(s)
- Ning Wang
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
- Correspondence: Dingsheng Liu Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, People’s Republic of China Email
| |
Collapse
|
27
|
Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, Okada T, Tang J, Chen S, Zhang JH. Inhibition of EZH2 (Enhancer of Zeste Homolog 2) Attenuates Neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (Trimethylation of Histone 3 Lysine 27/Suppressor of Cytokine Signaling 3/Tumor Necrosis Factor Receptor Family 6/Nuclear Factor-κB) in a Rat Model of Subarachnoid Hemorrhage. Stroke 2020; 51:3320-3331. [PMID: 32933418 PMCID: PMC7725431 DOI: 10.1161/strokeaha.120.029951] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation has been proven to play an important role in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). EZH2 (enhancer of zeste homolog 2)-mediated H3K27Me3 (trimethylation of histone 3 lysine 27) has been recognized to play a critical role in multiple inflammatory diseases. However, there is still a lack of evidence to address the effect of EZH2 on the immune response of SAH. Therefore, the aim of this study was to determine the role of EZH2 in SAH-induced neuroinflammation and explore the effect of EZH2 inhibition with its specific inhibitor EPZ6438. METHODS The endovascular perforation method was performed on rats to induce subarachnoid hemorrhage. EPZ6438, a specific EZH2 inhibitor, was administered intraperitoneally at 1 hour after SAH. SOCS3 (Suppressor of cytokine signaling 3) siRNA and H3K27me3 CRISPR were administered intracerebroventricularly at 48 hours before SAH to explore potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, immunofluorescence staining, and western blots were performed after SAH. RESULTS The expression of EZH2 and H3K27me3 peaked at 24 hours after SAH. In addition, inhibition of EZH2 with EPZ6438 significantly improved neurological deficits both in short-term and long-term outcome studies. Moreover, EPZ6438 treatment significantly decreased the levels of EZH2, H3K27Me3, pathway-related proteins TRAF6 (TNF [tumor necrosis factor] receptor family 6), NF-κB (nuclear factor-κB) p65, proinflammatory cytokines TNF-α, IL (interleukin)-6, IL-1β, but increased the expression levels of SOCS3 and anti-inflammatory cytokine IL-10. Furthermore, administration of SOCS3 siRNA and H3k27me3-activating CRISPR partly abolished the neuroprotective effect of EPZ6438, which indicated that the neuroprotective effect of EPZ6438 acted, at least partly, through activation of SOCS3. CONCLUSIONS In summary, the inhibition of EZH2 by EPZ6438 attenuated neuroinflammation via H3K27me3/SOCS3/TRAF6/NF-κB signaling pathway after SAH in rats. By targeting EZH2, this study may provide an innovative method to ameliorate early brain injury after SAH.
Collapse
Affiliation(s)
- Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Takeshi Okada
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
28
|
Li K, Yang J, Lei XF, Li SL, Yang HL, Xu CQ, Deng L. EZH2 inhibition promotes ANGPTL4/CREB1 to suppress the progression of ulcerative colitis. Life Sci 2020; 250:117553. [PMID: 32194081 DOI: 10.1016/j.lfs.2020.117553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
AIMS Enhancer of zeste homolog 2 (EZH2) is associated with ulcerative colitis development. However, the mechanism of EZH2 in ulcerative colitis progression remains unclear. MAIN METHODS Lipopolysaccharide (LPS)-treated Caco-2 cells and dextran sodium sulfate (DSS)-treated mice were used as model of ulcerative colitis. The levels of EZH2, angiopoietin-like 4 (ANGPTL4) and cyclic adenosine monophosphate response element-binding protein 1 (CREB1) were tested via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell viability and apoptosis was measured via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide or flow cytometry. The abundances of inflammatory cytokines were examined via qRT-PCR and enzyme-linked immunosorbent assay. The association between EZH2 and ANGPTL4 was explored via chromatin immunoprecipitation. The colon damage in DSS-treated mice was investigated by colon length, histological analysis, inflammatory response and apoptosis. KEY FINDINGS LPS induced viability inhibition, inflammatory response and apoptosis in Caco-2 cells. EZH2 expression was increased but ANGPTL4 and CREB1 levels were decreased in LPS-challenged Caco-2 cells. Overexpression of ANGPTL4 or CREB1 suppressed LPS-induced damage in Caco-2 cells. EZH2 could target ANGPTL4 to mediate CREB1 expression. Inhibition of EZH2 suppressed LPS-caused injury. Moreover, knockdown of ANNGPTL4 or CREB1 attenuated the role of EZH2 inhibition. DSS caused the reduced colon length and increased inflammatory response as well as apoptosis. EZH2 expression was up-regulated but ANGPTL4 and CREB1 expression were down-regulated in DSS-treated mice. SIGNIFICANCE Inhibition of EZH2 declined LPS-induced injury in Caco-2 cells by mediating ANGPTL4 and CREB1, indicating the potential of EZH2 in treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Xiao-Fei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Shuang-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Hong-Li Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Chang-Qing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Li Deng
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China.
| |
Collapse
|
29
|
Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro 2020; 63:104738. [PMID: 31760064 PMCID: PMC6961208 DOI: 10.1016/j.tiv.2019.104738] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Chronic inflammatory conditions can negatively impact intestinal barrier function and affect the epithelium's interaction with nano-sized materials. We demonstrate the application of a Caco-2/THP-1 co-culture mimicking the intestine in healthy (i.e. stable) or inflamed state in nanotoxicological research. The co-cultures were exposed to non-toxic concentrations of silver nanoparticles (AgNPs) or silver nitrate (AgNO3) for 24 h. The barrier integrity and cytokine release as well as necrotic and apoptotic cell death were investigated. AgNPs and AgNO3 most strongly affected the inflamed co-culture. Higher concentrations of AgNPs induced a significant increase in barrier integrity in the inflamed but not the stable co-culture. Necrotic and apoptotic cell death was detected in both conditions but were significantly more pronounced in the inflamed condition. The exposure to AgNO3 affected barrier integrity in all experimental set-ups, but caused nuclear condensation only in the Caco-2 monoculture and the inflamed co-culture. AgNPs reduced the release of monocyte chemoattractant protein-1 in the stable model. Clear differences were observed in the effects of AgNPs and AgNO3 in relation to the model's health status. The results suggest an increased vulnerability of the inflamed epithelial barrier towards AgNPs underlining the importance to consider the intestinal health status in the safety assessment of nanomaterials.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- European Commission, Joint Research Centre (JRC), Ispra, Italy; Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Nilesh Kanase
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | | |
Collapse
|
30
|
Luo F, Zhou Z, Cai J, Du W. DUB3 Facilitates Growth and Inhibits Apoptosis Through Enhancing Expression of EZH2 in Oral Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1447-1460. [PMID: 32110043 PMCID: PMC7035907 DOI: 10.2147/ott.s230577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Here, we probed the action mechanism of ubiquitin-specific processing proteases 17 (DUB3) in the evolution of oral squamous cell carcinoma (OSCC). Methods The expression of genes were calculated by qRT-PCR, and proteins were assessed by Western blot and immunohistochemistry. The cells viability and proliferation were checked by MTT and EdU assay, respectively. Flow cytometry was implemented to detect the cell cycle and apoptosis. The activity of EZH2 gene promoter was measured by luciferase reporter assay. Co-immunoprecipitation assay was used to ensure the ubiquitination of bromodomain-containing protein 4 (BRD4). The cell apoptosis of tumor tissues was assessed by TUNEL assay. Results DUB3 was overexpressed in OSCC tissues and cell lines, and negatively correlated with patient’s survival time. DUB3 downregulation could effectively curb OSCC cells viability and proliferation, promote cell apoptosis and the expression of cleaved-caspase-3, cleaved PARP and p21, while inhibit cyclin D1. Besides, DUB3 production was positivity correlated with enhancer of zeste homolog-2 (EZH2) and BRD4. BRD4 downregulation could repress DUB3-induced EZH2 production, and MG132 reversed DUB3 decreasing-mediated BRD4 downregulation. Downregulation of DUB3 promoted BRD4 ubiquitination. DUB3 promoted OSCC cells proliferation, while suppressing apoptosis via facilitating EZH2 production. At last, in vivo experiment indicated that the downregulation of DUB3 significantly inhibited the growth of xenograft tumor. Conclusion In summary, we found that DUB3 enhanced OSCC cells proliferation and xenograft tumor growth, while inhibited their apoptosis via promoting BRD4-mediated upregulation of EZH2. Our study indicated that DUB3 may be an effective anti-cancer target for OSCC therapy.
Collapse
Affiliation(s)
- Fei Luo
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Zunyan Zhou
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Jun Cai
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Wei Du
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| |
Collapse
|